首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two types of sonicated vesicle have been prepared from dipalmitoylphosphatidylcholine (DPPC) by incorporation of phosphatidylinositol (PI) to give negatively charged vesicles and stearylamine to give positively charged vesicles. The absorption of the vesicles by rat liver has been investigated by perfusion techniques. A steady state of vesicle absorption is rapidly established in approx. 2 min and the initial rates of absorption decrease with PI content of the vesicles and increase with stearylamine content. In the steady state, the uptake of vesicles by the liver is similarly dependent on vesicle charge, being inhibited by PI and enhanced by incorporation of stearylamine in the vesicles. Fractionation of the liver into subcellular fractions following perfusion showed that most of the vesicular lipid could be found associated with a nuclear (plus plasma membrane) fraction. The suppression of vesicle absorption by PI may be of value as a means of bypassing the liver in relation to the use of vesicles as a delivery system.  相似文献   

2.
Liposomes with positively-charged lipid components have previously demonstrated efficacy in animal models for human diseases, and are currently being evaluated in human clinical studies. Cationic lipids can improve entrapment efficiency of drugs and other substances which are negatively charged, and facilitate penetration of biological membranes in vitro, e.g. in transfection. However, toxic effects have also been reported for positively-charged liposomes containing stearylamine. In this report we have examined gross interactions between plasma components or erythrocytes with cholesterol-rich SUV composed of PC or DPPC and having 0-50 mol% of phospholipid replaced with positively-charged stearylamine, DOTMA, or BisHOP. Plasma interactions observed included increased turbidity of the usually clear stroma and/or formation of a clot-like mass. At plasma concentrations of 0.25 mumol/ml or more, the extent of plasma interactions depended upon the concentration of positive charge, the charge density of cationic lipid initially present in the liposomes, and to a lesser degree, the nature of the lipid providing the positive charge. At liposomal positive charge concentrations of greater than 0.5 mumol/ml plasma, stearylamine provoked a strong increase in plasma turbidity, whereas liposomes incorporating DOTMA or BisHOP provoked a strong clotting response. Some hemolysis of erythrocytes in vitro occurred on interaction with cationic liposomes where positive charge was contributed by DOTMA or stearylamine, but not BisHOP. Implications for the clinical use of liposomes containing cationic lipids, is discussed.  相似文献   

3.
Abstract

The efficacy of using liposomes to transfer DNA to chicken sperm cells was investigated. Liposomes were prepared from dilauroyl (12:0) phosphatidylcholine (DLPC), dimyristoyl (14:0) phosphatidyl choline (DMPC), dipalmitoyl (16:0) phosphatidylcholine (DPPC), egg yolk phosphatidylcholine (EYPC) or lipids extracted from sperm cell membranes. The efficiency of trapping of DNA into the liposomes, transfer of the DNA from the liposomes to the sperm cells and the effect of the liposomes on the fertilizing ability of the sperm cells were determined. Increasing the concentration of lipid in the liposome preparations increased the trapping efficiency of DNA into liposomes but lowered the transfer of DNA to sperm. Including stearylamine (SA) in the liposomes increased the incorporation of DNA into the liposomes and the DNA transfer to sperm cells, while including lauroyllysophosphatidylcholine (LPC) along with SA resulted in the highest transfer efficiency from liposomes to sperm. The transfer of DNA from liposomes to sperm cells was lowered by increasing the number of sperm cells, while decreasing the number of sperm cells lowered the fertility. The sperm cells remained fertile after exposure to low levels of DPPC or lipofectin reagent or to high levels of SA and LPC. The best conditions for liposome‐mediated gene transfer to chicken sperm cells are thus using either lipofectin reagent at .006 to .06 μmol/ml and 5 × 107 sperm or with DPPC liposomes comprised of 10 μmol/ml total lipid including 5 mol% SA and 20 mol% LPC with 2.5 × 108 sperm cells. The use of liposomes to enhance the transfer of DNA to sperm cells may make the use of sperm cells as gene transfer vectors possible.  相似文献   

4.
Phosphatidylinositol (PI), dipalmitoylphosphatidylcholine (DPPC) and mixed lipid (DPPC plus PI) sonicated vesicles have been prepared covering a range of composition. The vesicles were characterised by gel filtration, electron microscopy and photon correlation spectroscopy. The dimensions of the vesicles as measured by electron microscopy were in good accord with those obtained from photon correlation spectroscopy measurements. The number average diameters of the vesicles increase on increasing the PI content and range from approx. 30–80 nm as the weight % of PI is increased from 0 to 100. Gel filtration on Sepharose 4B columns gave anomalous results indicating that PI-containing vesicles were retarded on the gel possibly due to an interaction between the inositol headgroup and the gel matrix. Electrophoretic measurements on multilamellar vesicles show that the surface charge density increases with the PI content of the vesicles upto 50 weight % PI and remains constant thereafter. The radii of sonicated vesicles also increase with PI content which reflects a decreasing liposome curvature with increasing surface charge density.  相似文献   

5.
Abstract

Cationic and anionic liposomes have been prepared by extrusion from dipalmitoylphosphatidylcholine (DPPC) and its mixtures with cholesterol and dimethyldioctadecyltrimethylammonium bromide (DDAB) and with phosphatidylinositol (PI) respectively covering a range of composition from 0 to 19 mole % DDAB and PI. The adsorption of liposomal lipid from the liposome dispersion onto particles of silica and titanium dioxide in suspension has been studied as a function of liposome composition and concentration. The adsorption isotherms have been fitted using a Langmuir equation from which the binding constants and maximum surface coverage were obtained. The Gibbs energies of adsorption for the cationic liposomes were on average -61.0 ± 2.1 kJ mol?1 (on silica) and -50.6 ± 2.9 kJ mol?1 (on titanium dioxide). On average saturation adsorption is equivalent to 3 to 10 lipid monolayers on silica and 3 to 7 on titanium dioxide. Using liposomes encapsulating D-glucose it is demonstrated that there is almost no release of glucose on adsorption of the lipid, indicating that the liposomes are adsorbed intact to form a liposome monolayer on the particle surfaces. Adsorption of intact liposomes to form a close-packed liposome monolayer of solid supported vesicles (SSV) is shown to be equivalent to on average 7.0 ± 0.2 phospholipid monolayers. The SSVs are shown to have increased stability to disruption by surfactants and when carrying the oil-soluble bactericide, Triclosan?, to be capable of inhibiting the growth of oral bacteria from immobilised biofilms.  相似文献   

6.
Although well known for delivering various pharmaceutical agents, liposomes can be prepared to entrap gas rather than aqueous media and have the potential to be used as pressure probes in magnetic resonance imaging (MRI). Using these gas-filled liposomes (GFL) as tracers, MRI imaging of pressure regions of a fluid flowing through a porous medium could be established. This knowledge can be exploited to enhance recovery of oil from the porous rock regions within oil fields. In the preliminary studies, we have optimized the lipid composition of GFL prepared using a simple homogenization technique and investigated key physico-chemical characteristics (size and the physical stability) and their efficacy as pressure probes. In contrast to the liposomes possessing an aqueous core which are prepared at temperatures above their phase transition temperature (T(c)), homogenization of the phospholipids such as 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-distearoyl-sn-glycero-3-phosphocoline (DSPC) in aqueous medium below their T(c) was found to be crucial in formation of stable GFL. DSPC based preparations yielded a GFL volume of more than five times compared to their DPPC counter part. Although the initial vesicle sizes of both DSPC and DPPC based GFL were about 10 microm, after 7 days storage at 25 degrees C, the vesicle sizes of both formulations significantly (p < 0.05) increased to 28.3 +/- 0.3 mum and 12.3 +/- 1.0 microm, respectively. When the DPPC preparation was supplemented with cholesterol at a 1:0.5 or 1:1 molar ratio, significantly (p < 0.05) larger vesicles were formed (12-13 microm), however, compared to DPPC only vesicles, both cholesterol supplemented formulations displayed enhanced stability on storage indicating a stabilizing effect of cholesterol on these gas-filled vesicles. In order to induce surface charge on the GFL, DPPC and cholesterol (1: 0.5 molar ratio) liposomes were supplemented with a cationic surfactant, stearylamine, at a molar ratio of 0.25 or 0.125. Interestingly, the zeta potential values remained around neutrality at both stearylamine ratios suggesting the cationic surfactant was not incorporated within the bilayers of the GFL. Microscopic analysis of GFL confirmed the presence of spherical structures with a size distribution between 1-8 microm. This study has identified that DSPC based GFL in aqueous medium dispersed in 2% w/v methyl cellulose although yielded higher vesicle sizes over time were most stable under high pressures exerted in MRI.  相似文献   

7.
Liposomes have been prepared by the vesicle extrusion method (VETs) from mixtures of dipalmitoylphosphatidylcholine (DPPC), phosphatidylinositol (PI) and dipalmitoylphosphatidylethanolamine with covalently linked poly(ethylene glycol) molecular mass 5000 and 2000 (DPPE-PEG 5000 and DPPE-PEG 2000) covering a range of 0-7.5 mole%. The encapsulation of D-glucose has been studied and found to be markedly dependent on the mole% DPPE-PEG. The permeability of the liposomes to D-glucose has been measured both as a function of temperature and liposome composition. The permeability coefficients for D-glucose increase with mole% DPPE-PEG 5000 and with temperature over the range 25-50 degrees C. The activation energies for glucose permeability range from 90 to 23 kJ mol(-1). The decrease in activation energy with increasing temperature is attributed to an increasing number of bilayer defects as the liposome content of PEG-grafted lipid is increased. The dependence of D-glucose encapsulation as a function of PEG-grafted lipid content is discussed in terms of the conformation of the PEG molecules on the inner surface of the bilayer. For liposomes containing DPPE-PEG 5000 the relative percentage encapsulation of glucose, assuming that the PEG surface layer excludes glucose, is comparable to that predicted from the mushroom and brush conformational models.  相似文献   

8.
Thermozeaxanthins (TZS) are novel carotenoid-glucoside esters existing in the cell membranes of the thermophilic bacterium, Thermus thermophilus. The effect of TZS on membrane permeability was studied by measuring the leakage of the fluorescent dye from calcein-entrapped large unilamellar liposomes (LUVs). The LUVs were composed of a small portion (0.2-1.0 mol%) of TZS and phosphatidylcholine (PC) of various length and saturation degree of hydrocarbon chains. Incorporation of TZS in egg PC LUVs stabilized the liposomes in the temperature range from 30 to 80 degrees C, as only 2.6% of the entrapped calcein leaked out in contrast to 10% release from the egg PC liposomes without TZS. LUVs composed of dipalmitoylphosphatidylcholine (DPPC) or dioleoylphosphatidylcholine (DOPC) were stabilized by the incorporation of TZS at a temperature below 30 degrees C. Inclusion of TZS in LUVs composed of dimyristoylphosphatidylcholine, whose hydrocarbon chains are shorter than both DPPC and DOPC, did not stabilize the liposomes. About 90% of the entrapped dye was lost indicating defects of the liposomal membranes. Matching of the lipid bilayer thickness with the molecular length of TZS in the bilayers is discussed.  相似文献   

9.
The effect of the positive surface charge of unilamellar liposomes on the kinetics of their interaction with rat peritoneal macrophages was investigated using three sizes of liposomes: small unilamellar vesicles (approx. 25 nm diameter), prepared by sonication, and large unilamellar vesicles (100 nm and 160 nm diameter), prepared by the Lipoprep dialysis method. Charge was varied by changing the proportion of stearylamine added to the liposomal lipids (egg phosphatidylcholine and cholesterol, molar ratio 10:2.5). Increasing the stearylamine content of large unilamellar vesicles over a range of 0-25 mol% enhanced the initial rate of vesicle-cell interaction from 0.1 to 1.4 microgram lipid/min per 10(6) cells, and the maximal association from 5 to 110 micrograms lipid/10(6) cells. Cell viability was greater than 90% for cells incubated with large liposomes containing up to 15 mol% stearylamine but decreased to less than 50% at stearylamine proportions greater than 20 mol%. Similar results were obtained with small unilamellar vesicles except that the initial rate of interaction and the maximal association were less sensitive to stearylamine content. The initial rate of interaction, with increasing stearylamine up to 25 mol%, ranged from 0.5 to 0.7 microgram lipid/min per 10(6) cells, and the maximal association ranged from 20 to 70 micrograms lipid/10(6) cells. A comparison of the number and entrapped aqueous volume of small and large vesicles containing 15 mol% stearylamine revealed that although the number of large vesicles associated was 100-fold less than the number of small vesicles, the total entrapped aqueous volume introduced into the cells by large vesicles was 10-fold greater. When cytochalasin B, a known inhibitor of phagocytosis, was present in the medium, the cellular association of C8-LUV was reduced approx. 25% but association of SUV increased approx. 10-30%. Modification of small unilamellar vesicles with an amino mannosyl derivative of cholesterol did not increase their cellular interaction over that of the corresponding stearylamine liposomes, indicating that cell binding induced by this glycolipid may be due to the positive charge of the amine group on the sugar moiety. The results demonstrate that the degree of liposome-cell interaction with macrophages can be improved by increasing the degree of positive surface charge using stearylamine. Additionally, the delivery of aqueous drugs to cells can be further improved using large unilamellar vesicles because of their greater internal volume. This sensitivity of macrophages to vesicle charge and size can be used either to increase or reduce liposome uptake significantly by this cell type  相似文献   

10.
Three phospholipid transfer proteins, namely proteins I, II and III, were purified from the rabbit lung cytosolic fraction. The molecular masses of phospholipid transfer proteins I, II and III are 32 kilodaltons (kDa), 22 kDa and 32 kDa, respectively; their isoelectric point values are 6.5, 7.0 and 6.8, respectively. Phospholipid transfer proteins I and III transferred phosphatidylcholine (PC) and phosphatidylinositol (PI) from donor unilamellar liposomes to acceptor multilamellar liposomes; protein II transferred PC but not PI. All the three phospholipid transfer proteins transferred phosphatidylethanolamine poorly and showed no tendency to transfer triolein. The transfer of [14C]PC from unilamellar liposomes to multilamellar liposomes facilitated by each protein was affected differently by the presence of acidic phospholipids in the PC unilamellar liposomes. In an equal molar ratio of acidic phospholipid and PC, phosphatidylglycerol (PG) reduced the activities of proteins I and III by 70% (P = 0.0004 and 0.0032, respectively) whereas PI and phosphatidylserine (PS) had an insignificant effect. In contrast, the protein II activity was stimulated 2-3-times more by either PG (P = 0.0024), PI (P = 0.0006) or PS (P = 0.0038). In addition, protein II transferred dioleoylPC (DOPC) about 2-times more effectively than dipalmitoylPC (DPPC) (P = 0.0002), whereas proteins I and III transferred DPPC 20-40% more effectively than DOPC but this was statistically insignificant. The markedly different substrate specificities of the three lung phospholipid transfer proteins suggest that these proteins may play an important role in sorting intracellular membrane phospholipids, possibly including lung surfactant phospholipids.  相似文献   

11.
This study evaluated the role of a lysosomal-type phospholipase A2 (aiPLA(2)) in the degradation of internalized dipalmitoylphosphatidylcholine (DPPC) and in phospholipid synthesis by the rat lung. Uptake and degradation of DPPC were measured in isolated perfused rat lungs over 3 h following endotracheal instillation of [(3)H]DPPC in mixed unilamellar liposomes plus or minus MJ33, a specific inhibitor of lung aiPLA(2). Uptake of DPPC was calculated from total tissue-associated radiolabel, and degradation was calculated from the sum of radiolabel in degradation products. Both uptake and degradation were markedly stimulated by addition of 8-bromo-cAMP to the perfusate. MJ33 had no effect on DPPC uptake but decreased DPPC degradation at 3 h by approximately 40-50%. The effect of MJ33 on lung synthesis of DPPC was evaluated with intact rats over a 12- to 24-h period following intravenous injection of radiolabeled palmitate and choline. MJ33 treatment decreased palmitate incorporation into disaturated phosphatidylcholine of lamellar bodies and surfactant by approximately 65% at 24 h but had no effect on choline incorporation. This result is compatible with inhibition of the deacylation/reacylation pathway for DPPC synthesis. These results obtained with intact rat lungs indicate that aiPLA(2) is a major enzyme for degradation of internalized DPPC and also has an important role in DPPC synthesis.  相似文献   

12.
Abstract

The aim was to investigate the potential of proliposomes to improve the permeability of tenofovir, anti-HIV, for oral delivery. Tenofovir was incorporated into phosphatidylcholine proliposomes and their absorption was determined in Caco-2 cell cultures grown on Transwell inserts using aqueous drug solutions as reference. Five batches of proliposomes were prepared with different stearylamine levels and characterized in terms of vesicular morphology, drug encapsulation efficiency (EEF), drug leakage, vesicular sizing and surface charges. Cytotoxicity of the reconstituted liposomes was evaluated by the MTT assay. The obtained results showed that increasing the incorporated percentage of stearylamine led to an increase in drug encapsulation, a slower drug leakage and larger liposomes formed. Compared to the drug solutions at corresponding concentrations, the proposed formulations showed a positive relationship (R2?=?0.9756) for the influence of increasing the stearylamine percentage on reduction of mitochondrial activity. Regarding the drug permeability, enhancements of apparent permeability by 16.5- and 5.2-folds were observed for proliposomes formulations with 5% and 15% stearylamine, respectively. A good correlation was observed between the Caco-2 and dialysis models that might indicate passive diffusion as well as paracellular transport as suggested mechanisms for drug absorption. Cationic proliposomes offered a potential formulation to improve the permeation of tenofovir.  相似文献   

13.
Monensin, a carboxylic ionophore was intercalated in liposomes (liposomal monensin) and its effect on cytotoxicities of ricin, Pseudomonas exotoxin A and diphtheria toxin in CHO cells was studied. Intercalation of monensin in liposomal bilayer is found to have no effect on its stability and interaction with cells. Liposomal monensin (1 nM) substantially enhance the cytotoxicities of ricin (62-fold) and Pseudomonas exotoxin A (11.5-fold) while it has no effect on diphtheria toxin. This observed effect is highly dependent on the liposomal lipid composition. The potentiating ability of monensin (1 nM) in neutral vesicles is significantly higher (2.2-fold) as compared to negatively charges vesicles. This ability is drastically reduced by incorporation of stearylamine in liposomes and is found to be dependent on the density of stearylamine as well as on the concentration of serum in the medium. Monensin in liposomes containing 24 mol% stearylamine has a very marginal effect on the cytotoxicity of ricin (7.5-fold) which is further reduced (1.5-fold) in the presence of 20% serum. The uptake of 125I-gelonin from neutral vesicles is significantly higher (approximately 2.0-fold) than that from the negative vesicles. The uptake from positive vesicles is highly dependent on the concentration of stearylamine. The reduction in the lag period (30 min) of ricin action by monensin in neutral and negative vesicle is comparable with free monensin. However, monensin in positive vesicle has no effect on it. These studies have suggested that liposomes could be used as a delivery vehicle for monensin for selective elimination of tumor cells in combination with hybrid toxins.  相似文献   

14.
The effects of pulsed 130 GHz radiations on lipid membrane permeability were investigated by using cationic liposomes containing dipalmitoyl phosphatidylcholine (DPPC), cholesterol, and stearylamine. Carbonic anhydrase (CA) was loaded inside the liposomes and the substrate p-nitrophenyl acetate (p-NPA) added in the bulk aqueous phase. Upon permeation across the lipid bilayer, the trapped CA catalyzes the conversion of the p-NPA molecules into products. Because the self-diffusion rate of p-NPA across intact liposomes is very low the CA reaction rate, expressed as Delta A/min, is used to track membrane permeability changes. The effect of 130 GHz radiation pulse-modulated at low frequencies of 5, 7, or 10 Hz, and at time-averaged incident intensity (I(AV)) up to 17 mW/cm(2) was studied at room temperature (22 degrees C), below the phase transition temperature of DPPC liposomes. At all the tested values of I(AV) a significant enhancement of the enzyme reaction rate in CA-loaded liposomes occurred when the pulse repetition rate was 7 Hz. Typically, an increase from Delta A/min = 0.0026 +/- 0.0010 (n = 11) to Delta A/min = 0.0045 +/- 0.0013 (n = 12) (P < 0.0005) resulted at I(AV) = 7.7 mW/cm(2). The effect of 130 GHz pulse-modulated at 7 Hz was also observed on cationic liposomes formed with palmitoyloleoyl phosphatidylcholine (POPC), at room temperature (22 degrees C), above the phase transition temperature of POPC liposomes.  相似文献   

15.
Confocal laser scanning microscopy has been used to visualise the adsorption of fluorescently labelled liposomes on immobilised biofilms of the bacterium Staphylococcus aureus. The liposomes were prepared with a wide range of compositions with phosphatidylcholines as the predominant lipids using the extrusion technique. They had weight average diameters of 125 +/- 5 nm and were prepared with encapsulated carboxyfluorescein. Cationic liposomes were prepared by incorporating dimethyldioctadecylammonium bromide (DDAB) or 3, beta [N-(N1,N1 dimethylammonium ethane)-carbamoyl] cholesterol (DC-chol) and anionic liposomes were prepared by incorporation of phosphatidylinositol (PI). Pegylated cationic liposomes were prepared by incorporation of DDAB and 1,2-dipalmitoylphosphatidylethanolamine-N-[polyethylene glycol)-2000]. Confocal laser scanned images showed the preferential adsorption of the fluorescent cationic liposomes at the biofilm-bulk phase interface which on quantitation gave fluorescent peaks at the interface when scanned perpendicular (z-direction) to the biofilm surface (x-y plane). The biofilm fluorescence enhancement (BFE) at the interface was examined as a function of liposomal lipid concentration and liposome composition. Studies of the extent of pegylation of the cationic liposomes incorporating DDAB, on adsorption at the biofilm-bulk phase interface were made. The results demonstrated that pegylation inhibited adsorption to the bacterial biofilms as seen by the decline in the peak of fluorescence as the mole% DPPE-PEG-2000 was increased in a range from 0 to 9 mole%. The results indicate that confocal laser scanning microscopy is a useful technique for the study of liposome adsorption to bacterial biofilms and complements the method based on the use of radiolabelled liposomes.  相似文献   

16.
Abstract

Doxorubicin (DXR) was encapsulated in long-circulating, thermosensitive liposomes (TSL, 180-200 nm in mean diameter), prepared from dipalmitoyl phosphatidyl choline (DPPC)/distearoyl phosphatidyl choline (DSPC) (9:1, m/m) and either 3 mol% of amphipathic polyethylene glycol (PEG) with 1000 in average molecular weight or 6 mol% of ganglioside GMI (GMI), with 95-98% entrapping efficiency by the pH gradient method. 57% or 45% of the entrapped DXR was released from PEG/DPPC/DSPC or GM1/DPPC/DSPC liposomes, respectively, by incubation with 20% serum at 42°C for 5 min. Inclusion of PEG or GM1 endowed TSL with prolonged circulation ability, resulting in increased blood levels of liposomes and decreased reticuloendothelial system (RES) uptake over 6 hours after injection. Concomitantly, high DXR level in blood was kept for long time.

Accumulation of DXR into tumor tissue of tumor-bearing mice (mouse colon carcinoma 26) by local hyperthermia after injection of DXR-long-circulating TSL was 2 times or 7 times higher than that after treatment with DXR-TSL liposomes or free DXR in combination with hyperthermia, respectively. Furthermore, the systemic treatment with DXR-long-circulating TSL and hyperthermia resulted in effective tumor growth retardation and increased survival time. These results indicate that the combination of long-circulating, thermosensitive liposomes with local hyperthermia at the tumor site could be clinically useful for delivering a wide range of chemotherapeutic agents in the treatment of solid tumors.  相似文献   

17.
Unilamellar dioleoylphosphatidylcholine (DOPC) liposomes (250 microM) incorporated 2 mol% of [3H]pristane at 37 degrees C after addition of 50 microM pristane solubilized with beta-cyclodextrin. Conventional solubilization in dimethyl sulphoxide resulted in much lower uptake. Premixing of perdeuterated pristane with DOPC and dipalmitoylphosphatidylcholine (DPPC) prior to the formation of multilamellar liposomes resulted in homogeneous incorporation of up to 5 mol% pristane at 22 degrees C and 50 degrees C, respectively, as observed by 2H-NMR. Lipid order parameters measured by 31P and 2H-NMR remained unchanged after pristane uptake. Pristane induced the transformation of part of the dioleoylphosphatidylethanolamine (DOPE)/DOPC (3:1, mol/mol) liquid crystalline lamellar phase into an inverse hexagonal phase. 5 mol% pristane in DPPC bilayers decreased the midpoint of the main phase transition temperature of DPPC from 41.5 degrees C to 40.9 degrees C. Upon cooling in the temperature range from 41 degrees C to 36 degrees C, pristane was either displaced from the DPPC bilayer or the mode of incorporation changed. These results may aid in defining the mechanisms whereby pristane, an isoprenoid C19-isoalkane, induces plasmacytomagenesis in mice.  相似文献   

18.
In the microsomal fraction of thyroid glands, the temperature dependence of DPH fluorescence polarization showed a discontinuity in the range of 29-33 degrees C. The transition temperatures of DMPC, DPPC and DSPC are near to the observed for the microsomal fraction. So that, thyroid peroxidase (TPO) was incorporated into liposomes made with these phospholipids. When DPH was incorporated in this peroxidase-liposome complex, a less pronounced phase transition was observed in the profiles of temperature dependence of DPH polarization, and the incorporation of the enzyme decreased the Tc. Arrhenius plots of TPO incorporated into liposomes showed discontinuities at similar temperatures observed by fluorescence polarization. The decrease of transition temperature of liposomes induced by thyroid peroxidase incorporation suggests that this enzyme seems to need a fluid medium for its enzyme activity.  相似文献   

19.
20.
Liver from adult male rats were perfused in situ for 30 min with either undiluted, defibrinated rat blood (haematocrit value 38%) or the same blood diluted with buffer to give a haematocrit of 20%. Perfusion with diluted blood lowered the PO2 of the effluent perfusate but this was insufficient to prevent the fall in O2 consumption due to the reduction in haematocrit. Glucagon (5 X 10(-9) M) increased hepatic O2 consumption with whole blood but not with diluted blood. perfusate K+ was increased by perfusion with diluted blood and glucagon. Bile flow was depressed and biliary K+ increased by glucagon but only in experiments with whole blood. Perfusate glucose was raised by lowering of hepatic O2 consumption but the hormonal stimulation of glucose output was the same at both haematocrits. Net ketogenesis was increased with perfusion with diluted blood and by glucagon. In the absence of glucagon there was a net secretion of triacylglycerols which was depressed by lowering of the haematocrit. Glucagon inhibited triacylglycerol secretion and the effect was greater with whole blood so that there was net uptake. While effects of glucagon were obtained during perfusion at a lower haematocrit, it would appear that whole blood was the medium that allowed their fullest expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号