首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
A systematic search in the available scaffolds of the Strongylocentrotus purpuratus genome has revealed that this sea urchin has 11 members of the ets gene family. A phylogenetic analysis of these genes showed that almost all vertebrate ets subfamilies, with the exception of one, so far found only in mammals, are each represented by one orthologous sea urchin gene. The temporal and spatial expression of the identified ETS factors was also analyzed during embryogenesis. Five ets genes (Sp-Ets1/2, Sp-Tel, Sp-Pea, Sp-Ets4, Sp-Erf) are also maternally expressed. Three genes (Sp-Elk, Sp-Elf, Sp-Erf) are ubiquitously expressed during embryogenesis, while two others (Sp-Gabp, Sp-Pu.1) are not transcribed until late larval stages. Remarkably, five of the nine sea urchin ets genes expressed during embryogenesis are exclusively (Sp-Ets1/2, Sp-Erg, Sp-Ese) or additionally (Sp-Tel, Sp-Pea) expressed in mesenchyme cells and/or their progenitors. Functional analysis of Sp-Ets1/2 has previously demonstrated an essential role of this gene in the specification of the skeletogenic mesenchyme lineage. The dynamic, and in some cases overlapping and/or unique, developmental expression pattern of the latter five genes suggests a complex, non-redundant function for ETS factors in sea urchin mesenchyme formation and differentiation.  相似文献   

2.
3.
The genome sequence of the purple sea urchin Strongylocentrotus purpuratus recently became available. We report the results of functional annotation and initial analysis of more than 2300 proteins predicted to be involved in metabolite transport and enzymatic conversion in sea urchin. The comparison of various reconstructed biosynthetic and catabolic pathways in sea urchin to those known in other genomes suggests the overall similarity of the sea urchin metabolism to that of the vertebrates, with relatively small but non-trivial differences from both vertebrates and protostomes. There are several examples of two parallel, non-orthologous solutions for the same molecular function in sea urchin, in contrast with the other completely sequenced metazoans that tend to contain just one version of the same function. There are also genes that appear to be close phylogenetic neighbors of plant or bacterial homologs, as opposed to homologs in other Metazoa. The evolutionary and functional significance of these variations is discussed.  相似文献   

4.
The Wnt pathways are evolutionarily well-conserved signal transduction pathways that are known to play important roles in all Metazoans investigated to date. Here, we examine the Wnt pathway genes and target genes present in the genome of the echinoderm Strongylocentrotus purpuratus. Analysis of the Wnt genes revealed that eleven of the thirteen reported Wnt subfamilies are represented in sea urchin, with the intriguing identification of a Wnt-A ortholog thought to be absent in deuterostomes. A phylogenetic study of the Frizzled proteins, the Wnt receptors, performed throughout the animal kingdom showed that not all Frizzled subfamilies were present in the metazoan common ancestor, e.g. Fz3/6 emerged later during evolution. Using sequence analysis, orthologs of the vast majority of the cellular machinery involved in transducing the three types of Wnt pathways were found in the sea urchin genome. Furthermore, of about one hundred target genes identified in other organisms, more than half have clear echinoderm orthologs. Thus, these analyses produce new inputs in the evolutionary history of the Wnt genes in an animal occupying a position that offers great insights into the basal properties of deuterostomes.  相似文献   

5.
6.
7.
8.
To identify ligands for orphan GPCRs, we searched novel neuropeptide genes in the Drosophila melanogaster genome. Here, we describe CNMa, a novel cyclic neuropeptide that is a highly potent and selective agonist for the orphan GPCR, CG33696 (CNMaR). Phylogenetic analysis revealed that arthropod species have two paralogous CNMaRs, but many taxa retain only one. Drosophila CNMa potently activates CNMaR-2 from Apis mellifera, suggesting both receptors are functional. Although CNMa is conserved in most arthropods, Lepidoptera lack the CNMa gene. However, they retain the CNMaR gene. Bombyx CNMaR showed low sensitivity to Drosophila CNMa, hinting toward the existence of additional CNMaR ligand(s).  相似文献   

9.
The immune gene repertoire encoded in the purple sea urchin genome   总被引:1,自引:0,他引:1  
Echinoderms occupy a critical and largely unexplored phylogenetic vantage point from which to infer both the early evolution of bilaterian immunity and the underpinnings of the vertebrate adaptive immune system. Here we present an initial survey of the purple sea urchin genome for genes associated with immunity. An elaborate repertoire of potential immune receptors, regulators and effectors is present, including unprecedented expansions of innate pathogen recognition genes. These include a diverse array of 222 Toll-like receptor (TLR) genes and a coordinate expansion of directly associated signaling adaptors. Notably, a subset of sea urchin TLR genes encodes receptors with structural characteristics previously identified only in protostomes. A similarly expanded set of 203 NOD/NALP-like cytoplasmic recognition proteins is present. These genes have previously been identified only in vertebrates where they are represented in much lower numbers. Genes that mediate the alternative and lectin complement pathways are described, while gene homologues of the terminal pathway are not present. We have also identified several homologues of genes that function in jawed vertebrate adaptive immunity. The most striking of these is a gene cluster with similarity to the jawed vertebrate Recombination Activating Genes 1 and 2 (RAG1/2). Sea urchins are long-lived, complex organisms and these findings reveal an innate immune system of unprecedented complexity. Whether the presumably intense selective processes that molded these gene families also gave rise to novel immune mechanisms akin to adaptive systems remains to be seen. The genome sequence provides immediate opportunities to apply the advantages of the sea urchin model toward problems in developmental and evolutionary immunobiology.  相似文献   

10.
11.
We ran field experiments to examine the responses of the black sea urchin Tetrapygus niger to predatory sea stars. Trials involving simulated attacks (one or several arms of a sea star being placed on top of half the urchin) showed that the urchin differentiated between the predatory sea stars, Heliaster helianthus and Meyenaster gelatinosus, and a non-predatory sea star, Stichaster striatus, and showed almost no response to a sea star mimic. We further compared the responses of the urchin to different threat levels presented by the two predatory sea stars. The highest threat level was a simulated attack, then mere contact, and subsequently sea stars being placed at different distances from the urchin. All urchins responded to simulated attacks and contact with both sea stars. The proportion responding decreased with distance and more rapidly in trials with H. helianthus (0% at a distance of 30 cm) than with M. gelatinosus (33% at a distance of 50 cm). At each of the threat levels where there was a response to both sea stars, the urchins responded more rapidly to M. gelatinosus than to H. helianthus. In a third experiment where a predatory sea star was added to a circular area (1-m diameter) in which either 4-8 or 11-19 undisturbed urchins were present, the urchins fled the area more rapidly when the added sea star was M. gelatinosus, but the rate of fleeing did not vary with density, as might occur if there was communication among urchins using alarm signals. Our observations suggest that M. gelatinosus presents a stronger predatory threat than H. helianthus. This corresponds to field observations showing that the urchins are more frequently consumed by M. gelatinosus. These are the first field experiments demonstrating distance chemodetection by a marine invertebrate under back-and-forth water flow from wave activity.  相似文献   

12.
During vertebrate development, brain patterning and head morphogenesis are tightly coordinated. In this paper, we study these processes in the mouse mutant Fused toes (Ft), which presents severe head defects at midgestation. The Ft line carries a 1.6-Mb deletion on chromosome 8. This deletion eliminates six genes, three members of the Iroquois gene family, Irx3, Irx5 and Irx6, which form the IrxB cluster, and three other genes of unknown function, Fts, Ftm and Fto. We show that in Ft/Ft embryos, both anteroposterior and dorsoventral patterning of the brain are affected. As soon as the beginning of somitogenesis, the forebrain is expanded caudally and the midbrain is reduced. Within the expanded forebrain, the most dorsomedial (medial pallium) and ventral (hypothalamus) regions are severely reduced or absent. Morphogenesis of the forebrain and optic vesicles is strongly perturbed, leading to reduction of the eyes and delayed or absence of neural tube closure. Finally, facial structures are hypoplastic. Given the diversity, localisation and nature of the defects, we propose that some of them are caused by the elimination of the IrxB cluster, while others result from the loss of one or several of the Fts, Ftm and Fto genes.  相似文献   

13.
In every organism, GTP-binding proteins control many aspects of cell signaling. Here, we examine in silico several GTPase families from the Strongylocentrotus purpuratus genome: the monomeric Ras superfamily, the heterotrimeric G proteins, the dynamin superfamily, the SRP/SR family, and the "protein biosynthesis" translational GTPases. Identified were 174 GTPases, of which over 90% are expressed in the embryo as shown by tiling array and expressed sequence tag data. Phylogenomic comparisons restricted to Drosophila, Ciona, and humans (protostomes, urochordates, and vertebrates, respectively) revealed both common and unique elements in the expected composition of these families. Galpha and dynamin families contain vertebrate expansions, consistent with whole genome duplications, whereas SRP/SR and translational GTPases are highly conserved. Unexpectedly, Ras superfamily analyses revealed several large (5+) lineage-specific expansions in the sea urchin. For Rho, Rab, Arf, and Ras subfamilies, comparing total human gene numbers to the number of sea urchin genes with vertebrate orthologs suggests reduced genomic complexity in the sea urchin. However, gene duplications in the sea urchin increase overall numbers such that total sea urchin gene numbers approximate vertebrate gene numbers for each monomeric GTPase family. These findings suggest that lineage-specific expansions may be an important component of genomic evolution in signal transduction.  相似文献   

14.
We have previously identified 60 predicted ABC transporter genes in the Caenorhabditis elegans genome and classified them into eight groups. As an initial step towards understanding how these putative ABC genes work in worms, we generated promoter-fluorescent protein fusions for the entire family to address when and where these genes are turned on in vivo. Both Aequoria green fluorescent protein (GFP) and Discosoma red fluorescent protein (RFP) were used as reporters in our transgenic assay. Observable expression is more frequently seen from fusions to genes in subfamilies B, C, D and E than those in subfamilies A and G. Sixteen worm ABC genes are found in tandem duplications, forming two four-gene clusters and four two-gene clusters. Fifteen out of the 16 duplicated gene promoters drove different or partially overlapping expression patterns, suggesting active functions for these duplicated genes. Furthermore, our results suggest that an internal promoter can cause differential expression of genes within an operon. Finally, our observations suggest that it is possible for coding sequences to function as a regulatory region for a neighbouring gene.  相似文献   

15.
Body size and prior residence can modulate agonistic interaction in several animal species, but scientists know little about these relationships in echinoderms. In this study, we tested the effects of these traits on interactions in the black sea urchin (Echinometra lucunter). After a sea urchin was isolated for 24-h in a glass tank to establish prior residence, we introduced an intruder animal adjacent to the resident in the tank and observed interactions for 30 min. The intruder animal was larger, smaller, or size-matched to the resident. We found body size and prior residence concomitantly modulated interactions among black sea urchins, with prior residence as the major determinant. Black sea urchins mainly exhibited opponent inspection and fleeing responses during interaction to avoid fights, especially when a fight could be seriously disadvantageous (small intruder vs. large resident).  相似文献   

16.
Biomineralization, the biologically controlled formation of mineral deposits, is of widespread importance in biology, medicine, and engineering. Mineralized structures are found in most metazoan phyla and often have supportive, protective, or feeding functions. Among deuterostomes, only echinoderms and vertebrates produce extensive biomineralized structures. Although skeletons appeared independently in these two groups, ancestors of the vertebrates and echinoderms may have utilized similar components of a shared genetic "toolkit" to carry out biomineralization. The present study had two goals. First, we sought to expand our understanding of the proteins involved in biomineralization in the sea urchin, a powerful model system for analyzing the basic cellular and molecular mechanisms that underlie this process. Second, we sought to shed light on the possible evolutionary relationships between biomineralization in echinoderms and vertebrates. We used several computational methods to survey the genome of the purple sea urchin Strongylocentrotus purpuratus for gene products involved in biomineralization. Our analysis has greatly expanded the collection of biomineralization-related proteins. We have found that these proteins are often members of small families encoded by genes that are clustered in the genome. Most of the proteins are sea urchin-specific; that is, they have no apparent homologues in other invertebrate deuterostomes or vertebrates. Similarly, many of the vertebrate proteins that mediate mineral deposition do not have counterparts in the S. purpuratus genome. Our findings therefore reveal substantial differences in the primary sequences of proteins that mediate biomineral formation in echinoderms and vertebrates, possibly reflecting loose constraints on the primary structures of the proteins involved. On the other hand, certain cellular and molecular processes associated with earlier events in skeletogenesis appear similar in echinoderms and vertebrates, leaving open the possibility of deeper evolutionary relationships.  相似文献   

17.
We report seven new members of the superfamily of human G protein-coupled receptors (GPCRs) found by searches in the human genome databases, termed GPR100, GPR119, GPR120, GPR135, GPR136, GPR141, and GPR142. We also report 16 orthologues of these receptors in mouse, rat, fugu (pufferfish) and zebrafish. Phylogenetic analysis shows that these are additional members of the family of rhodopsin-type GPCRs. GPR100 shows similarity with the orphan receptor SALPR. Remarkably, the other receptors do not have any close relative among other known human rhodopsin-like GPCRs. Most of these orphan receptors are highly conserved through several vertebrate species and are present in single copies. Analysis of expressed sequence tag (EST) sequences indicated individual expression patterns, such as for GPR135, which was found in a wide variety of tissues including eye, brain, cervix, stomach and testis. Several ESTs for GPR141 were found in marrow and cancer cells, while the other receptors seem to have more restricted expression patterns.  相似文献   

18.
The predicted gene models derived from the sea urchin genome were compared to the gene catalogs derived from other completed genomes. The models were categorized by their best match to conserved protein domains. Identification of potential orthologs and assignment of sea urchin gene models to groups of homologous genes was accomplished by BLAST alignment and through the use of a clustering algorithm. For the first time, an overview of the sea urchin genetic toolkit emerges and by extension a more precise view of the features shared among the gene catalogs that characterize the super-clades of animals: metazoans, bilaterians, chordate and non-chordate deuterostomes, ecdysozoan and lophotrochozoan protostomes. About one third of the 40 most prevalent domains in the sea urchin gene models are not as abundant in the other genomes and thus constitute expansions that are specific at least to sea urchins if not to all echinoderms. A number of homologous groups of genes previously restricted to vertebrates have sea urchin representatives thus expanding the deuterostome complement. Obversely, the absence of representatives in the sea urchin confirms a number of chordate specific inventions. The specific complement of genes in the sea urchin genome results largely from minor expansions and contractions of existing families already found in the common metazoan "toolkit" of genes. However, several striking expansions shed light on how the sea urchin lives and develops.  相似文献   

19.
20.
Recent years have seen long-awaited progress in understanding of the molecular mechanisms of taste perception in insects. The breakthrough came in the early 2000 with the identification of a novel family of candidate gustatory receptor (Gr) genes in the first release of the Drosophila melanogaster genome sequence. The 60 Gr genes are expressed in the subsets of gustatory neurons in the fly's taste organs and, without exception, encode heptahelical G protein-coupled receptors (GPCRs). Here I review our current knowledge about Gr genes and their products focusing on the newly emerging information regarding the function of the Gr-encoded proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号