首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The cochlea of the mole rat Cryptomys hottentotus was investigated with physiological and anatomical methods. In order to reveal the place-frequency map of the cochlea, iontophoretic HRP-applications were made in the cochlear nucleus at physiologically characterized locations. Subsequent HRP-transport in auditory nerve fibres and labeling patterns of spiral ganglion cells within the cochlea were evaluated.A cochlear place-frequency map was constructed from 17 HRP-applications in the cochlear nucleus at positions where neurons had characteristic frequencies between 0.1 and 12.6 kHz. As in other mammals, high frequencies were found to be represented at the cochlear base, low frequencies at the cochlear apex. The placefrequency map had three distinct parts which were characterized by their different slopes. A clear overrepresentation of the frequencies between 0.6 and 1 kHz was revealed, in this frequency range the slope of the place-frequency map amounted to 5.3 mm/octave. As calculated from the regression analysis, below 0.6 kHz the slope of the cochlear place-frequency map amounted to 0.24 mm/octave, above 1 kHz to 0.9 mm/octave.As in other mammals width of the basilar membrane (BM) increased from the cochlear base towards the cochlear apex. Also in concordance with the findings in other mammals, BM-thickness decreased from the cochlear base to the apex. However, it was remarkable to find that there was no or little change in BM-width and thickness between 40 and 85% BM-length. It was also revealed that scala tympani was only 1/10th the size found in the rat or other mammals of similar body size.On the basis of the cochlear place-frequency map and the morphological findings we speculate that in Cryptomys hottentotus an acoustic fovea is present in the frequency range between 0.6 and 1 kHz. In analogy to echolocating bats, about half of the cochlea is devoted to the analysis of a narrow frequency band within the hearing range.Abbreviations BM basilar membrane - CF characteristic frequency - CN cochlear nucleus  相似文献   

2.
Physiological processes in the cochlea associated with sound transduction and maintenance of the unique electrochemical environment are metabolically demanding. Creatine maintains ATP homeostasis by providing high-energy phosphates for ATP regeneration which is catalyzed by creatine kinase (CK). Cellular uptake of creatine requires a specific high affinity sodium- and chloride-dependent creatine transporter (CRT). This study postulates that this CRT is developmentally regulated in the rat cochlea. CRT expression was measured by quantitative real-time RT-PCR and immunohistochemistry in the postnatal (P0–P14) and adult (P22–P56) rat cochlea. The maximum CRT expression was reached at the onset of hearing (P12), and this level was maintained through to adulthood. CRT immunoreactivity was strongest in the sensory inner hair cells, supporting cells and the spiral ganglion neurons. Cochlear distribution of the CK brain isoform (CKB) was also assessed by immunohistochemistry and compared with the distribution of CRT in the developing and adult cochlea. CKB was immunolocalized in the organ of Corti supporting cells, and the lateral wall tissues involved in K+ cycling, including stria vascularis and spiral ligament fibrocytes. Similar to CRT, CKB reached peak expression after the onset of hearing. Differential spatial and temporal expression of CRT and CK in cochlear tissues during development may reflect differential requirements for creatine–phosphocreatine buffering to replenish ATP consumed during energy-dependent metabolic processes, especially around the period when the cochlea becomes responsive to airborne sound.  相似文献   

3.
EJ Son  L Wu  H Yoon  S Kim  JY Choi  J Bok 《PloS one》2012,7(7):e40735
The mammalian cochlear duct is tonotopically organized such that the basal cochlea is tuned to high frequency sounds and the apical cochlea to low frequency sounds. In an effort to understand how this tonotopic organization is established, we searched for genes that are differentially expressed along the tonotopic axis during neonatal development. Cochlear tissues dissected from P0 and P8 mice were divided into three equal pieces, representing the base, middle and apex, and gene expression profiles were determined using the microarray technique. The gene expression profiles were grouped according to changes in expression levels along the tonotopic axis as well as changes during neonatal development. The classified groups were further analyzed by functional annotation clustering analysis to determine whether genes associated with specific biological function or processes are particularly enriched in each group. These analyses identified several candidate genes that may be involved in cochlear development and acquisition of tonotopy. We examined the expression domains for a few candidate genes in the developing mouse cochlea. Tnc (tenacin C) and Nov (nephroblastoma overexpressed gene) are expressed in the basilar membrane, with increased expression toward the apex, which may contribute to graded changes in the structure of the basilar membrane along the tonotopic axis. In addition, Fst (Follistatin), an antagonist of TGF-β/BMP signaling, is expressed in the lesser epithelial ridge and at gradually higher levels towards the apex. The graded expression pattern of Fst is established at the time of cochlear specification and maintained throughout embryonic and postnatal development, suggesting its possible role in the organization of tonotopy. Our data will provide a good resource for investigating the developmental mechanisms of the mammalian cochlea including the acquisition of tonotopy.  相似文献   

4.
Tectorial membrane stiffness gradients   总被引:1,自引:0,他引:1  
  相似文献   

5.
The spikemoss is marked by the unique root-producing pleurogeous rhizophore as well as the lycophytic microphyll. Imaichi and Kato (Bot Mag Tokyo 102:369–380, 1989; Am J Bot 78:1694–1703, 1991) revealed that the exogenous developmental process in the rhizophore is clearly distinguishable from the developmental process in the endogenous root, argued that the axial organ could be coordinate with other fundamental organs including the root and stem, and demonstrated the “rhizophore concept.” In this paper, we report on the expression pattern of the spikemoss Selaginella class 1 KNOX gene, SuKNOX1, in the rhizophore. We show that the SuKNOX1 mRNA is specifically accumulated at the tip of the rhizophore as well as the shoot apical apex, but not in the root tip. This result supports the “rhizophore concept” at the molecular level.  相似文献   

6.
7.
The cochlear frequency map of the mustache bat,Pteronotus parnellii   总被引:2,自引:0,他引:2  
The frequency-place map of the cochlea of mustache bats was constructed by the analysis of HRP-transport patterns in spiral ganglion cells following iontophoretic tracer injections into cochlear nucleus regions responsive to different frequencies. The cochlea consists of 5 half turns (total length 14.3 mm) and the representation of certain frequency bands can be assigned to specific cochlear regions: The broad high frequency range between 70 and 111 kHz is represented in the most basal half turn within only 3.2 mm. This region is terminated apically by a distinct narrowing of the scala vestibuli that coincides with a pronounced increase in basilar membrane (BM) thickness. The narrow intermediate frequency range between 54 and 70 kHz is expanded onto 50% of cochlear length between 4.0 and 11.1 mm distance from apex. The frequency range around 60 kHz, where the tuning characteristics of the auditory system are exceptionally sharp, is located in the center of this expanded BM-region in the second half turn within a maximum of innervation density. These data can account for the vast overrepresentation of neurons sharply tuned to about 60 kHz at central stations of the auditory pathway. In the cochlear region just basal to the innervation maximum, where label from injections at 66 and 70 kHz was found, a number of morphological specializations coincide: the BM is maximally thickened, innervation density is low, the spiral ligament is locally enlarged, and the 'thick lining', a dense covering of the scala tympani throughout the basal halfturn, suddenly disappears. Low frequencies up to 54 kHz are represented within the apical half turns over a 4 mm span of the basilar membrane. The data are compared to the cochlea of horseshoe bats and the possible functional role of the morphological discontinuities for sharp tuning and the generation of otoacoustic emissions is discussed.  相似文献   

8.
At embryonic day 8.5, the LIM-homeodomain factor Lmx1a is expressed throughout the otic placode but becomes developmentally restricted to non-sensory epithelia of the ear (endolymphatic duct, ductus reuniens, cochlea lateral wall). We confirm here that the ears of newborn dreher (Lmx1a dr) mutants are dysmorphic. Hair cell markers such as Atoh1 and Myo7 reveal, for the first time, that newborn Lmx1a mutants have only three sensory epithelia: two enlarged canal cristae and one fused epithelium comprising an amalgamation of the cochlea, saccule, and utricle (a “cochlear-gravistatic” endorgan). The enlarged anterior canal crista develops by fusion of horizontal and anterior crista, whereas the posterior crista fuses with an enlarged papilla neglecta that may extend into the cochlear lateral wall. In the fused endorgan, the cochlear region is distinguished from the vestibular region by markers such as Gata3, the presence of a tectorial membrane, and cochlea-specific innervation. The cochlea-like apex displays minor disorganization of the hair and supporting cells. This contrasts with the basal half of the cochlear region, which shows a vestibular epithelium-like organization of hair cells and supporting cells. The dismorphic features of the cochlea are also reflected in altered gene expression patterns. Fgf8 expression expands from inner hair cells in the apex to most hair cells in the base. Two supporting cell marker proteins, Sox2 and Prox1, also differ in their cellular distribution between the base and the apex. Sox2 expression expands in mutant canal cristae prior to their enlargement and fusion and displays a more diffuse and widespread expression in the base of the cochlear region, whereas Prox1 is not detected in the base. These changes in Sox2 and Prox1 expression suggest that Lmx1a expression restricts and sharpens Sox2 expression, thereby defining non-sensory and sensory epithelium. The adult Lmx1a mutant organ of Corti shows a loss of cochlear hair cells, suggesting that the long-term maintenance of hair cells is also disrupted in these mutants. This work was supported by grants from the NCRR/COBRE (P20 RR 018788; D.H.N.) and NIH (RO1 DC 005590; B.F.). Parts of this investigation were conducted in a facility constructed with support of a Research Facilities Improvement Program Grant from the National Center for Research Resources, National Institutes of Health. We acknowledge the use of the confocal microscope facility of the NCCB, supported by EPSCoR EPS-0346476 (CFD 47.076), and of the University of Nebraska microarray facility, supported by NCRR/COBRE.  相似文献   

9.
Ectonucleoside triphosphate diphosphohydrolases (E-NTPDases) regulate complex extracellular P2 receptor signalling pathways in mammalian tissues by hydrolysing extracellular nucleotides to the respective nucleosides. All enzymes from this family (NTPDase1-8) are expressed in the adult rat cochlea. This study reports the changes in expression of NTPDase5 and NTPDase6 in the developing rat cochlea. These two intracellular members of the E-NTPDase family can be released in a soluble form and show preference for nucleoside 5′-diphosphates, such as UDP and GDP. Here, we demonstrate differential spatial and temporal patterns for NTPDase5 and NTPDase6 expression during cochlear development, which are indicative of both cytosolic and extracellular action via pyrimidines. NTPDase5 is noted during the early postnatal period in developing sensory hair cells and supporting Deiters’ cells of the organ of Corti, and primary auditory neurons located in the spiral ganglion. In contrast, NTPDase6 is confined to the embryonic and early postnatal hair cell bundles. NTPDase6 immunolocalisation in the developing cochlea underpins its putative role in hair cell bundle development, probably via cytosolic action, whilst NTPDase5 may have a broader extracellular role in the development of sensory and neural tissues in the rat cochlea. Both NTPDase5 and NTPDase6 colocalize with UDP-preferring P2Y4, P2Y6 and P2Y14 receptors during cochlear development, but this strong association was lost in the adult cochlea. Spatiotemporal topographic expression of NTPDase5 and NTPDase6 and P2Y receptors in adult and developing cochlear tissues provide strong support for the role of pyrimidinergic signalling in cochlear development.  相似文献   

10.
11.
A Pye 《Journal of morphology》1966,118(4):495-510
The structure of the ears, especially of the cochleae, has been examined in two superfamilies, i.e. Emballonuroidea and Rhinolophoidea of the Microchiroptera. An intra-vitam fixation method was used and gave good histological preparations. The following features of the cochlea have been measured: the general size of the cochlea, the width and thickness of the basilar membrane, the size of the spiral ligament and the height of the cells of Claudius. The interpretation of measurements is discussed in relation to the nature of ultrasonic sounds produced by bats. It is concluded that functional interpretation of specific cochlear modifications cannot be assessed at present.  相似文献   

12.
A three-dimensional finite element model is developed for the simulation of the sound transmission through the human auditory periphery consisting of the external ear canal, middle ear and cochlea. The cochlea is modelled as a straight duct divided into two fluid-filled scalae by the basilar membrane (BM) having an orthotropic material property with dimensional variation along its length. In particular, an active feed-forward mechanism is added into the passive cochlear model to represent the activity of the outer hair cells (OHCs). An iterative procedure is proposed for calculating the nonlinear response resulting from the active cochlea in the frequency domain. Results on the middle-ear transfer function, BM steady-state frequency response and intracochlear pressure are derived. A good match of the model predictions with experimental data from the literatures demonstrates the validity of the ear model for simulating sound pressure gain of middle ear, frequency to place map, cochlear sensitivity and compressive output for large intensity input. The current model featuring an active cochlea is able to correlate directly the sound stimulus in the ear canal with the vibration of BM and provides a tool to explore the mechanisms by which sound pressure in the ear canal is converted to a stimulus for the OHCs.  相似文献   

13.
Regulation of cochlear blood flow is critical for hearing due to its exquisite sensitivity to ischemia and oxidative stress. Many forms of hearing loss such as sensorineural hearing loss and presbyacusis may involve or be aggravated by blood flow disorders. Animal experiments and clinical outcomes further suggest that there is a gender preference in hearing loss, with males being more susceptible. Autoregulation of cochlear blood flow has been demonstrated in some animal models in vivo, suggesting that similar to the brain, blood vessels supplying the cochlea have the ability to control flow within normal limits, despite variations in systemic blood pressure. Here, we investigated myogenic regulation in the cochlear blood supply of the Mongolian gerbil, a widely used animal model in hearing research. The cochlear blood supply originates at the basilar artery, followed by the anterior inferior cerebellar artery, and inside the inner ear, by the spiral modiolar artery and the radiating arterioles that supply the capillary beds of the spiral ligament and stria vascularis. Arteries from male and female gerbils were isolated and pressurized using a concentric pipette system. Diameter changes in response to increasing luminal pressures were recorded by laser scanning microscopy. Our results show that cochlear vessels from male and female gerbils exhibit myogenic regulation but with important differences. Whereas in male gerbils, both spiral modiolar arteries and radiating arterioles exhibited pressure-dependent tone, in females, only radiating arterioles had this property. Male spiral modiolar arteries responded more to L-NNA than female spiral modiolar arteries, suggesting that NO-dependent mechanisms play a bigger role in the myogenic regulation of male than female gerbil cochlear vessels.  相似文献   

14.
The problem of how often to disperse in a randomly fluctuating environment has long been investigated, primarily using patch models with uniform dispersal. Here, we consider the problem of choice of seed size for plants in a stable environment when there is a trade off between survivability and dispersal range. Ezoe (J Theor Biol 190:287–293, 1998) and Levin and Muller-Landau (Evol Ecol Res 2:409–435, 2000) approached this problem using models that were essentially deterministic, and used calculus to find optimal dispersal parameters. Here we follow Hiebeler (Theor Pop Biol 66:205–218, 2004) and use a stochastic spatial model to study the competition of different dispersal strategies. Most work on such systems is done by simulation or nonrigorous methods such as pair approximation. Here, we use machinery developed by Cox et al. (Voter model perturbations and reaction diffusion equations 2011) to rigorously and explicitly compute evolutionarily stable strategies.  相似文献   

15.
A key requirement for encoding the auditory environment is the ability to dynamically alter cochlear sensitivity. However, merely attaining a steady state of maximal sensitivity is not a viable solution since the sensory cells and ganglion cells of the cochlea are prone to damage following exposure to loud sound. Most often, such damage is via initial metabolic insult that can lead to cellular death. Thus, establishing the highest sensitivity must be balanced with protection against cellular metabolic damage that can lead to loss of hair cells and ganglion cells, resulting in loss of frequency representation. While feedback mechanisms are known to exist in the cochlea that alter sensitivity, they respond only after stimulus encoding, allowing potentially damaging sounds to impact the inner ear at times coincident with increased sensitivity. Thus, questions remain concerning the endogenous signaling systems involved in dynamic modulation of cochlear sensitivity and protection against metabolic stress. Understanding endogenous signaling systems involved in cochlear protection may lead to new strategies and therapies for prevention of cochlear damage and consequent hearing loss. We have recently discovered a novel cochlear signaling system that is molecularly equivalent to the classic hypothalamic–pituitary–adrenal (HPA) axis. This cochlear HPA-equivalent system functions to balance auditory sensitivity and susceptibility to noise-induced hearing loss, and also protects against cellular metabolic insults resulting from exposures to ototoxic drugs. We review the anatomy, physiology, and cellular signaling of this system, and compare it to similar signaling in other organs/tissues of the body.  相似文献   

16.
We investigate the role of heterogeneous expression of IP3R and RyR in generating diverse elementary Ca2+ signals. It has been shown empirically (Wojcikiewicz and Luo in Mol. Pharmacol. 53(4):656–662, 1998; Newton et al. in J. Biol. Chem. 269(46):28613–28619, 1994; Smedt et al. in Biochem. J. 322(Pt. 2):575–583, 1997) that tissues express various proportions of IP3 and RyR isoforms and this expression is dynamically regulated (Parrington et al. in Dev. Biol. 203(2):451–461, 1998; Fissore et al. in Biol. Reprod. 60(1):49–57, 1999; Tovey et al. in J. Cell Sci. 114(Pt. 22):3979–3989, 2001). Although many previous theoretical studies have investigated the dynamics of localized calcium release sites (Swillens et al. in Proc. Natl. Acad. Sci. U.S.A. 96(24):13750–13755, 1999; Shuai and Jung in Proc. Natl. Acad. Sci. U.S.A. 100(2):506–510, 2003a; Shuai and Jung in Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 67(3 Pt. 1):031905, 2003b; Thul and Falcke in Biophys. J. 86(5):2660–2673, 2004; DeRemigio and Smith in Cell Calcium 38(2):73–86, 2005; Nguyen et al. in Bull. Math. Biol. 67(3):393–432, 2005), so far all such studies focused on release sites consisting of identical channel types. We have extended an existing mathematical model (Nguyen et al. in Bull. Math. Biol. 67(3):393–432, 2005) to release sites with two (or more) receptor types, each with its distinct channel kinetics. Mathematically, the release site is represented by a transition probability matrix for a collection of nonidentical stochastically gating channels coupled through a shared Ca2+ domain. We demonstrate that under certain conditions a previously defined mean-field approximation of the coupling strength does not accurately reproduce the release site dynamics. We develop a novel approximation and establish that its performance in these instances is superior. We use this mathematical framework to study the effect of heterogeneity in the Ca2+-regulation of two colocalized channel types on the release site dynamics. We consider release sites consisting of channels with both Ca2+-activation and inactivation (“four-state channels”) and channels with Ca2+-activation only (“two-state channels”) and show that for the appropriate parameter values, synchronous channel openings within a release site with any proportion of two-state to four-state channels are possible, however, the larger the proportion of two-state channels, the more sensitive the dynamics are to the exact spatial positioning of the channels and the distance between channels. Specifically, the clustering of even a small number of two-state channels interferes with puff/spark termination and increases puff durations or leads to a tonic response.  相似文献   

17.
Dryolestes leiriensis is a Late Jurassic fossil mammal of the dryolestoid superfamily in the cladotherian clade that includes the extant marsupials and placentals. We used high resolution micro‐computed tomography (µCT) scanning and digital reconstruction of the virtual endocast of the inner ear to show that its cochlear canal is coiled through 270°, and has a cribriform plate with the spiral cochlear nerve foramina between the internal acoustic meatus and the cochlear bony labyrinth. The cochlear canal has the primary bony lamina for the basilar membrane with a partially formed (or partially preserved) canal for the cochlear spiral ganglion. These structures, in their fully developed condition, form the modiolus (the bony spiral structure) of the fully coiled cochlea in extant marsupial and placental mammals. The CT data show that the secondary bony lamina is present, although less developed than in another dryolestoid Henkelotherium and in the prototribosphenidan Vincelestes. The presence of the primary bony lamina with spiral ganglion canal suggests a dense and finely distributed cochlear nerve innervation of the hair cells for improved resolution of sound frequencies. The primary, and very probably also the secondary, bony laminae are correlated with a more rigid support for the basilar membrane and a narrower width of this membrane, both of which are key soft‐tissue characteristics for more sensitive hearing for higher frequency sound. All these cochlear features originated prior to the full coiling of the therian mammal cochlea beyond one full turn, suggesting that the adaptation to hearing a wider range of sound frequencies, especially higher frequencies with refined resolution, has an ancient evolutionary origin no later than the Late Jurassic in therian evolution. The petrosal of Dryolestes has added several features that are not preserved in the petrosal of Henkelotherium. The petrosal characters of dryolestoid mammals are essentially the same as those of Vincelestes, helping to corroborate the synapomorphies of the cladotherian clade in neural, vascular, and other petrosal characteristics. The petrosal characteristics of Dryolestes and Henkelotherium together represent the ancestral morphotype of the cladotherian clade (Dryolestoidea + Vincelestes + extant Theria) from which the extant therian mammals evolved their ear region characteristics. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 166 , 433–463.  相似文献   

18.
《Biophysical journal》2022,121(15):2940-2951
Sounds entering the mammalian ear produce waves that travel from the base to the apex of the cochlea. An electromechanical active process amplifies traveling wave motions and enables sound processing over a broad range of frequencies and intensities. The cochlear amplifier requires combining the global traveling wave with the local cellular processes that change along the length of the cochlea given the gradual changes in hair cell and supporting cell anatomy and physiology. Thus, we measured basilar membrane (BM) traveling waves in vivo along the apical turn of the mouse cochlea using volumetric optical coherence tomography and vibrometry. We found that there was a gradual reduction in key features of the active process toward the apex. For example, the gain decreased from 23 to 19 dB and tuning sharpness decreased from 2.5 to 1.4. Furthermore, we measured the frequency and intensity dependence of traveling wave properties. The phase velocity was larger than the group velocity, and both quantities gradually decrease from the base to the apex denoting a strong dispersion characteristic near the helicotrema. Moreover, we found that the spatial wavelength along the BM was highly level dependent in vivo, such that increasing the sound intensity from 30 to 90 dB sound pressure level increased the wavelength from 504 to 874 μm, a factor of 1.73. We hypothesize that this wavelength variation with sound intensity gives rise to an increase of the fluid-loaded mass on the BM and tunes its local resonance frequency. Together, these data demonstrate a strong interplay between the traveling wave propagation and amplification along the length of the cochlea.  相似文献   

19.
The cochlear cavity is filled with viscous fluids, and it is partitioned by a viscoelastic structure called the organ of Corti complex. Acoustic energy propagates toward the apex of the cochlea through vibrations of the organ of Corti complex. The dimensions of the vibrating structures range from a few hundred (e.g., the basilar membrane) to a few micrometers (e.g., the stereocilia bundle). Vibrations of microstructures in viscous fluid are subjected to energy dissipation. Because the viscous dissipation is considered to be detrimental to the function of hearing—sound amplification and frequency tuning—the cochlea uses cellular actuators to overcome the dissipation. Compared to extensive investigations on the cellular actuators, the dissipating mechanisms have not been given appropriate attention, and there is little consensus on damping models. For example, many theoretical studies use an inviscid fluid approximation and lump the viscous effect to viscous damping components. Others neglect viscous dissipation in the organ of Corti but consider fluid viscosity. We have developed a computational model of the cochlea that incorporates viscous fluid dynamics, organ of Corti microstructural mechanics, and electrophysiology of the outer hair cells. The model is validated by comparing with existing measurements, such as the viscoelastic response of the tectorial membrane, and the cochlear input impedance. Using the model, we investigated how dissipation components in the cochlea affect its function. We found that the majority of acoustic energy dissipation of the cochlea occurs within the organ of Corti complex, not in the scalar fluids. Our model suggests that an appropriate dissipation can enhance the tuning quality by reducing the spread of energy provided by the outer hair cells’ somatic motility.  相似文献   

20.
The human ear is capable of processing sound with a remarkable resolution over a wide range of intensity and frequency. This ability depends largely on the extraordinary feats of the hearing organ, the organ of Corti and its sensory hair cells. The organ of Corti consists of precisely patterned rows of sensory hair cells and supporting cells along the length of the snail-shaped cochlear duct. On the apical surface of each hair cell, several rows of actin-containing protrusions, known as stereocilia, form a "V"-shaped staircase. The vertices of all the "V"-shaped stereocilia point away from the center of the cochlea. The uniform orientation of stereocilia in the organ of Corti manifests a distinctive form of polarity known as planar cell polarity (PCP). Functionally, the direction of stereociliary bundle deflection controls the mechanical channels located in the stereocilia for auditory transduction. In addition, hair cells are tonotopically organized along the length of the cochlea. Thus, the uniform orientation of stereociliary bundles along the length of the cochlea is critical for effective mechanotransduction and for frequency selection. Here we summarize the morphological and molecular events that bestow the structural characteristics of the mammalian hearing organ, the growth of the snail-shaped cochlear duct and the establishment of PCP in the organ of Corti. The PCP of the sensory organs in the vestibule of the inner ear will also be described briefly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号