首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Direct-acting antiviral inhibitors have revolutionized the treatment of hepatitis C virus (HCV) infected patients. Herein is described the discovery of velpatasvir (VEL, GS-5816), a potent pan-genotypic HCV NS5A inhibitor that is a component of the only approved pan-genotypic single-tablet regimens (STRs) for the cure of HCV infection. VEL combined with sofosbuvir (SOF) is Epclusa®, an STR with 98% cure-rates for genotype 1–6 HCV infected patients. Addition of the pan-genotypic HCV NS3/4A protease inhibitor voxilaprevir to SOF/VEL is the STR Vosevi®, which affords 97% cure-rates for genotype 1–6 HCV patients who have previously failed another treatment regimen.  相似文献   

2.
The RNA replication machinery of HCV is a multi-subunit membrane–associated complex. NS5A has emerged as an active component of HCV replicase, possibly involved in regulation of viral replication and resistance to the antiviral effect of interferon. We report here substituted piperazinyl-N-(aryl)benzamides as potent inhibitors of HCV replication exerted via modulation of the dimerization of NS5A.  相似文献   

3.
Phosphatidylinositol-4-kinase IIIα (PI4KIIIα) is an essential host cell factor for hepatitis C virus (HCV) replication. An N-terminally truncated 130-kDa form was used to reconstitute an in vitro biochemical lipid kinase assay that was optimized for small-molecule compound screening and identified potent and specific inhibitors. Cell culture studies with PI4KIIIα inhibitors demonstrated that the kinase activity was essential for HCV RNA replication. Two PI4KIIIα inhibitors were used to select cell lines harboring HCV replicon mutants with a 20-fold loss in sensitivity to the compounds. Reverse genetic mapping isolated an NS4B-NS5A segment that rescued HCV RNA replication in PIK4IIIα-deficient cells. HCV RNA replication occurs on specialized membranous webs, and this study with PIK4IIIα inhibitor-resistant mutants provides a genetic link between NS4B/NS5A functions and PI4-phosphate lipid metabolism. A comprehensive assessment of PI4KIIIα as a drug target included its evaluation for pharmacologic intervention in vivo through conditional transgenic murine lines that mimic target-specific inhibition in adult mice. Homozygotes that induce a knockout of the kinase domain or knock in a single amino acid substitution, kinase-defective PI4KIIIα, displayed a lethal phenotype with a fairly widespread mucosal epithelial degeneration of the gastrointestinal tract. This essential host physiologic role raises doubt about the pursuit of PI4KIIIα inhibitors for treatment of chronic HCV infection.  相似文献   

4.
Nonstructural protein 5A (NS5A) of hepatitis C virus (HCV) is an indispensable component of the HCV replication and assembly machineries. Although its precise mechanism of action is not yet clear, current evidence indicates that its structure and function are regulated by the cellular peptidylprolyl isomerase cyclophilin A (CyPA). CyPA binds to proline residues in the C-terminal half of NS5A, in a distributed fashion, and modulates the structure of the disordered domains II and III. Cyclophilin inhibitors (CPIs), including cyclosporine (CsA) and its nonimmunosuppressive derivatives, inhibit HCV infection of diverse genotypes, both in vitro and in vivo. Here we report a mechanism by which CPIs inhibit HCV infection and demonstrate that CPIs can suppress HCV assembly in addition to their well-documented inhibitory effect on RNA replication. Although the interaction between NS5A and other viral proteins is not affected by CPIs, RNA binding by NS5A in cell culture-based HCV (HCVcc)-infected cells is significantly inhibited by CPI treatment, and sensitivity of RNA binding is correlated with previously characterized CyPA dependence or CsA sensitivity of HCV mutants. Furthermore, the difference in CyPA dependence between a subgenomic and a full-length replicon of JFH-1 was due, at least in part, to an additional role that CyPA plays in HCV assembly, a conclusion that is supported by experiments with the clinical CPI alisporivir. The host-directed nature and the ability to interfere with more than one step in the HCV life cycle may result in a higher genetic barrier to resistance for this class of HCV inhibitors.  相似文献   

5.
Kai Lin 《中国病毒学》2010,25(4):246-266
Over 170 million people worldwide are infected with hepatitis C virus (HCV), a major cause of liver diseases. Current interferon-based therapy is of limited efficacy and has significant side effects and more effective and better tolerated therapies are urgently needed. HCV is a positive, single-stranded RNA virus with a 9.6 kb genome that encodes ten viral proteins. Among them, the NS3 protease and the NSSB polymerase are essential for viral replication and have been the main focus of drug discovery efforts. Aided by structure-based drug design,potent and specific inhibitors of NS3 and NSSB have been identified, some of which are in late stage clinical trials and may significantly improve current HCV treatment. Inhibitors of other viral targets such as NSSA are also being pursued. However, HCV is an RNA virus characterized by high replication and mutation rates and consequently, resistance emerges quickly in patients treated with specific antivirals as monotherapy. A complementary approach is to target host factors such as cyclophilins that are also essential for viral replication and may present a higher genetic barrier to resistance. Combinations of these inhibitors of different mechanism are likely to become the essential components of future HCV therapies in order to maximize antiviral efficacy and prevent the emergence of resistance.  相似文献   

6.
Hepatitis C Virus (HCV) affects 3% of the world’s population and causes serious liver ailments including chronic hepatitis, cirrhosis, and hepatocellular carcinoma. HCV is an enveloped RNA virus belonging to the family Flaviviridae. Current treatment is not fully effective and causes adverse side effects. There is no HCV vaccine available. Thus, continued effort is required for developing a vaccine and better therapy. An HCV cell culture system is critical for studying various stages of HCV growth including viral entry, genome replication, packaging, and egress. In the current procedure presented, we used a wild-type intragenotype 2a chimeric virus, FNX-HCV, and a recombinant FNX-Rluc virus carrying a Renilla luciferase reporter gene to study the virus replication. A human hepatoma cell line (Huh-7 based) was used for transfection of in vitro transcribed HCV genomic RNAs. Cell-free culture supernatants, protein lysates and total RNA were harvested at various time points post-transfection to assess HCV growth. HCV genome replication status was evaluated by quantitative RT-PCR and visualizing the presence of HCV double-stranded RNA. The HCV protein expression was verified by Western blot and immunofluorescence assays using antibodies specific for HCV NS3 and NS5A proteins. HCV RNA transfected cells released infectious particles into culture supernatant and the viral titer was measured. Luciferase assays were utilized to assess the replication level and infectivity of reporter HCV. In conclusion, we present various virological assays for characterizing different stages of the HCV replication cycle.  相似文献   

7.
Hepatitis C Virus (HCV) is a single stranded RNA virus which produces negative strand RNA as a replicative intermediate. We analyzed 75 RT-PCR studies that tested for negative strand HCV RNA in liver and other human tissues. 85% of the studies that investigated extrahepatic replication of HCV found one or more samples positive for replicative RNA. Studies using in situ hybridization, immunofluorescence, immunohistochemistry, and quasispecies analysis also demonstrated the presence of replicating HCV in various extrahepatic human tissues, and provide evidence that HCV replicates in macrophages, B cells, T cells, and other extrahepatic tissues. We also analyzed both short term and long term in vitro systems used to culture HCV. These systems vary in their purposes and methods, but long term culturing of HCV in B cells, T cells, and other cell types has been used to analyze replication. It is therefore now possible to study HIV-HCV co-infections and HCV replication in vitro.  相似文献   

8.
The RNA-dependent RNA polymerase (NS5B) of hepatitis C virus (HCV) is essential for the replication of viral RNA and thus constitutes a valid target for the chemotherapeutic intervention of HCV infection. In this report, we describe the identification of 2'-substituted nucleosides as inhibitors of HCV replication. The 5'-triphosphates of 2'-C-methyladenosine and 2'-O-methylcytidine are found to inhibit NS5B-catalyzed RNA synthesis in vitro, in a manner that is competitive with substrate nucleoside triphosphate. NS5B is able to incorporate either nucleotide analog into RNA as determined with gel-based incorporation assays but is impaired in its ability to extend the incorporated analog by addition of the next nucleotide. In a subgenomic replicon cell line, 2-C-methyladenosine and 2'-O-methylcytidine inhibit HCV RNA replication. The 5'-triphosphates of both nucleosides are detected intracellularly following addition of the nucleosides to the media. However, significantly higher concentrations of 2'-C-methyladenosine triphosphate than 2'-O-methylcytidine triphosphate are detected, consistent with the greater potency of 2'-C-methyladenosine in the replicon assay, despite similar inhibition of NS5B by the triphosphates in the in vitro enzyme assays. Thus, the 2'-modifications of natural substrate nucleosides transform these molecules into potent inhibitors of HCV replication.  相似文献   

9.
Hepatitis C virus (HCV) is a major causative agent of hepatocellular carcinoma. We recently discovered that the immunosuppressant cyclosporin A (CsA) and its analogue lacking immunosuppressive function, NIM811, strongly suppress the replication of HCV in cell culture. Inhibition of a cellular replication cofactor, cyclophilin (CyP) B, is critical for its anti-HCV effects. Here, we explored the potential use of CyP inhibitors for HCV treatment by analyzing the HCV replicon system. Treatment with CsA and NIM811 for 7 days reduced HCV RNA levels by 2-3 logs, and treatment for 3 weeks reduced HCV RNA to undetectable levels. NIM811 exerted higher anti-HCV activity than CsA at lower concentrations. Both CyP inhibitors rapidly reduced HCV RNA levels even further in combination with IFNalpha without modifying the IFNalpha signal transduction pathway. In conclusion, CyP inhibitors may provide a novel strategy for anti-HCV treatment.  相似文献   

10.
Hepatitis C virus (HCV) is a small positive-sense single-stranded RNA virus that causes severe liver diseases. Current anti-HCV therapies involving direct-acting antivirals have significantly enhanced efficacy in comparison to traditional interferon and ribavirin combination. However, further improvement is needed to eradicate HCV. Anacardic acid (AnA) is a phytochemical compound that can inhibit the activity of various cellular enzymes including histone acetyltransferases (HATs). In this study, we investigated the effects of AnA on different phases of HCV life cycle. Our data showed that AnA can inhibit HCV entry, replication, translation, and virion secretion in a dose-dependent manner with no measurable effects on cell viability. In addition, we showed that two HAT inhibitors and knocking down HAT (PCAF) by RNAi can reduce HCV replication, suggesting a mechanism of AnA’s inhibitory effects on HCV. Elucidation of the AnA-mediated inhibitory mechanism should facilitate the development of new drug candidates for HCV infection.  相似文献   

11.
The hepatitis C virus (HCV) core protein is a structural component of the nucleocapsid and has been shown to modulate cellular signaling pathways by interaction with various cellular proteins. In the present study, we investigated the role of HCV core protein in viral RNA replication. Immunoprecipitation experiments demonstrated that the core protein binds to the amino-terminal region of RNA-dependent RNA polymerase (RdRp), which encompasses the finger and palm domains. Direct interaction between HCV RdRp and core protein led to inhibition of RdRp RNA synthesis activity of in vitro. Furthermore, over-expression of core protein, but not its derivatives lacking the RdRp-interacting domain, suppressed HCV replication in a hepatoma cell line harboring an HCV subgenomic replicon RNA. Collectively, our results suggest that the core protein, through binding to RdRp and inhibiting its RNA synthesis activity, is a viral regulator of HCV RNA replication.  相似文献   

12.
13.
The hepatitis C virus (HCV) replicates on a membrane protein complex composed of viral proteins, replicating RNA, and altered cellular membranes. Small-molecule inhibitors of cellular lipid-cholesterol metabolism such as 25-hydroxycholesterol, cerulenin, lovastatin, and GGTI-286 all show a negative effect on HCV replication. Perturbation of host cell lipid and cholesterol metabolism can disrupt replication complexes by altering membranous structures where replication occurs. Changes in cholesterol and (or) lipid composition can have a general effect on membrane structure. Alternatively, metabolic changes can exert a more subtle influence over replication complexes by altering localization of host proteins through alterations in lipid anchoring. Here, we use Huh-7 cells harboring subgenomic HCV replicons to demonstrate that 25-hydroxycholesterol, cerulenin, lovastatin, and GGTI-286 do not disrupt the membranous web where replication occurs, whereas cholesterol-depleting agents such as beta-cyclodextrin do. Cellular imaging suggests that the HCV RNA can remain associated with subcellular compartments connected with replication complexes in the presence of metabolic inhibitors. Therefore, at least 2 different molecular mechanisms are possible for the inhibition of HCV replication through the modulation of cellular lipid and cholesterol metabolism.  相似文献   

14.
The hepatitis C virus (HCV) genome contains numerous RNA elements that are required for its replication. Most of the identified RNA structures are located within the 5′ and 3′ untranslated regions (UTRs). One prominent RNA structure, termed the cis-acting replication element (CRE), is located within the NS5B coding region. Mutation of part of the CRE, the 5BSL3.2 stem-loop, impairs HCV RNA replication. This loop has been implicated in a kissing interaction with a complementary stem-loop structure in the 3′ UTR. Although it is clear that this interaction is required for viral replication, the function of the interaction, and its regulation are unknown. In order to gain insight into the CRE function, we isolated cellular proteins that preferentially bind the CRE and identified them using mass spectrometry. This approach identified EWSR1 as a CRE-binding protein. Silencing EWSR1 expression impairs HCV replication and infectious virus production but not translation. While EWRS1 is a shuttling protein that is extensively nuclear in hepatocytes, substantial amounts of EWSR1 localize to the cytosol in HCV-infected cells and colocalize with sites of HCV replication. A subset of EWRS1 translocates into detergent-resistant membrane fractions, which contain the viral replicase proteins, in cells with replicating HCV. EWSR1 directly binds the CRE, and this is dependent on the intact CRE structure. Finally, EWSR1 preferentially interacts with the CRE in the absence of the kissing interaction. This study implicates EWSR1 as a novel modulator of CRE function in HCV replication.  相似文献   

15.
A new class of hepatitis C virus (HCV)-targeted therapeutics that is safe, broadly effective and can cope with virus mutations is needed. The HCV''s NS5B is highly conserved and different from human protein, and thus it is an attractive target for anti-HCV therapeutics development. In this study, NS5B bound-phage clones selected from a human single chain variable antibody fragment (scFv) phage display library were used to transform appropriate E. coli bacteria. Two scFv inhibiting HCV polymerase activity were selected. The scFvs were linked to a cell penetrating peptide to make cell penetrable scFvs. The transbodies reduced the HCV RNA and infectious virus particles released into the culture medium and inside hepatic cells transfected with a heterologous HCV replicon. They also rescued the innate immune response of the transfected cells. Phage mimotope search and homology modeling/molecular docking revealed the NS5B subdomains and residues bound by the scFvs. The scFv mimotopes matched residues of the NS5B, which are important for nucleolin binding during HCV replication, as well as residues that interconnect the fingers and thumb domains for forming a polymerase active groove. Both scFvs docked on several residues at the thumb armadillo-like fold that could be the polymerase interactive sites of other viral/host proteins for the formation of the replication complex and replication initiation. In conclusion, human transbodies that inhibited HCV RdRp activity and HCV replication and restored the host innate immune response were produced. They are potentially future interferon-free anti-HCV candidates, particularly in combination with other cognates that are specific to NS5B epitopes and other HCV enzymes.  相似文献   

16.
Efficient replication of hepatitis C virus (HCV) subgenomic RNA in cell culture requires the introduction of adaptive mutations. In this report we describe a system which enables efficient replication of the Con1 subgenomic replicon in Huh7 cells without the introduction of adaptive mutations. The starting hypothesis was that high amounts of the NS5A hyperphosphorylated form, p58, inhibit replication and that reduction of p58 by inhibition of specific kinase(s) below a certain threshold enables HCV replication. Upon screening of a panel of kinase inhibitors, we selected three compounds which inhibited NS5A phosphorylation in vitro and the formation of NS5A p58 in cell culture. Cells, transfected with the HCV Con1 wild-type sequence, support HCV RNA replication upon addition of any of the three compounds. The effect of the kinase inhibitors was found to be synergistic with coadaptive mutations in NS3. This is the first direct demonstration that the presence of high amounts of NS5A-p58 causes inhibition of HCV RNA replication in cell culture and that this inhibition can be relieved by kinase inhibitors.  相似文献   

17.
The mitogen activated protein kinases-extracellular signal regulated kinases (MAPK-ERK) pathway is involved in regulation of multiple cellular processes including the cell cycle. In the present study using a Huh7 cell line Con1 with an HCV replicon, we have shown that the MAPK-ERK pathway plays a significant role in the modulation of HCV replication and protein expression and might influence IFN-α signalling. Epithelial growth factor (EGF) was able to stimulate ERK activation and decreased HCV RNA load while a MAPK-ERK pathway inhibitor U0126 led to an elevated HCV RNA load and higher NS5A protein amounts in Con1 cells. It could be further demonstrated that the inhibition of the MAPK-ERK pathway facilitated the translation directed by the HCV internal ribosome entry site. Consistently, a U0126 treatment enhanced activity of the HCV reporter replicon in transient transfection assays. Thus, the MAPK-ERK pathway plays an important role in the regulation of HCV gene expression and replication. In addition, cyclin-dependent kinases (CDKs) downstream of ERK may also be involved in the modulation of HCV replication since roscovitine, an inhibitor of CDKs had a similar effect to that of U0126. Modulation of the cell cycle progression by cell cycle inhibitor or RNAi resulted consistently in changes of HCV RNA levels. Further, the replication of HCV replicon in Con1 cells was inhibited by IFN-α. The inhibitory effect of IFN-α could be partly reversed by pre-incubation of Con-1 cells with inhibitors of the MAPK-ERK pathway and CDKs. It could be shown that the MAPK-ERK inhibitors are able to partially modulate the expression of interferon-stimulated genes.  相似文献   

18.
Hepatitis C virus (HCV) infection develops into chronicity in 80% of all patients, characterized by persistent low-level replication. To understand how the virus establishes its tightly controlled intracellular RNA replication cycle, we developed the first detailed mathematical model of the initial dynamic phase of the intracellular HCV RNA replication. We therefore quantitatively measured viral RNA and protein translation upon synchronous delivery of viral genomes to host cells, and thoroughly validated the model using additional, independent experiments. Model analysis was used to predict the efficacy of different classes of inhibitors and identified sensitive substeps of replication that could be targeted by current and future therapeutics. A protective replication compartment proved to be essential for sustained RNA replication, balancing translation versus replication and thus effectively limiting RNA amplification. The model predicts that host factors involved in the formation of this compartment determine cellular permissiveness to HCV replication. In gene expression profiling, we identified several key processes potentially determining cellular HCV replication efficiency.  相似文献   

19.
This report describes the development, optimization, and implementation of a cell-based assay for high-throughput screening (HTS) to identify inhibitors to hepatitis C virus (HCV) replication. The assay is based on a HCV subgenomic RNA replicon that expresses beta-lactamase as a reporter for viral replication in enhanced Huh-7 cells. The drug targets in this assay are viral and cellular enzymes required for HCV replication, which are monitored by fluorescence resonance energy transfer using cell-permeable CCF4-AM as a beta-lactamase substrate. Digital image processing was used to visualize cells that harbor viral RNA and to optimize key assay development parameters such as transfection and culturing conditions to obtain a cell line which produced a robust assay window. Formatting the assay for compound screening was problematic due to small signal-to-background ratio and reduced potency to known HCV inhibitors. These technical difficulties were solved by using clavulanic acid, an irreversible inhibitor of beta-lactamase, to eliminate residual beta-lactamase activity after HCV replication was terminated, thus resulting in an improved assay window. HTS was carried out in 384-well microplate format, and the signal-to-background ratio and Z factor for the assay plates during the screen were approximately 13-fold and 0.5, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号