首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The plasmid RP4::Mu cts62 is transferred from Escherichia coli cells into a recipient strain Erwinia carotovora 268 by conjugation with the frequency 1.5-5 x 10(-7) per donor cell. The maximal frequencies of transfer are obtained by cultivation of donor and recipient cells for 3-5 h on the filters. Structural and functional validity of the plasmid in transconjugants is expressed in preservation of all antibiotic-resistant markers of RP4, thermosensitivity to growth at 42 degrees C as well as spontaneous and thermally-induced production and zygotic induction of bacteriophage determined by the genome of Mu cts62, total length of the plasmid restricts. Location and orientation of Mu cts62 genome in the plasmid restricts. Location and orientation of Mu cts62 genome in the plasmid RP4::Mu cts62 in Erwinia carotovora transconjugant cells has been determined. A single bacteriophage genome has been shown to transpose into the chromosome of the cell with the elimination of RP4 fragment under the conditions of thermal induction.  相似文献   

2.
Conjugative or mobilizable plasmids carrying the transposable elements Tn5, Tn501 or mini Mu were readily transferred from Escherichia coli donors into Zymomonas mobilis recipients with frequencies depending both on donor and recipient strain used. With the exception of pULB113 (RP4::mini Mu), all foreign plasmids exhibited high instability in Z. mobilis transconjugants under both selective and non-selective conditions. Transposition events and consequent mutagenesis occurred readily in Z. mobilis transconjugant strains, with Tn5 and Tn501 being far less successful than mini Mu. Transposon mutagenesis with the help of mini Mu resulted in the isolation of a large number of independent auxotrophs with polyauxotrophs, cysteine, methionine and isoleucine requiring-isolates being the most frequent. When chromosomal DNA from all these mutants was digested with various restriction enzymes and the resulting restriction patterns were hybridized with a mini Mu probe, the majority of these mutants appeared to have insertions at different sites of the chromosome. Thus, transposon mutagenesis by mini Mu is proven to be a simple and efficient tool for mutant production and the genetic analysis of Z. mobilis.  相似文献   

3.
The infection of Bacillus thuringiensis, B. cereus, B. mesentericus and B. polymyxa strains with temperate E. coli bacteriophage Mu cts62 integrated into plasmid RP4 under conditions of conjugative transfer is shown possible. The investigated strains of bacilli are not able to produce intact phage particles but they acquire the thermosensitive property determined by the phage genome. Gel electrophoresis and blot hybridization of DNA have confirmed the transfer of Mu cts62 genome or a part of it in the investigated strains of bacilli.  相似文献   

4.
The transcipients were obtained in intrageneric matings of E.coli donor harbouring the plasmid PR4::Mu cts 62 with Bac. cereus GP7 recipient cells with the frequency 10(-9). The transcipient clone Bac. cereus 682 was selected having stably inherited and expressed the hybrid plasmid PR4::Mu cts 62 genes for antibiotic resistance and temperature sensitivity. Production of the bacteriophage Mu cts 62 particles was not registered in the bacillary transcipient cells. The plasmid RP4::Mu cts 62 genes were localized in the chromosome of Bac. cereus 682 transcipient by the blot-hybridization technique with 32P-labelled DNA of the bacteriophage Mu cts 62 and the plasmid PR4. The transcipient of Bac. cereus 682 has the donor properties and transfers the RP4::Mu cts 62 genes to recipient cells of Bac. cereus DSM 318 with the frequency of 10(-6)-10(-7). The expression and transfer of the gram-negative plasmid genes in gram-positive bacterial cells are discussed.  相似文献   

5.
The host range of coliphage Mu was greatly expanded to various genera of gram-negative bacteria by using the hybrid plasmic RP4::Mu cts, which is temperature sensitive and which confers resistance to ampicillin, kanamycin, and tetracycline. These drug resistance genes were transferred from Escherichia coli to members of the general Klebsiella, Enterobacter, Citrobacter, Salmonella, Proteus, Erwinia, Serratia, Alcaligenes, Agrobacterium, Rhizobium, Pseudomonas, Acetobacter, and Bacillus. Mu phage was produced by thermal induction from the lysogens of all these drug-resistant bacteria except Bacillus. Mu phage and RP4 or the RP4::Mu plasmid were used to create intergeneric recombinant strains by transfer of some genes, including the arylsulfatase gene, between Klebsiella aerogenes and E. coli. Thus, genetic analysis and intergeneric gene transfer are possible in these RP4::Mu-sensitive bacteria.  相似文献   

6.
Transposition of the structural genes of the deo operon of Escherichia coli K-12 into plasmid RP4 by means of temperate bacteriophage Mu was carried out. Some variants of composite RP4-deo-Mu plasmids were obtained and the expression of the deo genes integrated into the RP4 plasmid genome was studied. It was shown that the expression of these genes remains under the control of the chromosomal regulatory genes (deoR and cytR); although the activity of thymidine phosphorilase in the strain E. coli which contains hybrid plasmid is 4-6 fold greater than that in strains of E. coli with chromosomal localization of the deo operon.  相似文献   

7.
Plasmid and transposon transfer to Thiobacillus ferrooxidans.   总被引:4,自引:0,他引:4       下载免费PDF全文
J B Peng  W M Yan    X Z Bao 《Journal of bacteriology》1994,176(10):2892-2897
The broad-host-range IncP plasmids RP4, R68.45, RP1::Tn501, and pUB307 were transferred to acidophilic, obligately chemolithotrophic Thiobacillus ferrooxidans from Escherichia coli by conjugation. A genetic marker of kanamycin resistance was expressed in T. ferrooxidans. Plasmid RP4 was transferred back to E. coli from T. ferrooxidans. The broad-host-range IncQ vector pJRD215 was mobilized to T. ferrooxidans with the aid of plasmid RP4 integrated in the chromosome of E. coli SM10. pJRD215 was stable, and all genetic markers (kanamycin/neomycin and streptomycin resistance) were expressed in T. ferrooxidans. By the use of suicide vector pSUP1011, transposon Tn5 was introduced into T. ferrooxidans. The influence of some factors on plasmid transfer from E. coli to T. ferrooxidans was investigated. Results showed that the physiological state of donor cells might be important to the mobilization of plasmids. The transfer of plasmids from E. coli to T. ferrooxidans occurred in the absence of energy sources for both donor and recipient.  相似文献   

8.
A M Bel'kind 《Antibiotiki》1979,24(10):761-764
The transfer frequency of R124-17, RI, RI-19 and RP4 factors as dependent on the origin of the donor strain was studied. The transfer frequencies of these factors from E. coli W strains are much lower than those from the strains of E. coli K12. The effect is connected neither with the repression of the tra-genes, nor with the restriction enzymes activity against the alien DNA in the recipient bacteria.  相似文献   

9.
A general, reliable conjugation system for Agrobacterium tumefaciens in the absence of plant tissue is described in which A. tumefaciens can serve either as the donor or recipient of plasmid deoxyribonucleic acid with reasonable efficiency. Plasmid RP4 was transferred from Escherichia coli to A. tumefaciens and from strain of A. tumefaciens. Both RP4 and the A. tumefaciens virulence-associated plasmids were detected by alkaline sucrose gradients in A. tumefaciens strains A6 and C58 after mating with E. coli J53(RP4). The pathogenicity (tumor foramtion) of strains A6 and C58 and the sensitivity of strain C58 to bacteriocin 84 were unaffected by the acquistion of RP4 by the Agrobacterium strains. Plasmid R1drd-19 was not transferred to A. tumefaciens. Transformation experiments with plasmid deoxyribonucleic acid were unsuccessful, even though, in the case of RP4, conjugation studies showed taht the deoxyribonucleic acid was compatible with that of the recipient strains.  相似文献   

10.
We present the detailed research on the previously described Escherichia coli K-12 Mud- mutants with impaired development of bacteriophage Mu. The ability of Mu phage DNA to penetrate into mutant cells on infection was shown. If introduced into the cells or combined with mud mutation by recombination, the prophage may be induced, which results in phage Mu lythic development and phage burst from mutant cells. In the course of conjugative transfer into the mutant cells, within a DNA fragment of the lysogenic donor chromosome, MupAp1 prophage is not inherited by recombinants. At the same time, Mu prophage deficient in genes A and B, whose products are required for transposition, is inherited by the mutant with the usual frequency. These data enable us to conclude that the mud mutations disturb the stage of conservative transposition which is connected with the insertion of the Mu prophage into the chromosome, after excision from the linear DNA introduced into the cells via infection or conjugation.  相似文献   

11.
We isolated a new transposon, Tn2001, from the group P-2 plasmid Rms159-1 in Pseudomonas aeruginosa. Tn2001-encoded chloramphenicol resistance did not result from the formation of chloramphenicol acetyltransferase. Tn2001 was transposable between temperate phages and conjugative and nonconjugative plasmids belonging to various incompatibility groups, including P-1, P-3, P-4, P-5, P-7, and P-8 in P. aeruginosa. Transposition occurred independently of the general recombination ability of the Pseudomonas host, and its frequency varied between 10(-1) and 10(-8), depending upon the donor and recipient replicons. Tn2001 transposition also occurred in a recombination-deficient strain of Escherichia coli. Agarose gel electrophoresis and electron microscopic observations revealed that Tn2001 could transpose to different sites in the RP4 replicon and that the transposed deoxyribonucleic acid fragment was 2.1 kilobases long.  相似文献   

12.
The isolation of different classes of antibiotic-supersensitive outer membrane permeability mutants of Salmonella typhimurium has been described previously (Sukupolvi et al., 1984, Journal of Bacteriology 159, 704-712). One of these, the SS-A mutation, sensitizes the bacteria to gentian violet and to hydrophobic antibiotics. The phenotype of the SS-A mutant was restored to normal when a cloned fragment of the F plasmid, or the R plasmid R6-5, carrying the genes traS, T and D was introduced on a multicopy plasmid. The introduction of a plasmid carrying only the traT gene showed that this gene was sufficient to restore the phenotype. Only clones with functioning traT (irrespective of copy number) restored the normal antibiotic-resistant phenotype in the SS-A mutant. An incompatibility test using a donor strain which carried transposon Tn10 in the 60 MDa plasmid of S. typhimurium and a recipient in which Tn5 was placed close to the SS-A mutation indicated that the SS-A mutation was located in the 60 MDa virulence plasmid (previously called the cryptic plasmid) of S. typhimurium. The introduction of the large virulence plasmid carrying the SS-A mutant allele into wild-type S. typhimurium or Escherichia coli resulted in strains with a phenotype identical to that of the original SS-A mutant.  相似文献   

13.
Conjugative transposition of transposon Tn916 has been shown to proceed by excision of the transposon in the donor strain and insertion of this element in the recipient. This process requires the product of the transposon int gene. We report here the surprising finding that the int gene is required only in the donor during conjugative transposition. We find that Tn916 int-1, whose int gene has been inactivated by an insertion mutation, transposes when a complementing wild-type int gene is present only in the donor during mating. When the int+ gene is present in a plasmid and is expressed from the spac promoter, conjugative transposition is very inefficient. However, when the Int+ function is supplied from a coresident distantly linked Tn916 tra-641 mutant, which is defective in a function required for conjugation, efficient conjugative transposition of Tn916 int-1 occurs. This suggests either that Int is not required for integration of Tn916 in gram-positive bacteria or that the protein is transferred from the donor to the transconjugant during the mating event. When the nonconjugative plasmid pAT145 was present in the donor, it was rarely cotransferred with Tn916. This suggests that complete fusion of mating cells is not common during conjugative transposition.  相似文献   

14.
Transposon Tn916 is a 16.4-kb broad-host-range conjugative transposon originally detected in the chromosome of Enterococcus faecalis DS16. Transposition of Tn916 and related transposons involves excision of a free, nonreplicative, covalently closed circular intermediate that is substrate for integration. Excisive recombination requires two transposon-encoded proteins, Xis-Tn and Int-Tn, whereas the latter protein alone is sufficient for integration. Here we report that conjugative transposition of Tn916 requires the presence of a functional integrase in both donor and recipient strains. We have constructed a mutant, designated Tn916-int1, by replacing the gene directing synthesis of Int-Tn by an allele inactivated in vitro. In mating experiments, transfer of Tn916-int1 from Bacillus subtilis to E. faecalis was detected only when the transposon-encoded integrase was supplied by trans-complementation in both the donor and the recipient. These results suggest that conjugative transposition of Tn916 requires circularization of the element in the donor followed by transfer and integration of the nonreplicative intermediate in the recipient.  相似文献   

15.
The role of the DNA primase of IncP plasmids was examined with a derivative of RP4 containing Tn7 in the primase gene (pri). The mutant was defective in mediating bacterial conjugation, with the deficiency varying according to the bacterial strains used as donors and recipients. Complementation tests involving recombinant plasmids carrying cloned fragments of RP4 indicated that the primase acts to promote some event in the recipient cell after DNA transfer and that this requirement can be satisfied by plasmid primase made in the donor cell. It is proposed that the enzyme or its products or both are transmitted to the recipient cell during conjugation, and the role of the enzyme in the conjugative processing of RP4 is discussed. Specificity of plasmid primases was assessed with derivatives of RP4 and the IncI1 plasmid ColIb-P9, which is known to encode a DNA primase active in conjugation. When supplied in the donor cell, neither of the primases encoded by these plasmids substituted effectively in the nonhomologous conjugation system. Since ColIb primase provided in the recipient cell acted weakly on transferred RP4 DNA, it is suggested that the specificity of these enzymes reflects their inability to be transmitted via the conjugation apparatus of the nonhomologous plasmid.  相似文献   

16.
The DNA primase gene of the promiscuous IncP-1 conjugative plasmid RP1, encoding two polypeptides of 118 and 80 kDa, was inserted into the transposon Tn5 in Escherichia coli. The derivative transposon, Tn2523, was then transposed to a temperature-sensitive replication mutant of the promiscuous IncP-1 conjugative plasmid R68 at permissive temperature and the plasmid transferred to Pseudomonas aeruginosa strain PAO. The latter strain was then grown at non-permissive temperature to identify transposition of Tn2523 into the P. aeruginosa chromosome. Immunological and enzymic analysis showed the expression of functional primase polypeptides in the constructed P. aeruginosa strain. This strain also restored wild-type conjugational transfer proficiency, by complementation, to mutants of the IncP-1 plasmid R18 affected in transfer from P. aeruginosa to P. stutzeri or to Acinetobacter calcoaceticus due to transposon Tn7 insertion mutations in the primase gene. This strategy of cloning into a transposon and integration into the bacterial chromosome should facilitate genetic manipulation and studies of gene expression in a range of Gram-negative bacteria.  相似文献   

17.
Abstract The broad-host-range IncP plasmid RP1 could not be transferred by conjugation from Escherichia coli to Pseudomonas fluorescens strain CHA0. However, this conjugative transfer was possible with RP1 derivatives which had large deletions extending from the primase gene towards the Tra-2 region, thus lacking the kanamycin resistance gene and IS 21 . Such RP1 deletion derivatives permitted IncP cosmid mobilization to P. fluorescens CHA0 and could be used as vectors for transposon mutagenesis with a newly constructed Tn 5 derivative (carrying kanamycin and mercury resistance determinants) in strain CHA0 and another P. fluorescens soil isolate, strain S9.  相似文献   

18.
The plasmid RP4::Mu cts62 in stably inherited by Erwinia carotovora 268 strain. Under the conditions of thermoinduction bacteriophage Mu is segregated and completely eliminated more intensively than in Escherichia coli cells. At thermoinduction the transposition of bacteriophage Mu cts62 into different chromosomal sites takes place, causing the induction of chlorate resistant and auxotrophic mutants with the frequency of 10(-4). Two clones deficient in production of 2 of the 4 resident prophages of Erwinia carotovora 268 strain were found among Mu-induced mutants. The deleted prophages are E105 and 59. DNA-DNA hybridization has revealed the complete and partial deletions of bacteriophage E105 with the level of L-asparaginase production in the cells remaining intact. The damage of the prophage 59 is probably caused by point mutations or short deletions.  相似文献   

19.
Plasmids R68.45, RP4, RP4::Mu cts62, RP1ts::Tn10, RP1ts::Tn9, Rts1 and RP41 were transferred into cells of photosynthetic nitrogen-fixation bacterium Rhodopseudomonas sphaeroides from Escherichia coli and Pseudomonas aeruginosa. The transfer of plasmids occurred with high frequency of 10(-1) to 10(-2) per donor cell in all cases. Mobilization of R. sphaeroides 2R chromosome was obtained by RP4 and Rts1 plasmids at a frequency of 10(-7) to 10(-8) per donor cell in all cases. Mobilization of R. sphaeroides 2R chromosome was obtained by RP4 and Rts1 plasmids at a frequency of 10(-7) to 10(-8) per donor cell. Bacteriophage Mu cts62 could be induced from the plasmid DNA in R. sphaeroides 2R cells and was capable of the lytic growth and producing phage progeny. It was demonstrated that an increase in the efficiency of donor chromosomal genes transfer into recipient cells could be achieved in crosses with the donor carrying RP4::Mcts62 plasmid.  相似文献   

20.
The efficiency of Tn1 transposition has been shown to increase considerably in course of bacterial conjugation. Usually, the frequency of Tn1 transposition from plasmid pSA2001, a derivative of RP4, into the chromosome never exceeded 0.1% per cell. Percentage of His+ transconjugants, marked by transposon Tn1 during conjugation between Hfr donor, carrying plasmid pSA2001, and auxotrophic recipient, was about 30%. Transposon Tn1 transfer into the recipient cells does not depend on the recA+ gene function in donor cells or on conjugative transfer of plasmid pSA2001. The transfer requires the recA+ gene function in recipients as well as the Hfr function in donor cells. Southern's blot-hybridization revealed the insertion of transposon Tn1 into the different sites of the chromosome of His+ transconjugants. The transposon inserted during conjugation retains the ability to potential further translocation into new sites on the chromosomal DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号