首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Caffeine complexation by chlorogenic acid (3-caffeoylquinic acid, CAS Number [327-97-9]) in aqueous solution as well as caffeine–chlorogenate complex in freshly prepared coffee brews have been investigated by high-resolution 1H-NMR. Caffeine and chlorogenic acid self-associations have also been studied and self-association constants have been determined resorting to both classical isodesmic model and a recently introduced method of data analysis able to provide also the critical aggregation concentration (cac). Furthermore, caffeine–chlorogenate association constant was measured. For the caffeine, the average value of the self-association constant determined by isodesmic model (K i = 7.6 ± 0.5 M−1) is in good agreement with the average value (K a = 10 ± 1.8 M−1) determined with the method which permits the determination of the cac (8.43 ± 0.05 mM). Chlorogenic acid shows a slight decreased tendency to aggregation with a lower average value of association constants (K i = 2.8 ± 0.6 M−1; K a = 3.4 ± 0.6 M−1) and a critical concentration equal to 24 ± 1 mM. The value of the association constant of the caffeine–chlorogenate complex (30 ± 4 M−1) is compatible with previous studies and within the typical range of reported association constants for other caffeine–polyphenol complexes. Structural features of the complex have also been investigated, and the complex conformation has been rediscussed. Caffeine chemical shifts comparison (monomeric, complexed, coffee brews) clearly indicates a significant amount of caffeine is complexed in beverage real system, being chlorogenate ions the main complexing agents.  相似文献   

2.
3.
4.
Abstract

Reactivities of 5-formyl-2′-deoxyuridine (fdU) and its 5′-monophosphate (fdUMP) to amino acids, amines and thiol compounds in neutral aqueous solution have been studied to elucidate the postmodification of the 5-formyluracil (fU) moiety in cells. fdU and fdUMP specifically reacted with cysteine and its analogs to form thiazolidine derivatives. The reaction involved condensation of the formyl group of fU with both α-NH2 (or NH2 at the equevalent position) and SH groups of cysteine derivatives.

  相似文献   

5.
Gallic acid (GA) is well known for its antioxidant and hepatoprotective activity, though its effectiveness is restricted due to rapid metabolism and elimination. To overcome these problems, gallic acid–phospholipid complex was prepared and the effect of phospholipid complexation was investigated on carbon tetrachloride (CCl4)-induced oxidative damage in rat liver. The complex significantly reduced the hepatic marker enzymes in rat serum and restored the antioxidant enzyme levels with respect to CCl4-induced group (P < 0.05 and P < 0.01). Also, the complex improved the pharmacokinetics of GA by increasing the relative bioavailability and elimination half-life. The study therefore suggests that phospholipid complexation has enhanced the therapeutic efficacy of GA which may be due to its improved absorption and increased bioavailability in rat serum.

Electronic supplementary material

The online version of this article (doi:10.1208/s12249-013-9991-8) contains supplementary material, which is available to authorized users.KEY WORDS: bioavailability, gallic acid, hepatoprotective activity, pharmacokinetic, phospholipid complex  相似文献   

6.
7.
The midpoint potential of the [2Fe–2S] cluster of the Rieske iron–sulfurprotein (E m 7 = +280mV) is the primary determinant of the rate of electron transfer from ubiquinol to cytochromec catalyzed by the cytochrome bc 1 complex. As the midpoint potential of the Rieske clusteris lowered by altering the electronic environment surrounding the cluster, theubiquinol-cytochrome c reductase activity of the bc 1 complex decreases; between 220 and 280 mV therate changes 2.5-fold. The midpoint potential of the Rieske cluster also affects thepresteady-state kinetics of cytochrome b and c 1 reduction. When the midpoint potential of the Rieskecluster is more positive than that of the heme of cytochrome c 1, reduction of cytochrome bis biphasic. The fast phase of b reduction is linked to the optically invisible reduction of theRieske center, while the rate of the second, slow phase matches that of c 1 reduction. The ratesof b and c 1 reduction become slower as the potential of the Rieske cluster decreases andchange from biphasic to monophasic as the Rieske potential approaches that of theubiquinone/ubiquinol couple. Reduction of b and c 1 remain kinetically linked as the midpoint potentialof the Rieske cluster is varied by 180 mV and under conditions where the presteady statereduction is biphasic or monophasic. The persistent linkage of the rates of b and c 1 reduction isaccounted for by the bifurcated oxidation of ubiquinol that is unique to the Q-cycle mechanism.  相似文献   

8.
Assembly studies in vitro of deletion mutants of the iron–sulfur protein into the cytochromebc 1 complex revealed that mutants localized in the extramembranous regions of the proteinwere not assembled into the complex in contrast to the efficient assembly of mutants in themembrane-spanning region. Charged amino acids located in the extramembranous 1-4 loopand the 1 helix were mutated and expressed in yeast cells lacking the gene for the iron–sulfurprotein. Mutating the charged amino acid residues H124, E125, R146, K148, and D149 aswell as V132 and W152 resulted in loss of enzymatic activity due to the loss of iron–sulfurprotein suggesting that these amino acids are required to maintain protein stability. By contrast,no loss of iron–sulfur protein accompanied the 30–50% loss of bc 1 complex activity in mutantsof three conserved alanine residues, A86, A90, and A92, suggesting that these residues maybe involved in the proposed movement of the flexible tether of the iron–sulfur proteinduring catalysis.  相似文献   

9.
Abstract

uv absorbance spectrophotometry is the routine method of determining nucleotide concentrations in solution. To obviate the need for determining solution pH a method is described whereby cyclic CMP concentration in aqueous solution is calculated from absorbances at four wavelengths: the rationale is of general applicability to nucleosides and nucleotides.  相似文献   

10.
11.
The assembly of two deletion mutants of the Rieske iron-sulfur protein into the cytochrome bc 1 complex was investigated after import in vitro into mitochondria isolated from a strain of yeast, JPJ1, from which the iron-sulfur protein gene (RIP) had been deleted. The assembly process was investigated by immunoprecipitation of the labeled iron-sulfur protein or the two deletion mutants from detergent-solubilized mitochondria with specific antisera against either the iron-sulfur protein or the bc 1 complex (complex III) [Fu and Beattie (1991). J. Biol. Chem. 266, 16212–16218]. The deletion mutants lacking amino acid residues 55–66 or residues 161–180 were imported into mitochondria in vitro and processed to the mature form via an intermediate form. After import in vitro, the protein lacking residues 161–180 was not assembled into the complex, suggesting that the region of the iron-sulfur protein containing these residues may be involved in the assembly of the protein into the bc 1 complex; however, the protein lacking residues 55–66 was assembled in vitro into the bc 1 complex as effectively as the wild type iron-sulfur protein. Moreover, this mutant protein was present in the mitochondrial membrane fraction obtained from JPJ1 cells transformed with a single-copy plasmid containing the gene for this protein lacking residues 55–66. This deletion mutant protein was also assembled into the bc 1 complex in vivo, suggesting that the hydrophobic stretch of amino acids, residues 55–66, is not required for assembly of the iron-sulfur protein into the bc 1 complex; however, this association did not lead to enzymatic activity of the bc 1 complex, as the Rieske FeS cluster was not epr detectable in these mitochondria.  相似文献   

12.
A new theory, to our knowledge, is developed that describes the dynamics of a lipidic pore in a liposome. The equations of the theory capture the experimentally observed three-stage functional form of pore radius over time—stage 1, rapid pore enlargement; stage 2, slow pore shrinkage; and stage 3, rapid pore closure. They also show that lipid flow is kinetically limited by the values of both membrane and aqueous viscosity; therefore, pore evolution is affected by both viscosities. The theory predicts that for a giant liposome, tens of microns in radius, water viscosity dominates over the effects of membrane viscosity. The edge tension of a lipidic pore is calculated by using the theory to quantitatively account for pore kinetics in stage 3, rapid pore closing. This value of edge tension agrees with the value as standardly calculated from the stage of slow pore closure, stage 2. For small, submicron liposomes, membrane viscosity affects pore kinetics, but only if the viscosity of the aqueous solution is comparable to that of distilled water. A first-principle fluid-mechanics calculation of the friction due to aqueous viscosity is in excellent agreement with the friction obtained by applying the new theory to data of previously published experimental results.  相似文献   

13.
Cyclic-dependent kinase 2 (CDK2) is one of the primary protein kinases involved in the regulation of cell cycle progression. Flavopiridol is a flavonoid derived from an indigenous plant act as a potent antitumor drug showing increased inhibitory activity toward CDK2. The presence of deleterious variations in CDK2 may produce different effects in drug-binding adaptability. Studies on nsSNPs of CDK2 gene will provide information on the most likely variants associated with the disease. Furthermore, investigating the relationship between deleterious variants and its ripple effect in the inhibitory action with drug will provide fundamental information for the development of personalized therapies. In this study, we predicted four variants Y15S, V18L, P45L, and V69A of CDK2 as highly deleterious. Occurrence of these variations seriously affected the normal binding capacity of flavopiridol with CDK2. Analysis of 10-ns molecular dynamics (MD) simulation trajectories indicated that the predicted deleterious variants altered the CDK2 stability, flexibility, and surface area. Notably, we noticed the decrease in number of hydrogen bonds between CDK2 and flavopiridol mutant complexes in the whole dynamic period. Overall, this study explores the possible relationship between the CDK2 deleterious variants and the drug-binding ability with the help of molecular docking and MD approaches.  相似文献   

14.
Abstract

The synthesis of the octadeoxyribonucleoside heptaphosphorothioate, d[Tp(s)Tp(s)Gp(s)Gp(s)Gp(s)Gp(s)Tp(s)T] by the phosphotriester approach in solution is described. The phosphorothioate internucleotide linkages are protected by the S-(2-cyanoethyl) group and 1-(mesitylene-2-sulfonyl)-3-nitro-1,2,4-1H-triazole (MSNT) is used as the coupling agent. A block synthesis strategy (2 + 2 → 4 and 4 + 4 → 8) is followed.

  相似文献   

15.
16.
17.
Cai  Bingqing  Ikeda  Shinya 《Food biophysics》2020,15(4):416-422
Food Biophysics - The naturally occurring soybean pectin–protein conjugate pre-adsorbed to the air–water interface was shown to be displaced competitively from the interface when a...  相似文献   

18.
Glucoamylase[α-1,4: 1,6-glucan-4: 6-glucohydroease, EC 3.2.1.3] from Rhizopus niveus was entrapped in polyacrylamide gels and adsorbed onto SP-Sephadex C–50 to elucidate the thermostability mechanism of immobilized enzymes. The thermal stability of immobilized glucoamylase entrapped in polyacrylamide gels was enhanced slightly compared with glucoamylase in free solution, and was independent of the acrylamide monomer concentration and N, N′-methylene-bis (acrylamide) content. To explain this phenomenon, the cellular structure of polyacrylamide gel was taken into consideration in addition to interactions between glucoamylase and gel, and a decrease in dielectric constant in the gel [S. Moriyama et al., Agric. Biol. Chem., 41, 1985 (1977)1)]. On the other hand, immobilized glucoamylase bound to SP-Sephadex by ionic interaction showed lower stability than free glucoamylase, and much greater stability than glucoamylase in the presence of dextran sulfate, a constituent of SP-Sephadex. Thermal stabilities for the free and immobilized enzymes were also compared at the pH not in the bulk solution, but in the SP-Sephadex.  相似文献   

19.
Abstract

The solution distribution of combinations of the sugar ring puckering domains, C2′endo(S), C3′endo(N), and C4′-C5′ rotamers, +sc(g+), ap(t), -sc(g?), in α and β-anomers in ribo- and deoxyribo- pyrimidine nucleic acid components can be determined from vicinal coupling constants (M. Remin, J. Biomol. Str. Dyn. 2, 211 (1984). A general correlation pattern with a conformational constant λ, reflecting an intrinsic physical property of the sugar - side chain ensemble, is developed and expressed in terms of four principles:

I) The +sc rotamer contributes to the C3′endo population to a higher extent (1 - Yt) than to C2′endo,(l-Yt-Yg-/Xs).

II) The ap rotamer contributes to both C2′endo and C3′endo populations to the same extent (Yt).

III) The—sc rotamer contributes only to the C2′endo population, (Yg-/Xs).

IV) The molar fractions Xs, Yt and Yg- of conformations C2′endo, ap and—sc, respectively, are strongly correlated, λ = (Yg-/Xs)/Yt ≈ 0.5, and therefore Yt is a basic variable parameter which determines all others in the correlation pattern.

In α-anomers, regardless of the type and conformation of the sugar ring and base, the molar fraction Yt = 0.37 ± 0.02. This finding means that different α-anomers show one correlation pattern free of the influence of the base. In β-anomers, structure and conformation of the base are important factors which modulate (through Yt) the correlation pattern, conserving its fundamental features. Yt is considerably increased by a syn-oriented pyrimidine base, but decreases when the base is anti. The transition from anti to syn orientation of the base is followed by destabilization of (C2′endo, +sc) in favor of (C3′endo, ap). The principles of conformational correlations rationalize a variety of correlations observed in the past.  相似文献   

20.
A new and specific HPLC–DAD method for the direct determination of Prulifloxacin and its active metabolite, Ulifloxacin, in human plasma has been developed. Plasma samples were analysed after a simple solid phase extraction (SPE) clean-up using a new HILIC stationary phase based high-performance liquid chromatography (HPLC) column and an ammonium acetate buffer (5?mM, pH 5.8)/acetonitrile (both with 1% Et3N, v/v) mobile phase in isocratic elution mode, with Danofloxacin as the internal standard. Detection was performed using DAD from 200 to 500?nm and quantitative analyses were carried out at 278?nm. The LOQ of the method was 1?μg/mL of the cited analytes and the calibration curve showed a good linearity up to 25?μg/mL. For both analytes the precision (RSD%) and the trueness (bias%) of the method fulfil with International Guidelines. The method was applied for stability studies, at three QC concentration levels, in human plasma samples stored at different temperature of?+?25,?+?4 and ?20?°C in order to evaluate plasma stability profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号