首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blooms of the freshwater cyanobacterium Anabaena circinalis are recognized as an important health risk worldwide due to the production of a range of toxins such as saxitoxin (STX) and its derivatives. In this study we used HIP1 octameric-palindrome repeated-sequence PCR to compare the genomic structure of phylogenetically similar Australian isolates of A. circinalis. STX-producing and nontoxic cyanobacterial strains showed different HIP1 (highly iterated octameric palindrome 1) DNA patterns, and characteristic interrepeat amplicons for each group were identified. Suppression subtractive hybridization (SSH) was performed using HIP1 PCR-generated libraries to further identify toxic-strain-specific genes. An STX-producing strain and a nontoxic strain of A. circinalis were chosen as testers in two distinct experiments. The two categories of SSH putative tester-specific sequences were characterized by different families of encoded proteins that may be representative of the differences in metabolism between STX-producing and nontoxic A. circinalis strains. DNA-microarray hybridization and genomic screening revealed a toxic-strain-specific HIP1 fragment coding for a putative Na(+)-dependent transporter. Analysis of this gene demonstrated analogy to the mrpF gene of Bacillus subtilis, whose encoded protein is involved in Na(+)-specific pH homeostasis. The application of this gene as a molecular probe in laboratory and environmental screening for STX-producing A. circinalis strains was demonstrated. The possible role of this putative Na(+)-dependent transporter in the toxic cyanobacterial phenotype is also discussed, in light of recent physiological studies of STX-producing cyanobacteria.  相似文献   

2.
Cyanobacterial blooms are potential health hazards in water supply reservoirs. This paper reports analyses of a cyanobacterial bloom by use of PCR-based methods for direct detection and identification of strains present and determination of their toxigenicity. Serial samples from Malpas Dam, in the New England region of Australia, were analyzed during a prolonged, mixed cyanobacterial bloom in the summer of 2000 to 2001. Malpas Dam has been shown in the past to have toxic blooms of Microcystis aeruginosa that have caused liver damage in the human population drinking from this water supply reservoir. Cyanobacterial genera were detected at low cell numbers by PCR amplification of the phycocyanin intergenic spacer region between the genes for the beta and alpha subunits. The potential for microcystin production was determined by PCR amplification of a gene in the microcystin biosynthesis pathway. The potential for saxitoxin production was determined by PCR amplification of a region of the 16S rRNA gene of Anabaena circinalis strains. Toxicity of samples was established by mouse bioassay and high-pressure liquid chromatography. We show that bloom components can be identified and monitored for toxigenicity by PCR more effectively than by other methods such as microscopy and mouse bioassay. We also show that toxigenic strains of Anabaena and Microcystis spp. occur at this site and that, over the course of the bloom, the cell types and toxicity changed. This work demonstrates that PCR detection of potential toxicity can enhance the management of a significant public health hazard.  相似文献   

3.
Saxitoxin (STX) is a potent natural sodium channel blocker and represents a significant health concern worldwide. We describe here the antagonistic effects of STX and veratridine (VTD), an Na+ channel activator, on three gram-negative bacteria and their application to an STX bioassay. STX reduced the total cellular levels of both Na+ and K+, as measured by flame photometry, whereas VTD increased the cellular concentrations relative to control ion fluxes in the cyanobacterium Cylindrospermopsis raciborskii AWT205. Endogenous STX production in toxic cyanobacterial strains of C. raciborskii and Anabaena circinalis prevented cell lysis induced by VTD stress. Microscopic cell counts showed that non-STX producing cyanobacteria displayed complete cell lysis and trichome fragmentation 5 to 8 h after addition of VTD and vanadate (VAN), an inhibitor of sodium pumps. The addition of STX, or its analogue neoSTX, prior to treatment with VTD plus VAN prevented complete lysis in non-STX-producing cyanobacteria. VTD also affected cyanobacterial metabolism, and the presence of exogenous STX in the sample also ameliorated this decrease in metabolic activity, as measured by the cellular conversion of tetrazolium into formazan. Reduced primary metabolism was also recorded as a decrease in the light emissions of Vibrio fischeri exposed to VTD. Addition of STX prior to VTD resulted in a rapid and dose-dependent response to the presence of the channel blocker, with samples exhibiting resistance to the VTD effect. Our findings demonstrate that STX and VTD influence bacterial Na+ and K+ fluxes in opposite ways, and these principles can be applied to the development of a prokaryote-based STX bioassay.  相似文献   

4.
A cyanobacterial bloom impacted over 1,100 km of the Murray River, Australia, and its tributaries in 2009. Physicochemical conditions in the river were optimal to support a bloom at the time. The data suggest that at least three blooms occurred concurrently in different sections of the river, with each having a different community composition and associated cyanotoxin profile. Microscopic and genetic analyses suggested the presence of potentially toxic Anabaena circinalis, Microcystis flos-aquae, and Cylindrospermopsis raciborskii at many locations. Low concentrations of saxitoxins and cylindrospermopsin were detected in Anabaena and Cylindrospermopsis populations. A multiplex quantitative PCR was used, employing novel oligonucleotide primers and fluorescent TaqMan probes, to examine bloom toxigenicity. This single reaction method identified the presence of the major cyanotoxin-producing species present in these environmental samples and also quantified the various toxin biosynthesis genes. A large number of cells present throughout the bloom were not potential toxin producers or were present in numbers below the limit of detection of the assay and therefore not an immediate health risk. Potential toxin-producing cells, possessing the cylindrospermopsin biosynthesis gene (cyrA), predominated early in the bloom, while those possessing the saxitoxin biosynthesis gene (sxtA) were more common toward its decline. In this study, the concentrations of cyanotoxins measured via enzyme-linked immunosorbent assay (ELISA) correlated positively with the respective toxin gene copy numbers, indicating that the molecular method may be used as a proxy for bloom risk assessment.  相似文献   

5.
微囊藻毒素在滇池鱼体内的积累水平及分布特征   总被引:2,自引:0,他引:2  
为了解富营养化水体中鱼体内微囊藻毒素(MC)的积累水平及其分布特征,2003年4月和9月份两次在滇池试验区采集了鲢、鳙和草鱼等鱼种,用ELISA方法对鱼体中肝、肾、空肠、胆、肌肉等不同组织中MC的含量进行了检测。结果表明,MC在所有样品中均能检测到,且主要分布在鱼体的肝肾脏和消化道等器官,而肌肉和非消化道器官中毒素含量相对较低。不同鱼种不同组织对MC的富集程度也明显不同,鲢鳙中肝脏和肾脏这两个主要的靶器官对MC的蓄积能力就远高于草鱼。同时,不同季节MC在鱼体内的积累水平也明显不同,4月份鱼样中MC的含量普遍低于9月份鱼样中MC的含量。最后按照WHO生活饮用水安全标准的建议进行推算,所有鱼肉中的MC均没有超过其推荐的人体每日可允许摄入量(≤0.04μg/kg人体重),初步推断鱼肉中MC暂时还未危及到人体健康,但仍具有潜在的风险性。  相似文献   

6.
Cyanophages are viruses that infect the cyanobacteria, globally important photosynthetic microorganisms. Cyanophages are considered significant components of microbial communities, playing major roles in influencing host community diversity and primary productivity, terminating cyanobacterial water blooms, and influencing biogeochemical cycles. Cyanophages are ubiquitous in both marine and freshwater systems; however, the majority of molecular research has been biased toward the study of marine cyanophages. In this study, a diagnostic probe was developed to detect freshwater cyanophages in natural waters. Oligonucleotide PCR-based primers were designed to specifically amplify the major capsid protein gene from previously characterized freshwater cyanomyoviruses that are infectious to the filamentous, nitrogen-fixing cyanobacterial genera Anabaena and Nostoc. The primers were also successful in yielding PCR products from mixed virus communities concentrated from water samples collected from freshwater lakes in the United Kingdom. The probes are thought to provide a useful tool for the investigation of cyanophage diversity in freshwater environments.  相似文献   

7.

Background

Paralytic shellfish poisoning (PSP) is a potentially fatal syndrome associated with the consumption of shellfish that have accumulated saxitoxin (STX). STX is produced by microscopic marine dinoflagellate algae. Little is known about the origin and spread of saxitoxin genes in these under-studied eukaryotes. Fortuitously, some freshwater cyanobacteria also produce STX, providing an ideal model for studying its biosynthesis. Here we focus on saxitoxin-producing cyanobacteria and their non-toxic sisters to elucidate the origin of genes involved in the putative STX biosynthetic pathway.

Methodology/Principal Findings

We generated a draft genome assembly of the saxitoxin-producing (STX+) cyanobacterium Anabaena circinalis ACBU02 and searched for 26 candidate saxitoxin­genes (named sxtA to sxtZ) that were recently identified in the toxic strain Cylindrospermopsis raciborskii T3. We also generated a draft assembly of the non-toxic (STX−) sister Anabaena circinalis ACFR02 to aid the identification of saxitoxin-specific genes. Comparative phylogenomic analyses revealed that nine putative STX genes were horizontally transferred from non-cyanobacterial sources, whereas one key gene (sxtA) originated in STX+ cyanobacteria via two independent horizontal transfers followed by fusion. In total, of the 26 candidate saxitoxin-genes, 13 are of cyanobacterial provenance and are monophyletic among the STX+ taxa, four are shared amongst STX+ and STX-cyanobacteria, and the remaining nine genes are specific to STX+ cyanobacteria.

Conclusions/Significance

Our results provide evidence that the assembly of STX genes in ACBU02 involved multiple HGT events from different sources followed presumably by coordination of the expression of foreign and native genes in the common ancestor of STX+ cyanobacteria. The ability to produce saxitoxin was subsequently lost multiple independent times resulting in a nested relationship of STX+ and STX− strains among Anabaena circinalis strains.  相似文献   

8.
Randomly amplified polymorphic DNA PCR was used to generate unique and identifying DNA profiles for members of the cyanobacterial genera Anabaena and Microcystis, which are responsible for much of the production of nuisance blooms in various freshwater systems, including recreational and drinking water supplies. A method based on the combination of two 10-mer oligonucleotides in a single PCR was developed to provide specific and repeatable DNA fingerprints for cyanobacterial isolates. The strain-specific randomly amplified polymorphic DNA profiles made it possible to discriminate among all toxigenic cyanobacteria studied to the three taxonomic levels of genus, species, and strain. Analysis of DNA typing results obtained by the described method clearly distinguishes between the genera Anabaena and Microcystis. The markers produced for each strain were also applied to a phylogenetic analysis to infer genetic relatedness in this group of prokaryotes.  相似文献   

9.
Saxitoxin (STX) is a potent natural sodium channel blocker and represents a significant health concern worldwide. We describe here the antagonistic effects of STX and veratridine (VTD), an Na+ channel activator, on three gram-negative bacteria and their application to an STX bioassay. STX reduced the total cellular levels of both Na+ and K+, as measured by flame photometry, whereas VTD increased the cellular concentrations relative to control ion fluxes in the cyanobacterium Cylindrospermopsis raciborskii AWT205. Endogenous STX production in toxic cyanobacterial strains of C. raciborskii and Anabaena circinalis prevented cell lysis induced by VTD stress. Microscopic cell counts showed that non-STX producing cyanobacteria displayed complete cell lysis and trichome fragmentation 5 to 8 h after addition of VTD and vanadate (VAN), an inhibitor of sodium pumps. The addition of STX, or its analogue neoSTX, prior to treatment with VTD plus VAN prevented complete lysis in non-STX-producing cyanobacteria. VTD also affected cyanobacterial metabolism, and the presence of exogenous STX in the sample also ameliorated this decrease in metabolic activity, as measured by the cellular conversion of tetrazolium into formazan. Reduced primary metabolism was also recorded as a decrease in the light emissions of Vibrio fischeri exposed to VTD. Addition of STX prior to VTD resulted in a rapid and dose-dependent response to the presence of the channel blocker, with samples exhibiting resistance to the VTD effect. Our findings demonstrate that STX and VTD influence bacterial Na+ and K+ fluxes in opposite ways, and these principles can be applied to the development of a prokaryote-based STX bioassay.  相似文献   

10.
Drinking water reservoirs in agricultural dominated watersheds are particularly vulnerable to cyanobacterial blooms. A major byproduct of cyanobacteria is the production of objectionable taste and odor compounds such as geosmin. During May 1997 to September 1998, we studied spatial and temporal patterns of cyanobacterial abundance and composition with respect to a series of physical and chemical properties in Clinton Lake, located in east central Kansas, USA. Our results suggest that nutrients (in particular TN, NO3–N concentrations), turbidity, and hydrologic regime all played potentially important roles in regulating cyanobacterial production. Specifically, low levels of nitrogen coupled with the internal release of phosphorus from the lake sediment under brief periods of anoxia may have helped promote cyanobacterial blooms. There was also a strong association between cyanobacterial blooms, geosmin production, and most taste and odor events in Clinton Lake. Anabaena circinalis appeared to be the source for geosmin production as a result of senescing algal cells just after the primary die-off of cyanobacteria.  相似文献   

11.
A specific quantitative real-time PCR (qPCR) method was developed for the quantification of hepatotoxin nodularin-producing Nodularia, one of the main bloom-forming cyanobacteria in the Baltic Sea. Specific PCR primers were designed for subunit F of the nodularin synthetase gene (ndaF), which encodes the NdaF subunit of the nodularin synthetase gene complex needed for nodularin production. The qPCR method was applied to water samples (a total of 120 samples) collected from the Baltic Sea in July 2004. As few as 30 ndaF gene copies ml(-1) of seawater could be detected, and thus, the method was very sensitive. The ndaF gene copy numbers and nodularin concentrations were shown to correlate in the Baltic seawater, indicating the constant production of nodularin by Nodularia. This qPCR method for the ndaF gene can be used for detailed studies of Nodularia blooms and their formation. ndaF gene copies and nodularin were detected mostly in the surface water but also in deeper water layers (down to 30 m). Toxic Nodularia blooms are not only horizontally but also vertically widely distributed, and thus, the Baltic fauna is extensively exposed to nodularin.  相似文献   

12.
The detection and prevention of cyanobacterial blooms are important issues in water quality management. As such, the diversity and community dynamics of cyanobacteria during cyanobacterial bloom in the Daechung Reservoir, Korea, were studied by analyzing the intergenic spacer (IGS) region between phycocyanin subunit genes cpcB and cpcA (cpcBA IGS). To amplify the cpcBA IGS from environmental samples, new PCR primers that could cover a wider range of cyanobacteria than previously known primers were designed. In the samples taken around the bloom peak (2 September 2003), seven groups of cpcBA IGS sequences were detected, and none of the amplified cpcBA IGSs was closely related to the cpcBA IGS from chloroplasts. Apart from the Microcystis-, Aphanizomenon (Anabaena)-, Pseudanabaena-, and Planktothrix (Oscillatoria)-like groups, the three other groups of cpcBA IGS sequences were only distantly related to previously reported sequences (<85% similarity to their closest relatives). The most prominent changes during the bloom were the gradual decrease and eventual disappearance of the Aphanizomenon (Anabaena)-like group before the bloom peak and the gradual increase and sudden disappearance of Planktothrix (Oscillatoria)-like groups right after the bloom peak. The community succession profile obtained based on the cpcBA IGS analysis was also supported by a PCR-denaturing gradient gel electrophoresis analysis of the 16S rRNA genes.  相似文献   

13.
Due to the combined effects of global warming and eutrophication, the frequency of deleterious cyanobacterial blooms in freshwater ecosystems has increased. In line with this, local adaptation of the aquatic keystone herbivore Daphnia to cyanobacteria has received major attention. Besides microcystins, the most frequent cyanobacterial secondary metabolites in such blooms are protease inhibitors (PIs). Recently, it has been shown that a protease gene showed copy number variation between four D. magna populations that differed in tolerance to PIs. From that study, we chose two distinct populations of D. magna which had or had not coexisted with cyanobacteria in the past. By calculating FST values, we found that the two populations were genetically more distant in the protease loci than in neutral loci. Population genetic tests applied to the tolerant population revealed that positive selection was most probably acting on the gene loci of the digestive protease CT448 and CT802. We conclude that the selection of digestive proteases and subsequent reduction in copy number is the molecular basis of evolutionary changes leading to local adaptation to PIs.  相似文献   

14.
Yan Q  Yu Y  Feng W  Pan G  Chen H  Chen J  Yang B  Li X  Zhang X 《Microbial ecology》2009,58(1):47-55
Using artificial systems to simulate natural lake environments with cyanobacterial blooms, we investigated plankton community succession by polymerase chain reaction–denaturing gradient gel electrophoresis (PCR-DGGE) fingerprinting and morphological method. With this approach, we explored potential ecological effects of a newly developed cyanobacterial blooms removal method using chitosan-modified soils. Results of PCR-DGGE and morphological identification showed that plankton communities in the four test systems were nearly identical at the beginning of the experiment. After applying the newly developed and standard removal methods, there was a shift in community composition, but neither chemical conditions nor plankton succession were significantly affected by the cyanobacteria removal process. The planted Vallisneria natans successfully recovered after cyanobacteria removal, whereas that in the box without removal process did not. Additionally, canonical correspondence analysis indicated that other than for zooplankton abundance, total phosphorus was the most important environmental predictor of planktonic composition. The present study and others suggest that dealing with cyanobacteria removal using chitosan-modified soils can play an important role in controlling cyanobacterial blooms in eutrophicated freshwater systems.  相似文献   

15.
Salinity has been suggested as being a controlling factor for blooms of N2-fixing cyanobacteria in estuaries. We tested the effect of salinity on the growth, N2 fixation, and photosynthetic activities of estuarine and freshwater isolates of heterocystous bloom-forming cyanobacteria. Anabaena aphanizomenoides and Anabaenopsis sp. were isolated from the Neuse River Estuary, North Carolina, and Cylindrospermopsis raciborskii from Lakes Dora and Griffin, central Florida. Salinity tolerance of these cyanobacteria was compared with that of two Nodularia strains from the Baltic Sea. We measured growth rates, N2 fixation (nitrogenase activity), and CO2 fixation at salinities between 0 and 20 g L(-1) NaCl. We also examined photosynthesis-irradiance relation-ships in response to salinity. Anabaenopsis maintained similar growth rates in the full range of salinities from 2 to 20 g L(-1) NaCl. Anabaena grew at up to 15 g L-', but the maximum salinity 20 g L(-1) NaCl was inhibitory. The upper limit for salinity tolerance of Cylindrospermopsis was 4 g L(-1) NaCl. Nodularia spp. maintained similar growth rates in the full range of salinities from 0 to 20 g L(-1) . Between 0 and 10 g L(-1), the growth rate of Nodularia spumigena was slower than that of the Neuse Estuary strains. In most strains, the sensitivity of nitrogenase activity and CO2 fixation to salinity appeared similar. Anabaenopsis, Anabaena, and the two Nodularia strains rapidly responded to NaCl by increasing their maximum photosynthetic rates (Pmn). Overall, both Neuse River Estuary and Baltic Sea strains showed an ability to acclimate to salt stress over short-(24 h) and long-term (several days to weeks) exposures. The study suggested that direct effect of salinity (as NaCl in these experiments) on cyanobacterial physiology does not alone explain the low frequency and magnitude of blooms of N2-fixing cyanobacteria in estuaries.  相似文献   

16.
Cyanobacterial mass occurrences in freshwater lakes are generally formed by Anabaena, Microcystis, and Planktothrix, which may produce cyclic heptapeptide hepatotoxins, microcystins. Thus far, identification of the most potent microcystin producer in a lake has not been possible due to a lack of quantitative methods. The aim of this study was to identify the microcystin-producing genera and to determine the copy numbers of microcystin synthetase gene E (mcyE) in Lake Tuusulanj?rvi and Lake Hiidenvesi in Finland by quantitative real-time PCR. The microcystin concentrations and cyanobacterial cell densities of these lakes were also determined. The microcystin concentrations correlated positively with the sum of Microcystis and Anabaena mcyE copy numbers from both Lake Tuusulanj?rvi and Lake Hiidenvesi, indicating that mcyE gene copy numbers can be used as surrogates for hepatotoxic Microcystis and ANABAENA: The main microcystin producer in Lake Tuusulanj?rvi was Microcystis spp., since average Microcystis mcyE copy numbers were >30 times more abundant than those of ANABAENA: Lake Hiidenvesi seemed to contain both nontoxic and toxic Anabaena as well as toxic Microcystis strains. Identifying the most potent microcystin producer in a lake could be valuable for designing lake restoration strategies, among other uses.  相似文献   

17.
也西湖噬藻体的分离与鉴定   总被引:1,自引:0,他引:1  
周科  杜康  朱洁  周丛照  李琼 《微生物学通报》2020,47(10):3161-3170
【背景】噬藻体是一类特异性侵染蓝藻的病毒,广泛存在于淡水和海水水体中,参与调控宿主蓝藻的丰度和种群密度,被认为是潜在的蓝藻水华生物防控工具。但目前的研究多集中于海洋噬藻体,对淡水噬藻体的生物学特性和结构生物学等研究较少。【目的】分离更多种类的淡水噬藻体,为研究淡水噬藻体的三维结构、侵染机制、与宿主的共进化关系,及其在蓝藻水华防治中的应用提供理论基础。【方法】采集中国科学技术大学西校区内景观湖也西湖水华暴发水域的水样,利用液体培养基和双层固体平板法对17种宿主蓝藻进行筛选,通过NaCl-PEG沉淀法和氯化铯密度梯度离心分离和纯化噬藻体,并利用负染电镜观察噬藻体的形态,同时采用梯度稀释法测定裂解液的效价。【结果】发现也西湖的水样可特异性侵染本实验室分离自巢湖的一株拟鱼腥藻Pan。侵染后的裂解液中存在4株形态各异的噬藻体,包括1株短尾噬藻体和3株长尾噬藻体,其中包括首次发现的1株含有非典型长轴状头部结构的淡水噬藻体。【结论】也西湖作为巢湖流域的一个小型水体,具有与巢湖类似的水华蓝藻及其噬藻体分布谱,因此可以用于模拟大型湖泊进行相关分子生态学和生物防控的研究。  相似文献   

18.
Although the cyanobacterium Anabaena circinalis occurs worldwide, Australian isolates are believed to exclusively possess the saxitoxin group neurotoxins (paralytic shellfish poisons). Identification of A. circinalis in a mixed population is complicated due to limited morphological differences between Anabaena species. Sequence analysis of the DNA-dependent RNA polymerase (rpoC1) gene from 24 Anabaena isolates, including 12 designated A. circinalis, permitted a phylogenetic analysis to be performed. In addition, an A. circinalis-specific PCR was developed and tested successfully on environmental samples.  相似文献   

19.
Dear Editor, We report the results of the preliminary isolation of two virus-like particles (VLPs) that are infectious to freshwater cyanobacteria from Lake Donghu,the largest urban lake in China,located in Wuhan City,Hubei Province.By light and transmission electron microscopy,we observed VLPs causing lytic infections in freshwater bloom-forming cyanobacteria,and we detected their infections by exposing the VLPs to 12 cyanobacterial strains,including Microcystis aeruginosa HAB 1801 and Anabaena spiroides HAB 1211.They were termed ‘Anabaena spiroides geminivirus-like (AsGV-L)' particles and ‘Microcystis aeruginosa corticoviruslike (MaCV-L)' particles,based on their ultrastructural morphological characteristics and host specificities.  相似文献   

20.
The late summer mass occurrences of cyanobacteria in the Baltic Sea are among the largest in the world. These blooms are rarely monotypic and are often composed of a diverse assemblage of cyanobacteria. The toxicity of the blooms is attributed to Nodularia spumigena through the production of the hepatotoxic nodularin. However, the microcystin hepatotoxins have also been reported from the Baltic Sea on a number of occasions. Recent evidence links microcystin production in the Gulf of Finland directly to the genus Anabaena . Here we developed a denaturing gradient gel electrophoresis (DGGE) method based on the mcyE microcystin synthetase gene and ndaF nodularin synthetase gene that allows the culture-independent discrimination of microcystin- and nodularin-producing cyanobacteria directly from environmental samples. We PCR-amplified microcystin and nodularin synthetase genes from environmental samples taken from the Gulf of Finland and separated them on a denaturing gradient gel using optimized conditions. Sequence analyses demonstrate that uncultured microcystin-producing Anabaena strains are genetically more diverse than previously demonstrated from cultured strains. Furthermore, our data show that microcystin-producing Anabaena are widespread in the open Gulf of Finland. Non-parametric statistical analysis suggested that salinity plays an important role in defining the distribution of microcystin-producing Anabaena . Our results indicate that microcystin-producing blooms are a persistent phenomenon in the Gulf of Finland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号