首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Mre11 complex is a central component of the DNA damage response, with roles in damage sensing, molecular bridging, and end resection. We have previously shown that in Saccharomyces cerevisiae, Ku70 (yKu70) deficiency reduces the ionizing radiation sensitivity of mre11Δ mutants. In this study, we show that yKu70 deficiency suppressed the camptothecin (CPT) and methyl methanesulfonate (MMS) sensitivity of nuclease-deficient mre11-3 and sae2Δ mutants in an Exo1-dependent manner. CPT-induced G(2)/M arrest, γ-H2AX persistence, and chromosome breaks were elevated in mre11-3 mutants. These outcomes were reduced by yKu70 deficiency. Given that the genotoxic effects of CPT are manifest during DNA replication, these data suggest that Ku limits Exo1-dependent double-strand break (DSB) resection during DNA replication, inhibiting the initial processing steps required for homology-directed repair. We propose that Mre11 nuclease- and Sae2-dependent DNA end processing, which initiates DSB resection prevents Ku from engaging DSBs, thus promoting Exo1-dependent resection. In agreement with this idea, we show that Ku affinity for binding to short single-stranded overhangs is much lower than for blunt DNA ends. Collectively, the data define a nonhomologous end joining (NHEJ)-independent, S-phase-specific function of the Ku heterodimer.  相似文献   

2.
Chan CY  Galli A  Schiestl RH 《DNA Repair》2008,7(9):1531-1541
Nonhomologous end joining connects DNA ends in the absence of extended sequence homology and requires removal of mismatched DNA ends and gap-filling synthesis prior to a religation step. Pol4 within the Pol X family is the only polymerase known to be involved in end processing during nonhomologous end joining in yeast. The Saccharomyces cerevisiae POL3/CDC2 gene encodes polymerase delta that is involved in DNA replication and other DNA repair processes. Here, we show that POL3 is involved in nonhomologous end joining using a plasmid-based end-joining assay in yeast, in which the pol3-t mutation caused a 1.9- to 3.2-fold decrease in the end-joining efficiency of partially compatible 5' or 3' ends, or incompatible ends, similar to the pol4 mutant. The pol3-t pol4 double mutation showed a synergistic decrease in the efficiency of NHEJ with partially compatible 5' ends or incompatible ends. Sequence analysis of the rejoined junctions recovered from the wild-type cells and mutants indicated that POL3 is required for gap filling at 3' overhangs, but not 5' overhangs during POL4-independent nonhomologous end joining. We also show that either Pol3 or Pol4 is required for simple religation of compatible or blunt ends. These results suggest that Pol3 has a generalized function in end joining in addition to its role in gap filling at 3' overhangs to enhance the overall efficiency of nonhomologous end joining. Moreover, the decreased end-joining efficiency seen in the pol3-t mutant was not due to S-phase arrest associated with the mutant. Taken together, our genetic evidence supports a novel role of Pol3 in nonhomologous end joining that facilitates gap filling at 3' overhangs in the absence of Pol4 to maintain genomic integrity.  相似文献   

3.
Rad50, Mre11, and Xrs2 form a nuclease complex that functions in both nonhomologous end-joining (NHEJ) and recombinational repair of DNA double-strand breaks (DSBs). A search for highly expressed cDNAs that suppress the DNA repair deficiency of rad50 mutants yielded multiple isolates of two genes: EXO1 and TLC1. Overexpression of EXO1 or TLC1 increased the resistance of rad50, mre11, and xrs2 mutants to ionizing radiation and MMS, but did not increase resistance in strains defective in recombination (rad51, rad52, rad54, rad59) or NHEJ only (yku70, sir4). Increased Exo1 or TLC1 RNA did not alter checkpoint responses or restore NHEJ proficiency, but DNA repair defects of yku70 and rad27 (fen) mutants were differentially suppressed by the two genes. Overexpression of Exo1, but not mutant proteins containing substitutions in the conserved nuclease domain, increased recombination and suppressed HO and EcoRI endonuclease-induced killing of rad50 strains. exo1 rad50 mutants lacking both nuclease activities exhibited a high proportion of enlarged, G2-arrested cells and displayed a synergistic decrease in DSB-induced plasmid:chromosome recombination. These results support a model in which the nuclease activity of the Rad50/Mre11/Xrs2 complex is required for recombinational repair, but not NHEJ. We suggest that the 5'-3' exo activity of Exo1 is able to substitute for Rad50/Mre11/Xrs2 in rescission of specific classes of DSB end structures. Gene-specific suppression by TLC1, which encodes the RNA subunit of the yeast telomerase complex, demonstrates that components of telomerase can also impact on DSB repair pathways.  相似文献   

4.
The Rad2/XPG family nuclease, Exo1, functions in?a variety of DNA repair pathways. During meiosis, Exo1 promotes crossover recombination and thereby facilitates chromosome segregation at the first division. Meiotic recombination is initiated by programmed DNA double-strand breaks (DSBs). Nucleolytic resection of DSBs generates long 3' single-strand tails that undergo strand exchange with a homologous chromosome to form joint molecule (JM) intermediates. We show that meiotic DSB resection is dramatically reduced in exo1Δ mutants and test the idea that Exo1-catalyzed resection promotes crossing over by facilitating formation of crossover-specific JMs called double Holliday junctions (dHJs). Contrary to this idea, dHJs form at wild-type levels in exo1Δ mutants, implying that Exo1 has a second function that promotes resolution of dHJs into crossovers. Surprisingly, the dHJ resolution function of Exo1 is independent of its nuclease activities but requires interaction with the putative endonuclease complex, Mlh1-Mlh3. Thus, the DSB resection and procrossover functions of Exo1 during meiosis involve temporally and biochemically distinct activities.  相似文献   

5.
DNA double-strand break (DSB) processing was studied in mouse testicular extracts using a defined DSB created by cleaving supercoiled pUC12 DNA at a unique site as the substrate, and analysing the processed DNA by gel electrophoresis. Our results demonstrated that enzymatic activity in the extracts promoted multimerization of DNA and suppressed its circularization. This was distinctly different from T4 DNA ligase activity in the control and therefore the process must be more complex than simple ligation. Efficiency of this end-to-end joining was ATP and Mg(2+)-dependent and was much higher with cohesive (especially with 5') than with blunt ends. On recleaving, the joining was predominantly faithful, especially for cohesive ends; but a detectable fraction of DNA had undergone end-processed joining causing junctional deletions, mostly with blunt ends. Redigestion of end-joined products from time course experiments established that the end-deleted joining occurred concurrent to the faithful joining. Junctional segments were cloned and their restriction analysis confirmed the presence of large deletions from both the sides. These results suggested the association of an end-processing activity (exonuclease/helicase + flap endonuclease) along with the end-joining ligase(s). Suppression of end-edited joining on lowering the reaction temperature to 17 degrees or 14 degrees C, despite efficient faithful joining, indicated that this enzymatic activity is retarded at low temperature. Though the efficiency and fidelity of joining were termini-dependent, the orientation of joining was random. Lack of preference for homologous ends (H:H or T:T), as well as efficient joining of heterologous DNA (pUC12/pBR322) having two different blunt termini, showed that the end joining could occur independent of extensive/terminal homology. Retention of radioactivity on end joining of (alpha-32P)dCTP end-filled cohesive termini, and lack of their junctional cleavability, apparently due to restriction site duplication, suggested direct double strand ligation. Thus it is demonstrated that mouse male germ cells possess an efficient DNA end-joining activity, involving either a major pathway of precise joining, or a minor end-deleted joining, and it seems to be achieved by a multienzymatic complex as suggested also for somatic cells by others. These results show that mammalian male germ cells that are proficient in homologous recombination utilize nonhomologous end-joining (NHEJ) mechanism for DSB processing and therefore NHEJ is a conserved, universal pathway for the vital function of DSB repair.  相似文献   

6.
Lymphoid cells of the vertebrate immune system rely on factors in the non-homologous end-joining (NHEJ) DNA repair pathway to form signal joints during V(D)J recombination. Unlike other end-joining reactions, signal joint formation is a specialized case of NHEJ that also requires the lymphoid-specific RAG proteins. Whether V(D)J recombination requires the Mre11-Rad50-Nbs1 complex remains an open question, as null mutations in any member of the complex are lethal in mammals. However, Saccharomyces cerevisiae strains carrying null mutations in components of the homologous Mre11p-Rad50p-Xrs2p (MRX) complex are viable. We therefore took advantage of a recently developed V(D)J recombination assay in yeast to assess the role of MRX in V(D)J joining. Here we confirmed that signal joint formation in yeast is dependent on the same NHEJ factors known to be required in mammalian cells. In addition, we showed an absolute requirement for the MRX complex in signal joining, suggesting that the Mre11-Rad50-Nbs1 complex may be required for signal joint formation in mammalian cells as well.  相似文献   

7.
Most mechanistic studies of repair of DNA double-strand breaks (DSBs) produced by in vivo expression of endonucleases have utilized enzymes that produce cohesive-ended DSBs such as HO, I-SceI and EcoRI. We have developed systems for expression of PvuII and EcoRV, nucleases that produce DSBs containing blunt ends, using a modified GAL1 promoter that has reduced basal activity. Expression of PvuII and EcoRV caused growth inhibition and strong cell killing in both haploid and diploid yeast cells. Surprisingly, there was little difference in sensitivities of wildtype cells and mutants defective in homologous recombination, nonhomologous end-joining (NHEJ), or both pathways. Physical analysis using standard and pulsed field gel electrophoresis demonstrated time-dependent breakage of chromosomal DNA within cells. Although ionizing radiation-induced DSBs were largely repaired within 4 h, no repair of PvuII-induced breaks could be detected in diploid cells, even after arrest in G2/M. Rare survivors of PvuII expression had an increased frequency of chromosome XII deletions, an indication that a fraction of the induced DSBs could be repaired by an error-prone process. These results indicate that, unlike DSBs with complementary single-stranded DNA overhangs, blunt-ended DSBs in yeast chromosomes are poor substrates for repair by either NHEJ or recombination.  相似文献   

8.
Homologous recombination (HR) repair of programmed meiotic double-strand breaks (DSBs) requires endonucleolytic clipping of Rec12Spo11-oligonucleotides from 5′ DNA ends followed by resection to generate invasive 3′ single-stranded DNA tails. The Mre11-Rad50-Nbs1 (MRN) endonuclease and Ctp1 (CtIP and Sae2 ortholog) are required for both activities in fission yeast but whether they are genetically separable is controversial. Here, we investigate the mitotic DSB repair properties of Ctp1 C-terminal domain (ctp1-CD) mutants that were reported to be specifically clipping deficient. These mutants are sensitive to many clastogens, including those that create DSBs devoid of covalently bound proteins. These sensitivities are suppressed by genetically eliminating Ku nonhomologous end-joining (NHEJ) protein, indicating that Ctp1-dependent clipping by MRN is required for Ku removal from DNA ends. However, this rescue requires Exo1 resection activity, implying that Ctp1-dependent resection by MRN is defective in ctp1-CD mutants. The ctp1-CD mutants tolerate one but not multiple broken replication forks, and they are highly reliant on the Chk1-mediated cell cycle checkpoint arrest, indicating that HR repair is inefficient. We conclude that the C-terminal domain of Ctp1 is required for both efficient clipping and resection of DSBs by MRN and these activities are mechanistically similar.  相似文献   

9.
Transposase domain proteins mediate DNA movement from one location in the genome to another in lower organisms. However, in human cells such DNA mobility would be deleterious, and therefore the vast majority of transposase-related sequences in humans are pseudogenes. We recently isolated and characterized a SET and transposase domain protein termed Metnase that promotes DNA double-strand break (DSB) repair by non-homologous end-joining (NHEJ). Both the SET and transposase domain were required for its NHEJ activity. In this study we found that Metnase interacts with DNA Ligase IV, an important component of the classical NHEJ pathway. We investigated whether Metnase had structural requirements of the free DNA ends for NHEJ repair, and found that Metnase assists in joining all types of free DNA ends equally well. Metnase also prevents long deletions from processing of the free DNA ends, and improves the accuracy of NHEJ. Metnase levels correlate with the speed of disappearance of γ-H2Ax sites after ionizing radiation. However, Metnase has little effect on homologous recombination repair of a single DSB. Altogether, these results fit a model where Metnase plays a role in the fate of free DNA ends during NHEJ repair of DSBs.  相似文献   

10.
Telomeres protect the natural ends of chromosomes from being repaired as deleterious DNA breaks. In fission yeast, absence of Taz1 (homologue of human TRF1 and TRF2) renders telomeres vulnerable to DNA repair. During the G1 phase, when non‐homologous end joining (NHEJ) is upregulated, taz1Δ cells undergo telomere fusions with consequent loss of viability. Here, we show that disruption of the fission yeast MRN (Rad23MRE11‐Rad50‐Nbs1) complex prevents NHEJ at telomeres and, as a result, rescues taz1Δ lethality in G1. Neither Tel1ATM activation nor 5′‐end resection was required for telomere fusion. Nuclease activity of Rad32MRE11 was also dispensable for NHEJ. Mutants unable to coordinate metal ions required for nuclease activity were proficient in NHEJ repair. In contrast, Rad32MRE11 mutations that affect binding and/or positioning of DNA ends leaving the nuclease function largely unaffected also impaired NHEJ at telomeres and restored the viability of taz1Δ in G1. Consistently, MRN structural integrity but not nuclease function is also required for NHEJ of independent DNA ends in a novel split‐molecule plasmid assay. Thus, MRN acts to tether unlinked DNA ends, allowing for efficient NHEJ.  相似文献   

11.
Zhang X  Paull TT 《DNA Repair》2005,4(11):1281-1294
In Saccharomyces cerevisiae, the Mre11/Rad50/Xrs2 (MRX) complex plays important roles in both homologous and non-homologous pathways of DNA repair. In this study, we investigated the role of the MRX complex and its enzymatic functions in non-homologous repair of DNA ends containing incompatible end structures. Using a plasmid transformation assay, we found that mre11 and rad50 null strains are extremely deficient in joining of incompatible DNA ends. Expression of the nuclease-deficient Mre11 mutant H125N fully complemented the mre11 strain for joining of mismatched ends in the absence of homology, while a mutant of Rad50 deficient in ATP-dependent activities exhibited levels of end-joining similar to a rad50 deletion strain. Although the majority of non-homologous end-joining (NHEJ) products isolated did not contain microhomologies, introduction of an 8bp microhomology at mismatched ends resulted in microhomology-mediated joining in all of the products recovered, demonstrating that a microhomology exerts a dominant effect on processing events that occur during NHEJ. Nuclease-deficient Mre11p was less efficient in promoting microhomology-mediated end-joining in comparison to its ability to stimulate non-microhomology-mediated events, suggesting that Mre11p influences, but is not essential for, microhomology-mediated repair. When the linearized DNA was transformed in the presence of an intact homologous plasmid to facilitate gap repair, there was no decrease in NHEJ products obtained, suggesting that NHEJ and homologous repair do not compete for DNA ends in vivo. These results suggest that the MRX complex is essential for joining of incompatible ends by NHEJ, and the ATP-dependent activities of Rad50 are critical for this process.  相似文献   

12.
DNA double-strand break repair by non-homologous end-joining (NHEJ) is generally considered to be an imprecise repair pathway. In order to study repair of a blunt, 5' phosphorylated break in the DNA of mammalian fibroblasts, we used the E. coli cut-and-paste type transposon Tn5. We found that the Tn5 transposase can mediate transposon excision in Chinese hamster cell lines. Interestingly, a blunt 5' phosphorylated break could efficiently be repaired without loss of nucleotides in wild type fibroblasts. Catalytic subunit of DNA-dependent protein kinase (DNA-PK(CS)) deficiency reduced the efficiency of joining four-fold without reducing precision, whereas both efficiency and accuracy of joining were affected in Ku80 or XRCC4 mutant cell lines. These results show that both the DNA-PK and the XRCC4/ligase IV complexes are required for NHEJ and that other, more error-prone, repair processes cannot efficiently substitute for joining of blunt breaks produced in living cells. Interestingly, the severity of the end-joining defect differs between the various mutants, which may explain the difference in the severity of the phenotypes, which have been observed in the corresponding mouse models.  相似文献   

13.
Repair of double-strand breaks (DSBs) in chromosomal DNA by nonhomologous end-joining (NHEJ) is not well characterized in the yeast Saccharomyces cerevisiae. Here we demonstrate that several genes associated with NHEJ perform essential functions in the repair of endonuclease-induced DSBs in vivo. Galactose-induced expression of EcoRI endonuclease in rad50, mre11, or xrs2 mutants, which are deficient in plasmid DSB end-joining and some forms of recombination, resulted in G2 arrest and rapid cell killing. Endonuclease synthesis also produced moderate cell killing in sir4 strains. In contrast, EcoRI caused prolonged cell-cycle arrest of recombination-defective rad51, rad52, rad54, rad55, and rad57 mutants, but cells remained viable. Cell-cycle progression was inhibited in excision repair-defective rad1 mutants, but not in rad2 cells, indicating a role for Rad1 processing of the DSB ends. Phenotypic responses of additional mutants, including exo1, srs2, rad5, and rdh54 strains, suggest roles in recombinational repair, but not in NHEJ. Interestingly, the rapid cell killing in haploid rad50 and mre11 strains was largely eliminated in diploids, suggesting that the cohesive-ended DSBs could be efficiently repaired by homologous recombination throughout the cell cycle in the diploid mutants. These results demonstrate essential but separable roles for NHEJ pathway genes in the repair of chromosomal DSBs that are structurally similar to those occurring during cellular development.  相似文献   

14.
The multifunctional Mre11-Rad50-Nbs1 (MRN) protein complex recruits ATM/Tel1 checkpoint kinase and CtIP/Ctp1 homologous recombination (HR) repair factor to double-strand breaks (DSBs). HR repair commences with the 5'-to-3' resection of DNA ends, generating 3' single-strand DNA (ssDNA) overhangs that bind Replication Protein A (RPA) complex, followed by Rad51 recombinase. In Saccharomyces cerevisiae, the Mre11-Rad50-Xrs2 (MRX) complex is critical for DSB resection, although the enigmatic ssDNA endonuclease activity of Mre11 and the DNA-end processing factor Sae2 (CtIP/Ctp1 ortholog) are largely unnecessary unless the resection activities of Exo1 and Sgs1-Dna2 are also eliminated. Mre11 nuclease activity and Ctp1/CtIP are essential for DSB repair in Schizosaccharomyces pombe and mammals. To investigate DNA end resection in Schizo. pombe, we adapted an assay that directly measures ssDNA formation at a defined DSB. We found that Mre11 and Ctp1 are essential for the efficient initiation of resection, consistent with their equally crucial roles in DSB repair. Exo1 is largely responsible for extended resection up to 3.1 kb from a DSB, with an activity dependent on Rqh1 (Sgs1) DNA helicase having a minor role. Despite its critical function in DSB repair, Mre11 nuclease activity is not required for resection in fission yeast. However, Mre11 nuclease and Ctp1 are required to disassociate the MRN complex and the Ku70-Ku80 nonhomologous end-joining (NHEJ) complex from DSBs, which is required for efficient RPA localization. Eliminating Ku makes Mre11 nuclease activity dispensable for MRN disassociation and RPA localization, while improving repair of a one-ended DSB formed by replication fork collapse. From these data we propose that release of the MRN complex and Ku from DNA ends by Mre11 nuclease activity and Ctp1 is a critical step required to expose ssDNA for RPA localization and ensuing HR repair.  相似文献   

15.
DNA double-strand breaks (DSBs) are potentially lethal lesions repaired by two major pathways: homologous recombination (HR) and non-homologous end-joining (NHEJ). Homologous recombination preferentially reunites cognate broken ends. In contrast, non-homologous end-joining could ligate together any two ends, possibly generating dicentric or acentric fragments, leading to inviability. Here, we characterize the yeast NHEJ pathway in populations of pure G1 phase cells, where there is no possibility of repair using a homolog. We show that in G1 yeast cells, NHEJ is a highly effective repair pathway for gamma-ray induced breaks, even when many breaks are present. Pulsed-field gel analysis showed chromosome karyotypes following NHEJ repair of cells from populations with multiple breaks. The number of reciprocal translocations was surprisingly low, perhaps zero, suggesting that NHEJ preferentially re-ligates the “correct” broken ends instead of randomly-chosen ends. Although we do not know the mechanism, the preferential correct ligation is consistent with the idea that broken ends are continuously held together by protein–protein interactions or by larger scale chromatin structure.  相似文献   

16.
DNA double strand breaks (DSBs) are usually repaired through either non-homologous end-joining (NHEJ) or homologous recombination (HR). While HR is basically error-free repair, NHEJ is a mutagenic pathway that leads to deletion. NHEJ must be precisely regulated to maintain genomic integrity. To clarify the role of NHEJ, we investigated the genetic consequences of NHEJ repair of DSBs in human cells. Human lymphoblastoid cell lines TSCE5 and TSCE105 have, respectively, single and double I-SceI endonuclease sites in the endogenous thymidine kinase gene (TK) located on chromosome 17q. I-SceI expression generated DSBs at the TK gene. We used the novel transfection system (Amaxa Nucleofector) to introduce an I-SceI expression vector into the cells and randomly isolated clones. We found mutations involved in the DSBs in the TK gene in 3% of TSCE5 cells and 30% of TSCE105 cell clones. Most of the mutations in TSCE5 were small (1-30bp) deletions with a 0-4bp microhomology at the junction. The others consisted of large (>60) bp deletions, an insertion, and a rearrangement. Mutants resulting from interallelic HR also occurred, but infrequently. Most of the mutations in TSCE105, on the other hand, were deletions that encompassed the two I-SceI sites generated by NHEJ at DSBs. The sequence joint was similar to that found in TSCE5 mutants. Interestingly, some mutants formed a new I-SceI site by perfectly joining the two original I-SceI sites without deletion of the broken-ends. These results support the idea that NHEJ for repairing I-SceI-induced DSBs mainly results in small or no deletions. Thus, NHEJ must help maintain genomic integrity in mammalian cells by repairing DSBs as well as by preventing many deleterious alterations.  相似文献   

17.
The ends of chromosomal DNA double-strand breaks (DSBs) can be accurately rejoined by at least two discrete pathways, homologous recombination and nonhomologous end-joining (NHEJ). The NHEJ pathway is essential for repair of specific classes of DSB termini in cells of the budding yeast Saccharomyces cerevisiae. Endonuclease-induced DSBs retaining complementary single-stranded DNA overhangs are repaired efficiently by end-joining. In contrast, damaged DSB ends (e.g., termini produced by ionizing radiation) are poor substrates for this pathway. NHEJ repair involves the functions of at least 10 genes, including YKU70, YKU80, DNL4, LIF1, SIR2, SIR3, SIR4, RAD50, MRE11, and XRS2. Most or all of these genes are required for efficient recombination-independent recircularization of linearized plasmids and for rejoining of EcoRI endonuclease-induced chromosomal DSBs in vivo. Several NHEJ mutants also display aberrant processing and rejoining of DSBs that are generated by HO endonuclease or formed spontaneously in dicentric plasmids. In addition, all NHEJ genes except DNL4 and LIF1 are required for stabilization of telomeric repeat sequences. Each of the proteins involved in NHEJ appears to bind, directly or through protein associations, with the ends of linear DNA. Enzymatic and/or structural roles in the rejoining of DSB termini have been postulated for several proteins within the group. Most yeast NHEJ genes have homologues in human cells and many biochemical activities and protein:protein interactions have been conserved in higher eucaryotes. Similarities and differences between NHEJ repair in yeast and mammalian cells are discussed.  相似文献   

18.
Raghavan SC  Raman MJ 《DNA Repair》2004,3(10):1297-1310
Mammalian somatic cells are known to repair DNA double-strand breaks (DSBs) by nonhomologous end joining (NHEJ) and homologous recombination (HR); however, how male germ cells repair DSBs is not yet characterized. We have previously reported the highly efficient and mostly precise DSB joining ability of mouse testicular germ cell extracts for cohesive and blunt ends, with only a minor fraction undergoing terminal deletion [Mutat. Res. 433 (1999) 1]; however, the precise mechanism of joining was not established. In the present study, we therefore tested the ability of testicular extracts to join noncomplementary ends; we have also sequenced the junctions of both complementary and noncomplementary termini and established the joining mechanisms. While a major proportion of complementary and blunt ends were joined by simple ligation, the small fraction having noncleavable junctions predominantly utilized short stretches of direct repeat homology with limited end processing. For noncomplementary ends, the major mechanism was "blunt-end ligation" subsequent to "fill-in" or "blunting", with no insertions or large deletions; the microhomology-dependent joining with end deletion was less frequent. This is the first functional study of the NHEJ mechanism in mammalian male germ cell extracts. Our results demonstrate that testicular germ cell extracts promote predominantly accurate NHEJ for cohesive ends and very efficient blunt-end ligation, perhaps to preserve the genomic sequence with minimum possible alteration. Further, we demonstrate the ability of the extracts to catalyze in vitro plasmid homologous recombination, which suggests the existence of both NHEJ and HR pathways in germ cells.  相似文献   

19.
Decottignies A 《Genetics》2007,176(3):1403-1415
Two DNA repair pathways are known to mediate DNA double-strand-break (DSB) repair: homologous recombination (HR) and nonhomologous end joining (NHEJ). In addition, a nonconservative backup pathway showing extensive nucleotide loss and relying on microhomologies at repair junctions was identified in NHEJ-deficient cells from a variety of organisms and found to be involved in chromosomal translocations. Here, an extrachromosomal assay was used to characterize this microhomology-mediated end-joining (MMEJ) mechanism in fission yeast. MMEJ was found to require at least five homologous nucleotides and its efficiency was decreased by the presence of nonhomologous nucleotides either within the overlapping sequences or at DSB ends. Exo1 exonuclease and Rad22, a Rad52 homolog, were required for repair, suggesting that MMEJ is related to the single-strand-annealing (SSA) pathway of HR. In addition, MMEJ-dependent repair of DSBs with discontinuous microhomologies was strictly dependent on Pol4, a PolX DNA polymerase. Although not strictly required, Msh2 and Pms1 mismatch repair proteins affected the pattern of MMEJ repair. Strikingly, Pku70 inhibited MMEJ and increased the minimal homology length required for efficient MMEJ. Overall, this study strongly suggests that MMEJ does not define a distinct DSB repair mechanism but reflects "micro-SSA."  相似文献   

20.
One of the key pathways for DNA double-stranded break (DSB) repair is the non-homologous end-joining (NHEJ) pathway, which directly re-ligates two broken ends of DNA. Using a plasmid repair assay screen, we identified that the deletion strain for RTT109 had a reduced efficiency for NHEJ in yeast. This deletion strain also had a reduced efficiency to repair induced chromosomal DSBs in vivo. Tandem-affinity purification of Rtt109 recovered Vps75 as a physical interacting protein. Deletion of VPS75 was also shown to have an effect on the efficiency of NHEJ in both the plasmid repair and the chromosomal repair assays. In addition, deletion mutants for both RTT109 and VPS75 showed hypersensitivity to different DNA damaging agents. Our genetic interaction analysis supports a role for RTT109 in DNA damage repair. We propose that one function of the Rtt109-Vps75 interacting protein pair is to affect the efficiency of NHEJ in yeast. Vps75 but not Rtt109 also seem to have an effect on the efficiency of DSB repair using homologous recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号