首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
In this study, the combined effect of temperature (60 to 80 °C) time (10 to 15 min.) and pH (3 to 6) was employed on the anti-oxidant potential (1,1-diphenyl-2-picrylhydrazyl-radical scavenging activity-DPPH-RSA, total phenolic content-TPC, and total flavonoid content-TFC) of wild bush Indian honey from high altitudes of Kashmir Valley by using response surface methodology (RSM). The statistical analysis showed that all the process variables had a substantial effect on the responses related to DPPH-RSA, TFC, and TPC, all of which increased as temperature and time increased. With an increase in pH, the antioxidant activity of wild bush honey was significantly decreased. The heat treatment of honey at high temperature (80 °C) was found to be more efficacious than at 70 and 60 °C, respectively. The findings showed that at higher temperature, browning pigments were formed which enhanced considerably the antioxidant activity of honey.  相似文献   

2.
The volatile composition of seven honey samples collected from various regions of Algeria and feeding on different plants have been determined. The Headspace Solid‐Phase MicroExtraction (HS‐SPME) coupled with Gas Chromatography‐Mass Spectrometry (GC/MS) was used to achieve the purpose. In this work, different parameters of the HS‐SPME analytical method were investigated in order to reach maximal sensitivity, and thus to obtain maximum information about the volatile profile of Algerian honey. These parameters include saline medium, HS extraction temperature, and the nature of the fiber used. The results showed a great diversity in the chemical composition, in total 124 compounds from different chemical classes were identified, including compounds found for the first time in honey. The Ascending Hierarchical Classification (AHC) demonstrated the importance of choosing SPME extraction conditions to find volatile compounds, which could be as specific markers of the floral or geographical origin of honey, the latter was optimized in the parameter PDMS‐55 °C.  相似文献   

3.
Honey is rich in bioactive compounds, phenolic acids, and flavonoids and is an antioxidant and an immunomodulator. The objectives of this study were to determine the honey chemical composition of Indonesian stingless bees and their potential roles as an immunomodulator in the malnourished rats. Tetragonula laeviceps honey was used to analyses of chemical composition was obtained from three different geographical origins were Depok Sleman, Bayan Lombok, and Nglipar Gunungkidul. Thirty-two rats were divided into four groups of 8 rats and placed in individual cages. The experimental designed was as follows: T1 = normal rats + without honey (0–7 weeks), T2 = normal rats + with honey of 1.8 g/kg BW/day (0–7 weeks), T3 = malnourished honey of 1.8 g/kg BW/day started from 2 weeks after the malnourished condition (2–7 weeks). The results showed that the chemical composition of Tetragonula laeviceps honey from three different geographical origins were vitamin C content (6.49–13.58 mg/100 g), total phenolic content (0.65–2.30% GAE/100 g), total flavonoid content (0.28–1.00 mg QE/g), and antioxidant activity DPPH (61.43–90.28%). The application of fresh honey from stingless bee that was offered to either normal or malnourished rats were increased lymphocytes proliferation and decreased the production of both proinflammatory markers, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) from tissue culture supernatant of lymphocytes (p < 0.01). Data from this study clearly indicates the potential role of honey from stingless bee as an immunomodulator in malnourished rats.  相似文献   

4.
Alicyclobacillus acidoterrestris is a thermoacidophilic, non-pathogenic, spore-forming bacterium detected in spoiled commercial pasteurized fruit juice. Apple, white grape and tomato are particularly susceptible. A. acidoterrestris spores are resistant to lemon juice pasteurization (2 min at 82°C), and they can germinate and grow causing spoilage. This contamination is characterized by a medicinal or disinfectant smell attributed to guaiacol (o-dihydroxybenzene) production and other taint chemicals. The aim of this work was to study the influence of temperature (82, 86, 92 and 95 °C), total soluble solids (SS) (6.20, 9.8, 50 and 68°Brix) and pH (2.28, 2.45, 2.80, 3.25, 3.5) on decimal reduction time (D) of the A. acidoterrestris in clarified and non-clarified concentrated lemon juice. Once D-value was determined, the resistance of A. acidoterrestris at the assayed temperatures was confirmed. SS and pH influence spore viability, because spore resistance increases with higher SS (50°Brix 22 min 82 °C–68°Brix 28 min 82 °C) and pH values (pH 2.28, 17 min–pH 4.00, 22 min). Bacterial growth was lower in clarified lemon juice, 26 min at 82 °C, than in non-clarified lemon juice, 51 min at 82 °C. Temperature was the parameter that had the greatest influence on the D value.  相似文献   

5.
Abstract Predicting the population dynamics of insects in natural conditions is essential for their management or preservation, and temperature‐dependent development models contribute to achieving this. In this research the effects of temperature and soil moisture content on egg development and hatching of Clavipalpus ursinus (Blanchard) were evaluated. The eggs were exposed to seven temperature treatments with averages of 7.2, 13.0, 15.5, 19.7, 20.6, 22.0 and 25.3°C, in combination with three soil moisture contents of 40%, 60% and 80%. A linear and two non‐linear (Lactin and Briere) models were evaluated in order to determine the thermal requirements of this developmental stage. Temperature affected significantly the time of development and egg hatching, while no significant effect was observed for moisture content. Thermal requirements were set as: 7.2°C for lower developmental threshold, 20.6°C for optimum developmental threshold, 25.3°C for maximum temperature and 344.83 degree‐days for the thermal constant. The linear model described satisfactorily egg development at intermediate temperatures; nevertheless, a slightly better fit of the observed data was obtained with the Lactin model. Egg development took place inside a narrow range of temperatures. Consequently, an increment of soil temperature could generate a negative impact on the population size of this species or changes in its biological parameters.  相似文献   

6.
Summary Studies of urease activity in an Indian Vertisol and Alfisol using both buffer (THAM pH 9.0) and non-buffer methods for assay of the urease activity showed that activity increased with increase in temperature from 10°C to a maximum at 60°C (Vertisol) and 70°C (Alfisol). Further increase in temperature decreased urease activity which was nearly totally inhibited at 100°C. Urease activity was not detected in soil samples collected in late summer when the soil moisture content was far below — 15 bar pressure. Urease activity increased with increase in moisture content up to field capacity and remained constant with further increase in moisture content. The relevance of these findings to the ICRISAT improved management practices for Vertisols, which involve seeding of crops into dry soil just before the onset of rains is discussed. Approved as Journal Article No. 288 by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT).  相似文献   

7.
The effect of the treatment of barley straw with urea (6% of the D.M.) on its chemical composition, digestibility, degradability and nitrogen fractions was studied varying the initial straw-treatment moisture level (20%, 30% and 40%) and storage temperature (25°C and 35°C). The urea treatment fundamentally affected the NDF content of the straw, which decreased as a result of hemicellulose solubilization. The decrease in NDF was greatest when the initial temperature and moisture content of the straw were both high, under which conditions the maximum solubilization of hemicellulose (25%) occurred. In vitro digestibility and degradability also improved with the urea treatment. In this regard, the greatest improvement (up to 20 points in the case of the digestibility results) was seen when hemicellulose solubilization was maximum. The amount of nitrogen retained by the straw (after deducting the residual urea) rose under conditions of increased moisture and temperature, reaching its highest values at moisture levels of 35% and 40%, when the best urea hydrolysis also took place.  相似文献   

8.
Proline constitutes approximately 85 % of the amino acid composition of honey. Therefore, the quantitative determination of this amino acid in honey samples is used by many national/international authorities to evaluate the quality of honey types. In this study, it was aimed to achieve maximum proline amino acid extraction from honey samples whose botanical origins were confirmed by melissopalynological analysis. For this reason, based on three different spectrophotometric methods used in the literature for proline analysis, proline extraction was optimized with the Response Surface Method (RSM) and Box-Behnken experimental design. Three independent variables were determined as treatment time (2, 6, and 10 min), treatment temperature (22, 46, and 70 °C), and cooling time (5, 25, and 45 min). As a result of the optimization, it was seen that only significantly effective independent variable on the proline content of honey was the processing temperature. The optimum conditions obtained as a result of the RSM were found to be 2 min for the treatment time, 70 °C for the treatment temperature and 45 min for the cooling time. The composite desirability of the optimum conditions (R2) was found to be 1.00. It was determined that the method proposed by International Honey Commission (IHC) is efficient for proline analysis, but it provides more proline extraction by reducing of time from 10 min to 2 min in hold time in boiling water bath only during the extraction step. As a result, the conditions to be used in order to achieve maximum proline extraction with different spectrophotometric methods were determined and optimum values were determined. In addition, since the botanical origin of honey samples significantly affects the proline content of honey, it can be suggested that this study be optimized for different monofloral honey samples as well.  相似文献   

9.
Soil properties of terrestrial ecosystems are controlled by a variety of factors that operate at different scales. We tested the role of abiotic and biotic factors that potentially influence spatial gradients of total ion content, acidity, carbon, total nitrogen, and total phosphorous in topsoil. We studied a network of Mediterranean montane meadows that spans a 2000-m altitudinal gradient. The analyzed factors were grouped into two spatial scales: a landscape scale (climate and land form) and a field scale (topography, soil texture, soil moisture, and plant community composition). Total ion content and acidity are the major and independent variation trends of soil geochemistry. Soil acidity, carbon, and nitrogen increased along the altitudinal gradient whereas there was no relationship between total ion content and phosphorous and elevation. Climate had no direct influence on the analyzed gradients; all effects of climate were indirect through plant community composition and/or soil moisture. The results point to three types of models that explain the gradients of soil chemical composition: (1) a predominantly biotic control of carbon and nitrogen, (2) a predominantly abiotic control of acidity, and (3) a combined biotic and abiotic control of total ionic content. No direct or indirect effects explained the gradient of phosphorous. In our study region (central Spain), climate is predicted to turn more arid and soils will lose moisture. According to our models, this will result in less acid and fertile soils, and any change in plant community composition will modify gradients of soil carbon, nitrogen, total ion content, and acidity.  相似文献   

10.
Introduction – Green tea, a popular drink with beneficial health properties, is a rich source of specific flavanols (polyphenols). There is a special interest in the water extraction of green tea polyphenols since the composition of the corresponding extracts is expected to reflect the one of green tea infusions consumed worldwide. Objective – To develop a microwave‐assisted water extraction (MWE) of green tea polyphenols. Methodology – MWE of green tea polyphenols has been investigated as an alternative to water extraction under conventional heating (CWE). The experimental conditions were selected after consideration of both temperature and extraction time. The efficiency and selectivity of the process were determined in terms of extraction time, total phenolic content, chemical composition (HPLC‐MS analysis) and antioxidant activity of the extracts. Results – By MWE (80°C, 30 min), the flavanol content of the extract reached 97.46 (± 0.08) mg of catechin equivalent/g of green tea extract, vs. only 83.06 (± 0.08) by CWE (80°C, 45 min). In particular, the concentration of the most bioactive flavanol EGCG was 77.14 (± 0.26) mg of catechin equivalent/g of green tea extract obtained by MWE, vs 64.18 (± 0.26) mg/g by CWE. Conclusion – MWE appears more efficient than CWE at both 80 and 100°C, particularly for the extraction of flavanols and hydroxycinnamic acids. Although MWE at 100°C typically affords higher yields in total phenols, MWE at 80°C appears more convenient for the extraction of the green tea‐specific and chemically sensitive flavanols. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Growth temperature-induced compositional changes in membranes of Fusarium oxysporum provided a test system for study of the relationship between physical properties and composition. Growth at 15 °C was characterized by a decrease in phospholipid content relative to sterol content, a shift on phospholipid composition from phosphatidylcholine to phosphatidylethanolamine and a marked enhancement in the amount of polyunsaturated fatty acids in the phospholipid and triglyceride classes.Uptake of a spin labelled analog of stearic acid during growth and subsequent solution of the probe in the membranes allowed estimation of viscosity and molecular order of the membranes of live cells and of isolated membrane preparations. Less than 120 of the intracellular label was accessible to sodium ascorbate while none was released by sodium dodecyl sulfate. All of the label in live cells was reduced by in vivo respiratory activity above 20 °C but this process could be reversed or avoided by added ferricyanide. A cholestane spin probe was also incorporated into the membranes. The probes were not reduced as readily in isolated membranes and hence fluidity of the membranes could be assessed over a wide temperature range. At low temperatures (?10 °C) a nonlethal, liquid-solid phase transition was indicated in isolated membrane lipids while at higher (lethal) temperatures (40–45 °C), discontinuities appeared in Arrhenius plots of rotational correlation time. Activation energies for isotropic rotation of the stearate probes in the membranes changed markedly in this temperature range and this effect correlated closely with loss of viability of conidial cells. Correlation times for stearate probes showed little variation with growth temperature nor were any breaks in Arrhenius plots of this parameter detected in the range 0–35 °C in whole cells or isolated membranes. The data indicated control of membrane physical properties within close tolerances throughout the physiological temperature range regardless of growth temperature. It was concluded that this homeostatic phenomenon was due to the counteractive effects of sterol/phospholipid ratio, phospholipid composition and fatty acid polyunsaturation since the condensing and fluidizing components of the isolated total membranes vary in a reciprocal manner.  相似文献   

12.
Determining the temperature dependence of soil respiration is needed to test predictive models such as Arrhenius-like functions and macro-molecular rate theory (MMRT). We tested a method for rapid measurement of respiration using a temperature gradient block, cooled at one end (~2 °C) and heated at the other (~50 °C) that accommodated 44 tubes containing soil incubated at roughly 1 °C increments. Gas samples were taken after 5 h incubation and analysed for CO2. The temperature gradient block allowed rapid assessment of temperature dependence of soil respiration with the precision needed to test models and explore existing theories of how temperature and moisture interact to control biochemical processes. Temperature response curves were well fitted by MMRT and allowed calculation of the temperature at which absolute temperature sensitivity was maximal (Tinf). We measured temperature response of three soils at seven moisture contents and showed that the absolute rate and sensitivity of respiration was partly dependent on adjusted moisture content. This result implied that comparisons between soils need to be made at a common moisture content. We also measured potential changes in the temperature dependence (and sensitivity) of respiration for three different soils collected at one site throughout a year. Tinf ranged from 43 to 51 °C for the three soils. Tinf and temperature sensitivity were not dependent on soil type collected but was partly dependent on time of year of collection. Temporal changes in temperature response suggested that the microbial communities may tune their metabolisms in response to changes in soil temperatures.  相似文献   

13.
After determination of sorption isotherms of grape seeds using gravimetric method, five models with temperature effect were used to fit water sorption isotherms of grape seeds to investigate temperature effect on sorption isotherms and its thermodynamic characteristics. Halsey model had minimum mean relative percentage error (M e ) and all other models used were good in fitting experimental data (with M e of less than 10 %). Differential parameters such as net isosteric heat, isosteric heat, differential entropy and integral function such as equilibrium heat, net equilibrium heat, integral entropy and surface potential have been calculated. The net isosteric heat, isosteric heat and differential entropy decreased with moisture content. The net equilibrium enthalpy, equilibrium enthalpy and integral entropy decreased with moisture content. The surface potential at four temperatures (35, 45, 55 and 65 °C) was estimated, and low temperature effect was reported.  相似文献   

14.
The effect of moisture on the decomposition rate of cattle manure   总被引:9,自引:0,他引:9  
In an incubation study the effect of moisture content on CO2-C production from manure at 25°C was determined. Different non-linear regression models were applied to describe cumulative CO2-C evolution and a simple first-order model gave the best curve fit. Derived data from the curve fitting procedure were plotted against moisture content. A linear relationship between moisture content and microbial activity up to 50% of the water-holding capacity was followed by a curvilinear response between 50% of WHC and saturation. Equations describing the effect of moisture on dry matter decomposition are given.  相似文献   

15.
Many of the components, which render honey its specific aroma, flavor, and biological activity, are unstable over time and thermolabile. This study was aimed to compare the chemical composition, effect of heating as well as the time of heat exposure, and storage period on the quality of honey samples from Apis mellifera (A.m.) and Apis florea (A.f.). Methods of the Association of the Official Analytical Chemists (AOAC) were used in this study. The mean values for both A.m. and A.f. honeys were, respectively: moisture (18.5, 13.7%); glucose (35.2, 36.3%); fructose (33.7, 33.8%); sucrose (7.3, 2.9%); invert sugar (68.9, 70.4%); ash (0.26, 1.1%); acidity (51.8, 98.4 meq/kg); pH (3.6, 4.4) and Hydroxy methyl furfural (HMF) (3.78, 3.17 mg/100 g). Honey from A. florea contained less moisture, have higher acidity and ash contents than A. mellifera honey. Significant alterations (P < 0.05) in glucose, fructose, sucrose, and acidity were noticed after six months. Honeys exposed to heating for 15 and 30 min at 50 and 80 °C have shown increased thermo-generated HMF after 15, 30, and 45 days. HMF reached 16.30 ± 1.1 in A. mellifera and 7.41 ± 1.4 mg/100 g in A. florea honeys that exposed for 30 min at 80 °C. Honey from A. florea showed more heat tolerance to thermo-generation of HMF than honey from A. mellifera.  相似文献   

16.
Water-soluble chitosan was processed using ultrasonication, microfluidisation and homogenisation to modify its physicochemical properties. The effect of using sonicated chitosan on formation of chitosan-glucose conjugates was investigated. Untreated and sonicated chitosan conjugates were prepared under varying reaction conditions (such as ratios of reactants, pH and temperature). The conjugates formed were evaluated for colour development and antioxidant activity. For both untreated and sonicated chitosans, the reactivity was found to be higher at pH 6.0/121 °C than at pH 4.9/121 °C. The reactivity was found to be lower at 105 °C at both pH conditions than at 121 °C. This clearly demonstrated the greater reactivity at higher temperature irrespective of the reaction pH. Antioxidant activity studies indicated that the conjugates formed at 121 °C had higher activity. Although sonication of water-soluble chitosan led to slightly enhanced viscosity indicating higher reactivity, it did not improve the antioxidant activity.  相似文献   

17.
Most commercial algal extracts are produced from brown algae by alkaline hydrolysis; however, little scientific information has been published regarding the details of the production process. In this research, we have investigated the effect of pH (pH 8–12) and temperature (40, 60, and 80 °C) on liquid extract production from the brown alga Macrocystis pyrifera. Production conditions influenced the physicochemical characteristics of the final product as the extract viscosity increased with increasing pH and temperature to a maximum which occurred at pH 10 and 80 °C. This suggests that at higher pH conditions, alginate and other polysaccharides were extracted. All the extracts obtained promoted growth of tomato plants (Solanum lycopersicum) and adventitious root formation in the mung bean cutting bioassay (Vigna radiata), as the pH process was increased during the production of the liquid extracts. The highest auxin-type activity was obtained with the extract produced at pH 11 and 80 °C, while the fastest tomato seedling growth was achieved with the extract produced at pH 12 and 80 °C.  相似文献   

18.
Spore survival and moisture content are two important properties of biopesticides, and both are related to field biocontrol efficacy and storage shelf life. In this study, Paenibacillus polymyxa (HY96-2) was spray-dried on both pilot plant and production scales, and the effects of inlet and outlet temperatures on spore survival and moisture content were investigated. The results showed that inlet temperatures ranging from 170 to 230 °C (at an outlet temperature of 80 °C) had no obvious effect on the two properties during pilot scale processing, although an inlet temperature of 230 °C resulted in higher feed speed. When the outlet temperature on the pilot scale was reduced from 100 to 80 °C, no obvious variations in spore survival and moisture content were found, while a further reduction from 80 to 65 °C resulted in a decline in spore survival from 81.0 to 67.0% and an increase in moisture content from 2.3 to 31.7%. These results indicate that both outlet temperature and moisture content have an effect on spore survival. Optimum inlet and outlet temperatures for P. polymyxa processing were 230 °C and 85–90 °C on a production scale. Under these conditions, spore survival and moisture content were 83.5–86.6% and 2.73––4.12%, respectively.  相似文献   

19.
Palm kernel cake (PKC), is an agro-industrial residue created in the palm oil industry, and large quantities of PKC are produced in Malaysia. Sustainable development of the palm oil industry in Malaysia demands an economical technology for the environmentally friendly utilization of PKC in industrial utility systems. This research was carried out to evaluate the use of PKC in the production of cellulase by the cultivation of Aspergillus niger FTCC 5003 in a laboratory packed-bed bioreactor for seven days. A central composite design was used to perform eighteen trials of solid substrate fermentation under selected conditions of incubation temperature, initial moisture content of substrate, and airflow rate. Experimental results showed that a cellulase yield of 244.53 U/g of dry PKC was obtained when 100 g of PKC was hydrolyzed at an incubation temperature of 32.5°C, an initial moisture level of 60%, and an aeration rate of 1.5 L/min/g PKC. An empirical second-order polynomial model was adjusted to the experimental data to evaluate the effects of the studied operating variables on cellulase production. The statistical model revealed that the quadratic term for initial moisture content had a significant effect on the production of cellulase (P < 0.01). The regression model also indicated that the quadratic terms for incubation temperature and interaction effects between initial moisture content and aeration rate significantly influenced cellulase production (P < 0.05). The empirical model determined that the optimum conditions for cellulase production were an incubation temperature of 31.0°C, an initial moisture content of 59.0% and an airflow rate of 1.55 L/min/g PKC.  相似文献   

20.
Evaluation of selected parameters viz. initial germination percentage (IGP), soaking duration (SD), process temperature, rotation speed (rpm) and air flow rate (AFR) was performed in this research investigation for hydropriming of Pea (Pisum sativum) seeds. Three seed lots having difference in their moisture content (14.94–28.04 % d.b) and germination percentage (60–80 %) were selected in this study. Procured seed lots were subjected to variable duration of accelerated aging (40 ± 1 °C, 100 % RH) to attain necessary seed lots for experimental run. Response surface methodology (Box–Behnken design) with five factors and three-level combination was adopted, and the independent variables are germination percentage (80, 70, 60), soaking duration (45, 60, 75 min), temperature (20, 25, 30 °C), rotation speed (320, 340, 360 rpm) and air flow rate (0.411, 0.548, 0.685 m3/min). Second order polynomial equation was fitted for analyzing the experimental data and data was also subjected to analysis of variance as a part of regression analysis. Process responses which were selected to evaluate the effect of hydropriming were moisture content after hydropriming, final germination percentage, seedling length, seedling dry weight, vigor indices (VI–I and VI–II) and electrical conductivity. Regression analysis suggested that models were significant for all process responses and using numerical optimization technique, the optimal solution found was 75 % IGP, 55 min SD, 20 °C temperature, 320 rpm and 0.50 m3/min AFR. Values predicted by model were found to be at par with the results of a confirmation experiment carried out at optimum conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号