首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
p62 is a multifunctional adaptor protein implicated in various cellular processes. It has been found to regulate selective autophagy, cell survival, cell death, oxidative stress, DNA repair and inflammation, and to play a role in a number of diseases, such as tumourigenesis, Paget’s disease of bone, neurodegenerative disease, diabetes, and obesity. Cell death induction is an important cellular process. The dysregulation of cell death induction is involved in the pathogenesis of various diseases, such as cancer, neurodegeneration diseases, and diabetes. In this review, we discuss the functional role of p62 in inducing cell death in response to multiple stimuli, and we summarize the potential signaling pathways that contribute to this regulation. Given the important role of p62 in regulating cell death, p62 is considered to be a reasonable target for managing cell death dysregulation-related pathogenic conditions. A better understanding of the role of p62 and its related mechanisms in regulating cell death is necessary for the more precise utilization of p62 as a target for treating relevant diseases.  相似文献   

2.
3.
Oxidative stress, perturbations in the cellular thiol level and redox balance, affects many cellular functions, including signaling pathways. This, in turn, may cause the induction of autophagy or apoptosis. The NRF2/KEAP1 signaling pathway is the main pathway responsible for cell defense against oxidative stress and maintaining the cellular redox balance at physiological levels. The relation between NRF2/KEAP1 signaling and regulation of apoptosis and autophagy is not well understood. In this hypothesis article we discuss how KEAP1 protein and its direct interactants (such as PGAM5, prothymosin α, FAC1 (BPTF), and p62) provide a molecular foundation for a possible cross-talk between NRF2/KEAP1, apoptosis, and autophagy pathways. We present a hypothesis for how NRF2/KEAP1 may interfere with the cellular apoptosis-regulatory machinery through activation of the ASK1 kinase by a KEAP1 binding partner-PGAM5. Based on very recent experimental evidence, new hypotheses for a cross-talk between NF-κB and the NRF2/KEAP1 pathway in the context of autophagy-related "molecular hub" protein p62 are also presented. The roles of KEAP1 molecular binding partners in apoptosis regulation during carcinogenesis and in neurodegenerative diseases are also discussed.  相似文献   

4.
《Autophagy》2013,9(12):2381-2382
Selective ubiquitin-dependent autophagy mediates the disposal of superfluous cellular structures and clears cells of protein aggregates such as polyQ proteins linked to Huntington disease. Crucial selectivity factors of this pathway are ubiquitin-Atg8 receptors such as human SQSTM1/p62, which recognize ubiquitinated cargoes and deliver them to phagophores for degradation. Contrasting previous beliefs, we recently showed that ubiquitin-dependent autophagy is not restricted to higher eukaryotes but also exists in yeast with Cue5, harboring a ubiquitin-binding CUE domain, being a ubiquitin-Atg8 receptor. Notably, the human CUE domain protein TOLLIP is functionally similar to yeast Cue5, indicating that Cue5/TOLLIP (CUET) proteins represent a new and conserved class of autophagy receptors. Remarkably, both Cue5 in yeast and TOLLIP in human cells mediate efficient clearance of aggregation-prone polyQ proteins derived from human HTT/huntingtin. Indeed, TOLLIP is potentially more potent in polyQ clearance than SQSTM1/p62 in HeLa cells, suggesting that TOLLIP, also implicated in innate immunity, may be significant for human health and disease.  相似文献   

5.
Selective ubiquitin-dependent autophagy mediates the disposal of superfluous cellular structures and clears cells of protein aggregates such as polyQ proteins linked to Huntington disease. Crucial selectivity factors of this pathway are ubiquitin-Atg8 receptors such as human SQSTM1/p62, which recognize ubiquitinated cargoes and deliver them to phagophores for degradation. Contrasting previous beliefs, we recently showed that ubiquitin-dependent autophagy is not restricted to higher eukaryotes but also exists in yeast with Cue5, harboring a ubiquitin-binding CUE domain, being a ubiquitin-Atg8 receptor. Notably, the human CUE domain protein TOLLIP is functionally similar to yeast Cue5, indicating that Cue5/TOLLIP (CUET) proteins represent a new and conserved class of autophagy receptors. Remarkably, both Cue5 in yeast and TOLLIP in human cells mediate efficient clearance of aggregation-prone polyQ proteins derived from human HTT/huntingtin. Indeed, TOLLIP is potentially more potent in polyQ clearance than SQSTM1/p62 in HeLa cells, suggesting that TOLLIP, also implicated in innate immunity, may be significant for human health and disease.  相似文献   

6.
A growing body of epidemiologic and experimental data point to chronic bacterial and viral infections as possible risk factors for neurodegenerative diseases, including Alzheimer??s disease, Parkinson??s disease and amyotrophic lateral sclerosis. Infections of the central nervous system, especially those characterized by a chronic progressive course, may produce multiple damage in infected and neighbouring cells. The activation of inflammatory processes and host immune responses cause chronic damage resulting in alterations of neuronal function and viability, but different pathogens can also directly trigger neurotoxic pathways. Indeed, viral and microbial agents have been reported to produce molecular hallmarks of neurodegeneration, such as the production and deposit of misfolded protein aggregates, oxidative stress, deficient autophagic processes, synaptopathies and neuronal death. These effects may act in synergy with other recognized risk factors, such as aging, concomitant metabolic diseases and the host??s specific genetic signature. This review will focus on the contribution given to neurodegeneration by herpes simplex type-1, human immunodeficiency and influenza viruses, and by Chlamydia pneumoniae.  相似文献   

7.
螯合体1(SQSTM1/p62)是一种选择性自噬接头蛋白,在清除待降解蛋白、维持细胞内蛋白质稳态中发挥重要的调控作用。p62蛋白具有多个功能结构域,介导与多种蛋白质发生相互作用进而精确调节特定的信号通路,从而将p62蛋白与氧化防御系统、炎症反应和营养感知等重要生命过程联系起来。研究表明p62的突变或者表达异常与多种疾病的发生发展过程密切相关,包括神经退行性疾病、肿瘤、感染性疾病、遗传性疾病以及慢性疾病等。本文综述了p62蛋白的结构特征、分子功能,并系统介绍其在蛋白质稳态和信号通路调控中的多种功能,总结了p62在疾病发生发展中的复杂性与多面性,以期为p62蛋白的功能与相关疾病研究提供参考。  相似文献   

8.
The mammalian family of mitogen-activated protein kinases (MAPKs) includes extracellular signal-regulated kinase (ERK), p38, and c-Jun NH2-terminal kinase (JNK), with each MAPK signaling pathway consisting of at least three components, a MAPK kinase kinase (MAP3K), a MAPK kinase (MAP2K), and a MAPK. The MAPK pathways are activated by diverse extracellular and intracellular stimuli including peptide growth factors, cytokines, hormones, and various cellular stressors such as oxidative stress and endoplasmic reticulum stress. These signaling pathways regulate a variety of cellular activities including proliferation, differentiation, survival, and death. Deviation from the strict control of MAPK signaling pathways has been implicated in the development of many human diseases including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and various types of cancers. Persistent activation of the JNK or p38 signaling pathways has been suggested to mediate neuronal apoptosis in AD, PD, and ALS, whereas the ERK signaling pathway plays a key role in several steps of tumorigenesis including cancer cell proliferation, migration, and invasion. In this review, we summarize recent findings on the roles of MAPK signaling pathways in human disorders, focusing on cancer and neurodegenerative diseases including AD, PD, and ALS.  相似文献   

9.
Suppression of macroautophagy, due to mutations or through processes linked to aging, results in the accumulation of cytoplasmic substrates that are normally eliminated by the pathway. This is a significant problem in long-lived cells like neurons, where pathway defects can result in the accumulation of aggregates containing ubiquitinated proteins. The p62/Ref(2)P family of proteins is involved in the autophagic clearance of cytoplasmic protein bodies or sequestosomes. These unique structures are closely associated with protein inclusions containing ubiquitin as well as key components of the autophagy pathway. In this study we show that detergent fractionation followed by western blot analysis of insoluble ubiquitinated proteins (IUP), mammalian p62 and its Drosophila homologue, Ref(2)P can be used to quantitatively assess the activity level of aggregate clearance (aggrephagy) in complex tissues. Using this technique we show that genetic or age-dependent changes that modify the long-term enhancement or suppression of aggrephagy can be identified. Moreover, using the Drosophila model system this method can be used to establish autophagy-dependent protein clearance profiles that are occurring under a wide range of physiological conditions including developmental, fasting and altered metabolic pathways. This technique can also be used to examine proteopathies that are associated with human disorders such as frontotemporal dementia, Huntington and Alzheimer disease. Our findings indicate that measuring IUP profiles together with an assessment of p62/Ref(2)P proteins can be used as a screening or diagnostic tool to characterize genetic and age-dependent factors that alter the long-term function of autophagy and the clearance of protein aggregates occurring within complex tissues and cells.  相似文献   

10.
《Autophagy》2013,9(6):572-583
Suppression of macroautophagy, due to mutations or through processes linked to aging, results in the accumulation of cytoplasmic substrates that are normally eliminated by the pathway. This is a significant problem in long-lived cells like neurons, where pathway defects can result in the accumulation of aggregates containing ubiquitinated proteins. The p62/Ref(2)P family of proteins is involved in the autophagic clearance of cytoplasmic protein bodies or sequestosomes. These unique structures are closely associated with protein inclusions containing ubiquitin as well as key components of the autophagy pathway. In this study we show that detergent fractionation followed by western blot analysis of insoluble ubiquitinated proteins (IUP), mammalian p62 and its Drosophila homologue, Ref(2)P can be used to quantitatively assess the activity level of aggregate clearance (aggrephagy) in complex tissues. Using this technique we show that genetic or age-dependent changes that modify the long-term enhancement or suppression of aggrephagy can be identified. Moreover, using the Drosophila model system this method can be used to establish autophagy-dependent protein clearance profiles that are occurring under a wide range of physiological conditions including developmental, fasting and altered metabolic pathways. This technique can also be used to examine proteopathies that are associated with human disorders such as frontotemporal dementia, Huntington and Alzheimer disease. Our findings indicate that measuring IUP profiles together with an assessment of p62/Ref(2)P proteins can be used as a screening or diagnostic tool to characterize genetic and age-dependent factors that alter the long-term function of autophagy and the clearance of protein aggregates occurring within complex tissues and cells.  相似文献   

11.
Alzheimer??s disease (AD) poses a huge challenge for society and health care worldwide as molecular pathogenesis of the disease is poorly understood and curative treatment does not exist. The mechanisms leading to accelerated neuronal cell death in AD are still largely unknown, but accumulation of misfolded disease-specific proteins has been identified as potentially involved. In the present review, we describe the essential role of endoplasmic reticulum (ER) in AD. Despite the function that mitochondria may play as the central major player in the apoptotic process, accumulating evidence highlights ER as a critical organelle in AD. Stress that impairs ER physiology leads to accumulation of unfolded or misfolded proteins, such as amyloid ?? (A??) peptide, the major component of amyloid plaques. In an attempt to ameliorate the accumulation of unfolded proteins, ER stress triggers a protective cellular mechanism, which includes the unfolded protein response (UPR). However, when activation of the UPR is severe or prolonged enough, the final cellular outcome is pathologic apoptotic cell death. Distinct pathways can be activated in this process, involving stress sensors such as the JNK pathway or ER chaperones such as Bip/GRP94, stress modulators such as Bcl-2 family proteins, or even stress effectors such as caspase-12. Here, we detail the involvement of the ER and associated stress pathways in AD and discuss potential therapeutic strategies targeting ER stress.  相似文献   

12.
13.
Most neurodegenerative diseases show a disruption of autophagic function and display abnormal accumulation of toxic protein aggregates that promotes cellular stress and death. Therefore, induction of autophagy has been proposed as a reasonable strategy to help neurons clear abnormal protein aggregates and survive. The kinase mammalian target of rapamycin (mTOR) is a major regulator of the autophagic process and is regulated by starvation, growth factors, and cellular stressors. The phosphoinositide 3-kinase (PI3K)/ protein kinase B (Akt) pathway, which promotes cellular survival, is the main modulator upstream of mTOR, and alterations in this pathway are common in neurodegenerative diseases, e.g. Alzheimer’s disease (AD) and Parkinson’s disease (PD). In the present work we revised mammalian target of rapamycin complex 1 (mTORC1) pathway and mTORC2 as a complementary an important element in mTORC1 signaling. In addition, we revised the extracellular signal regulated kinase (ERK) pathway, which has become relevant in the regulation of the autophagic process and cellular survival through mTORC2 signaling. Finally, we summarize novel compounds that promote autophagy and neuronal protection in the last five years.  相似文献   

14.
《Autophagy》2013,9(5):614-621
The accumulation of ubiquitin-positive protein aggregates has been implicated in the pathogenesis of neurodegenerative diseases, heart disease and diabetes. Emerging evidence indicates that the autophagy lysosomal pathway plays a critical role in the clearance of ubiquitin aggregates, a process that is mediated by the ubiquitin binding protein p62. In addition to binding ubiquitin, p62 also interacts with LC3 and transports ubiquitin conjugates to autophagosomes for degradation. The exact regulatory mechanism of this process is still largely unknown. Here we report the identification of Keap1 as a binding partner for p62 and LC3. Keap1 inhibits Nrf2 by sequestering it in the cytosol and preventing its translocation to the nucleus and activation of genes involved in the oxidative stress response. In this study, we found that Keap1 interacts with p62 and LC3 in a stress-inducible manner, and that Keap1 colocalizes with LC3 and p62 in puromycin-induced ubiquitin aggregates. Moreover, p62 serves as a bridge between Keap1 and ubiquitin aggregates and autophagosomes. Finally, genetic ablation of Keap1 leads to the accumulation of ubiquitin aggregates, increased cytotoxicity of misfolded protein aggregates, and defective activation of autophagy. Therefore, this study assigns a novel positive role of Keap1 in upregulating p62-mediated autophagic clearance of ubiquitin aggregates.  相似文献   

15.
《Autophagy》2013,9(7):795-798
There is a reciprocal change in the expression of two members of the BAG (Bcl-2-associated athanogen) family, BAG1 and BAG3, during cellular aging and under acute stress (“BAG1-BAG3-switch”). BAG3 was recently described as a mediator of a novel macroautophagy pathway that uses the specificity of heat shock protein 70 (HSP70) to misfolded proteins and also involves other protein partners, such as HSPB8. Also crucial for induction and execution of autophagy are sequestosome-1/p62 (SQSTM1/p62) and LC3, an autophagosome-associated protein. In this novel pathway, BAG3 mediates the targeting and transport of degradation-prone substrates into aggresomes via the microtubule-motor dynein. Interestingly, aggresome-targeting by BAG3 does not depend on substrate ubiquitination and is, therefore, involved in the clearance of misfolded proteins that are not ubiquitinated.  相似文献   

16.
Behl C 《Autophagy》2011,7(7):795-798
There is a reciprocal change in the expression of two members of the BAG (Bcl-2-associated athanogen) family, BAG1 and BAG3, during cellular aging and under acute stress ("BAG1-BAG3-switch"). BAG3 was recently described as a mediator of a novel macroautophagy pathway that uses the specificity of heat shock protein 70 (HSP70) to misfolded proteins and also involves other protein partners, such as HSPB8. Also crucial for induction and execution of autophagy are sequestosome-1/p62 (SQSTM1/p62) and LC3, an autophagosome-associated protein. In this novel pathway, BAG3 mediates the targeting and transport of degradation-prone substrates into aggresomes via the microtubule-motor dynein. Interestingly, aggresome-targeting by BAG3 does not depend on substrate ubiquitination and is, therefore, involved in the clearance of misfolded proteins that are not ubiquitinated.  相似文献   

17.
Oligomer formation and accumulation of pathogenic proteins are key events in the pathomechanisms of many neurodegenerative diseases, such as Alzheimer disease, ALS, and the polyglutamine (polyQ) diseases. The autophagy-lysosome degradation system may have therapeutic potential against these diseases because it can degrade even large oligomers. Although p62/sequestosome 1 plays a physiological role in selective autophagy of ubiquitinated proteins, whether p62 recognizes and degrades pathogenic proteins in neurodegenerative diseases has remained unclear. In this study, to elucidate the role of p62 in such pathogenic conditions in vivo, we used Drosophila models of neurodegenerative diseases. We found that p62 predominantly co-localizes with cytoplasmic polyQ protein aggregates in the MJDtr-Q78 polyQ disease model flies. Loss of p62 function resulted in significant exacerbation of eye degeneration in these flies. Immunohistochemical analyses revealed enhanced accumulation of cytoplasmic aggregates by p62 knockdown in the MJDtr-Q78 flies, similarly to knockdown of autophagy-related genes (Atgs). Knockdown of both p62 and Atgs did not show any additive effects in the MJDtr-Q78 flies, implying that p62 function is mediated by autophagy. Biochemical analyses showed that loss of p62 function delays the degradation of the MJDtr-Q78 protein, especially its oligomeric species. We also found that loss of p62 function exacerbates eye degeneration in another polyQ disease fly model as well as in ALS model flies. We therefore conclude that p62 plays a protective role against polyQ-induced neurodegeneration, by the autophagic degradation of polyQ protein oligomers in vivo, indicating its therapeutic potential for the polyQ diseases and possibly for other neurodegenerative diseases.  相似文献   

18.
19.
From Mallory to Mallory-Denk bodies: what, how and why?   总被引:3,自引:0,他引:3  
Frank B. Mallory described cytoplasmic hyaline inclusions in hepatocytes of patients with alcoholic hepatitis in 1911. These inclusions became known as Mallory bodies (MBs) and have since been associated with a variety of other liver diseases including non-alcoholic fatty liver disease. Helmut Denk and colleagues described the first animal model of MBs in 1975 that involves feeding mice griseofulvin. Since then, mouse models have been instrumental in helping understand the pathogenesis of MBs. Given the tremendous contributions made by Denk to the field, we propose renaming MBs as Mallory-Denk bodies (MDBs). The major constituents of MDBs include keratins 8 and 18 (K8/18), ubiquitin, and p62. The relevant proteins and cellular processes that contribute to MDB formation and accumulation include the type of chronic stress, the extent of stress-induced protein misfolding and consequent proteasome overload, a K8-greater-than-K18 ratio, transamidation of K8 and other proteins, presence of p62 and autophagy. Although it remains unclear whether MDBs serve a bystander, protective or injury promoting function, they do serve an important role as histological and potential progression markers in several liver diseases.  相似文献   

20.
Sequestosome 1/p62 is a signal modulator or adaptor protein involved in receptor-mediated signal transduction. Sequestosome 1/p62 is gaining attention as it is involved in several diseases including Parkinson disease, Alzheimer disease, liver and breast cancer, Paget's disease of bone, obesity and insulin resistance. In this review, we will focus on the most recent advances on the physiological function of p62 relevant to human diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号