首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The inactivated poliovirus vaccine (IPV) is used for protection against poliomyelitis in The Netherlands. It is not clear, however, whether IPV vaccination can lead to priming of the mucosal immune system and the induction of IgA. It has been demonstrated that IPV vaccination is able to induce strong memory IgA responses in the serum of persons who have been naturally exposed to wild-type poliovirus. This has led to the hypothesis that IPV vaccination is able to induce poliovirus-specific IgA at mucosal sites in persons who have been previously primed with live poliovirus at mucosal sites. To test this hypothesis, the kinetics of the IgA response in serum and saliva after IPV vaccination were examined in persons previously vaccinated with oral poliovirus vaccine (OPV) or IPV. ELISA and enzyme-linked immunospot assays were used for the detection of poliovirus-specific IgA responses. In addition, B cell populations were separated on the basis of the expression of mucosal (alpha4beta7 integrin) and peripheral homing receptors (L-selectin). Parenteral IPV vaccination was able to boost systemic and mucosal IgA responses in previously OPV-vaccinated persons only. None of the previously vaccinated IPV recipients responded with the production of IgA in saliva. In agreement with this finding, a large percentage of the poliovirus-specific IgA-producing lymphocytes detected in previous OPV recipients expressed the alpha4beta7 integrin. It is concluded that IPV vaccination alone is insufficient to induce a mucosal IgA response against poliovirus. In mucosally (OPV-) primed individuals, however, booster vaccination with IPV leads to a strong mucosal IgA response.  相似文献   

3.
Recovery from live influenza virus infection is known to induce heterosubtypic immunity. In contrast, immunity induced by inactivated vaccines is predominantly subtype specific. In this study, we investigated the heterosubtypic protective immunity induced by inactivated influenza virus. Intranasal immunization of mice with inactivated influenza virus A/PR8 (H1N1) provided complete protection against the homologous virus and a drift virus within the same subtype, A/WSN (H1N1), but not against the heterosubtypic virus A/Philippines (H3N2). However, coadministration of inactivated virus with cholera toxin as an adjuvant conferred complete heterosubtypic protection, without observed illness, even under conditions of CD4+ or CD8+ T-cell depletion. Analysis of immune correlates prior to challenge and postchallenge indicated that humoral immune responses with cross-neutralizing activity in lungs and in sera play a major role in conferring protective immunity against heterosubtypic challenge. This study has significant implications for developing broadly cross-reactive vaccines against newly emerging pathogenic influenza viruses.  相似文献   

4.

Background

Many pathogens initiate infection at the mucosal surfaces; therefore, induction of mucosal immune responses is a first level of defense against infection and is the most powerful means of protection. Although intramuscular injection is widely used for vaccination and is effective at inducing circulating antibodies, it is less effective at inducing mucosal antibodies.

Methodology/Principal Findings

Here we report a novel recombinant, attenuated Sendai virus vector (GP42-H1) in which the hemagglutinin (HA) gene of influenza A virus was introduced into the Sendai virus genome as an additional gene. Infection of CV-1 cells by GP42-H1 resulted in cell surface expression of the HA protein. Intranasal immunization of mice with 1,000 plaque forming units (pfu) of GP42-H1 induced HA-specific IgG and IgA antibodies in the blood, brochoalveolar lavage fluid, fecal pellet extracts and saliva. The HA-specific antibody titer induced by GP42-H1 closely resembles the titer induced by sublethal infection by live influenza virus; however, in contrast to infection by influenza virus, immunization with GP42-H1 did not result in disease symptoms or the loss of body weight. In mice that were immunized with GP42-H1 and then challenged with 5LD50 (1250 pfu) of influenza virus, no significant weight loss was observed and other visual signs of morbidity were not detected.

Conclusions

These results demonstrate that the GP42-H1 Sendai virus recombinant is able to confer full protection from lethal infection by influenza virus, supporting the conclusion that it is a safe and effective mucosal vaccine vector.  相似文献   

5.
The ever increasing number of people infected by human immunodeficiency virus (HIV) throughout the world renders the development of effective vaccines an urgent priority. Herein, we report on an attempt to induce and enhance antiviral responses using a deoxyribonucleic acid (DNA) prime/virus-like particles (VLP) protein boost strategy adjuvanted with interleukin (IL)-12/GM-CSF in rhesus macaques challenged with simian immunodeficiency virus (SIV). Thus, groups of monkeys were administered three consecutive doses of pVecB7 a plasmid expressing VLP with or without plasmids expressing IL-12 and GM-CSF at weeks 0, 13 and 26. The VLP boost was administered at week 39 with or without IL-12. All monkeys were challenged intrarectally with SIVsmE660 2 months following the protein boost. All except one immunized monkey became infected. While all immunized monkeys showed a marked reduction of acute viral peaks, reduction of viral load set points was only achieved in groups whose prime-boost immunizations were supplemented with IL-12/GM-CSF (prime) and/or with IL-12 (boost). Control of viremia correlated with lack of disease progression and survival. Detection of virus in rectal washes at 1 year post-challenge was only successful in monkeys whose immunizations did not include cytokine adjuvant, but these loads did not correlate with plasma viral loads. In summary, use of IL-12 and/or GM-CSF was shown to provide significant differences in the outcome of SIV challenge of prime/boost immunized monkeys.  相似文献   

6.
Huang Y  Kong WP  Nabel GJ 《Journal of virology》2001,75(10):4947-4951
Immunity to human immunodeficiency virus virion-like structures or a polyprotein has been examined after DNA immunization with Rev-independent expression vectors. A Gag-Pol fusion protein stimulated cytotoxic T lymphocyte and antibody responses to Gag and Pol, while a Gag-Pol pseudoparticle did not elicit substantial Pol responses. This fusion protein may be useful for AIDS vaccines.  相似文献   

7.
The present study investigates the role of APC in inducing tumor-specific in vivo protective immunity. Thy-1+ cell-depleted, Mac-1+ cell-enriched fraction of normal BALB/c spleen cells were used as a source of APC. These APC were cultured in vitro with the membrane fraction isolated from CSA1M fibrosarcoma derived from BALB/c strain. The administration of such APC into naive BALB/c mice generated the capacity of these animals to reject the subsequently challenged viable CSA1M tumor cells. Although the induction of anti-CSA1M in vivo protective immunity required three consecutive immunizations with more than 10(5) APC which had been pulsed in vitro with 200 to 300 micrograms protein of CSA1M membrane fraction, the immunity was induced irrespective of whether APC were administered via s.c., i.v., or i.p. route. This immunity was tumor-specific, inasmuch as the inoculation of CSA1M or Meth A fibrosarcoma membrane component-pulsed APC resulted in the selective immunity against the challenge with homologous types of tumor cells. The CSA1M-specific in vivo protective immunity was also induced by injecting APC pulsed with solubilized CSA1M membrane components. Moreover, it was demonstrated that the efficiency for inducing anti-CSA1M immunity was much higher in the utilization of tumor Ag-pulsed APC than in the immunization with tumor Ag emulsified in CFA. These results indicate the critical role of APC in generating tumor rejection immunity in vivo and this model presents a novel approach to induce tumor-specific immunity without using tumor cells themselves.  相似文献   

8.
Cellular and humoral immune responses induced following murine Chlamydia trachomatis infection confer almost sterile protection against homologous reinfection. On the other hand, immunization with inactivated organism induces little protective immunity in this model system. The underlying mechanism(s) that determines such divergent outcome remains unclear, but elucidating the mechanism will probably be important for chlamydial vaccine development. One of the distinct differences between the two forms of immunization is that chlamydia replication in epithelial cells causes the secretion of a variety of proinflammatory cytokines and chemokines, such as GM-CSF, that may mobilize and mature dendritic cells and thereby enhance the induction of protective immunity. Using a murine model of C. trachomatis mouse pneumonitis lung infection and intrapulmonary adenoviral GM-CSF transfection, we demonstrate that the expression of GM-CSF in the airway compartment significantly enhanced systemic Th1 cellular and local IgA immune responses following immunization with inactivated organisms. Importantly, immunized mice had significantly reduced growth of chlamydia and exhibited less severe pulmonary inflammation following challenge infection. The site of GM-CSF transfection proved important, since mice immunized with inactivated organisms after GM-CSF gene transfer by the i.p. route exhibited little protection against pulmonary challenge, although i.p. immunization generated significant levels of systemic Th1 immune responses. The obvious difference between i.p. and intrapulmonary immunization was the absence of lung IgA responses following i.p. vaccination. In aggregate, the findings demonstrate that the local cytokine environment is critical to the induction of protective immunity following chlamydial vaccination and that GM-CSF may be a useful adjuvant for a chlamydial vaccine.  相似文献   

9.
Mice immunized through different routes such as i.m., intradermally, or intratracheally with a DNA vaccine to rabies virus developed high titers of serum Ab but only borderline levels of mucosal Abs determined from vaginal secretions. DNA vaccines given by either route enhanced vaginal IgA and IgG2a secretion upon a subsequent intranasal booster immunization with an E1-deleted adenoviral recombinant expressing the same Ag of rabies virus. DNA vaccine priming reduced the Ab response to the adenoviral Ags and counterbalanced the impaired B cell response to the rabies virus Ag expressed by the adenoviral recombinant in mice preimmune to adenovirus. The vaginal B cell response could further be enhanced by using the Th2-type cytokines IL-4 or IL-5 as genetic adjuvants concomitantly with the DNA vaccine before intranasal booster immunization with the recombinant vaccine.  相似文献   

10.
Vaccination by a mucosal route is an excellent approach to the control of mucosally acquired infections. Several reports on rodents suggest that DNA vaccines can be used to achieve mucosal immunity when applied to mucosal tissues. However, with the exception of one study with pigs and another with horses, there is no information on mucosal DNA immunization of the natural host. In this study, the potential of inducing mucosal immunity in cattle by immunization with a DNA vaccine was demonstrated. Cattle were immunized with a plasmid encoding bovine herpesvirus 1 (BHV-1) glycoprotein B, which was delivered with a gene gun either intradermally or intravulvomucosally. Intravulvomucosal DNA immunization induced strong cellular immune responses and primed humoral immune responses. This was evident after BHV-1 challenge when high levels of both immunoglobulin G (IgG) and IgA were detected. Intradermal delivery resulted in lower levels of immunity than mucosal immunization. To determine whether the differences between the immune responses induced by intravulvomucosal and intradermal immunizations might be due to the efficacy of antigen presentation, the distributions of antigen and Langerhans cells in the skin and mucosa were compared. After intravulvomucosal delivery, antigen was expressed early and throughout the mucosa, but after intradermal administration, antigen expression occurred later and superficially in the skin. Furthermore, Langerhans cells were widely distributed in the mucosal epithelium but found primarily in the basal layers of the epidermis of the skin. Collectively, these observations may account for the stronger immune response induced by mucosal administration.  相似文献   

11.
Induction of antitumor immunity by indomethacin   总被引:4,自引:0,他引:4  
Irradiated tumor cells given, together with indomethacin, to syngeneic mice induced an antitumor response and conferred protection against a challenge of a lethal dose of murine mammary (4T1) and lung (3LL) carcinoma cells. Continuous administration of indomethacin was crucial throughout the entire period of immunization and challenge, as no protection was achieved when the drug was given during only one of these procedures. Antitumor immunity was long-lasting and, when tested in the 4T1 model, 48% of mice were resistant to a second challenge of lethal tumor cells. Tumor-free immune mice that were given indomethacin for more than 300 days remained healthy with normal white blood cell counts and normal spleen size. Cells isolated from immune mice were able to kill tumor cells in culture after in vitro activation by interleukin-2, in a manner similar to cells from naive normal control mice. In addition, the mitogenic response of their T cells was as high as that of the control naive mice. While indomethacin was able to induce antitumor immunity to 4T1 and 3LL murine carcinoma cells, both of which contain a high concentration of endogenic prostaglandin E2 (PGE2), no such immunity was achieved to murine tumor cells with a low concentration of endogenic PGE2. These results suggest a correlation between PGE2 concentration and the ability of indomethacin to induce antitumor immunity. We therefore suggest that an immunotherapy protocol with long-term dispensation of a tolerable dose of an immunomodulator, given together with irradiated autologous tumor cells, may stimulate antitumor responses to tumors containing high concentrations of endogenic PGE2. Received: 12 August 1999 / Accepted: 21 September 1999  相似文献   

12.
The gastrointestinal tract carries out the complex process of localizing the polymicrobial populations of the indigenous microbiota to the lumenal side of the GI mucosa while absorbing nutrients from the lumen and preventing damage to the mucosa. This process is accomplished through a combination of physical, innate and adaptive host defences and a 'strategic alliance' with members of the microbiota. To cope with the constant exposure to a diverse microbial community, the GI tract, through the actions of a number of specialized cells in the epithelium and lamina propria, has layers of humoral, physical and cellular defences that limit attachment, invasion and dissemination of the indigenous microbiota. However, the role of the microbiota in this dynamic balance is vital and serves as another level of 'innate' defence. We are just beginning to understand how bacterial metabolites aid in the control of potential pathogens within the microbiota and limit inflammatory responses to the microbiota, concepts that will impact our understanding of the biological effects of antibiotics, diet and probiotics on mucosal inflammatory responses.  相似文献   

13.
Intratracheal immunization of mice with inactivated influenza B virus and delipidated Bacillus firmus as adjuvant increases protection of mice against infection with the homologous virus strain and induces cross-protection: mice immunized by influenza virus B/Yamanashi 166/98 were protected even against phylogenetically distant virus drift variant B/Lee/40 lethal for mice.  相似文献   

14.
CTL are important in combating cancer and viruses. Therefore, triggering the complete potential of CTL effector functions by new vaccination strategies will not only improve prophylaxis of tumor or virus-related diseases, but also open opportunities for effective therapeutic immunizations. Using transcutaneous immunization, we show that epicutaneous (e.c.)(4) application of an ointment containing a CTL epitope and the TLR7 ligand imiquimod is highly effective in activating T cells in mice using TCR-transgenic CTL or in wild-type mice. Transcutaneous immunization-activated CTL mount a full-blown immune response against the target epitope characterized by proliferation, cytolytic activity, and the production of IFN-gamma that is completely restricted to the epitope used for vaccination. Our results obtained by simple e.c. application of an ointment, without further skin irritating procedures, provide the basis for the development of new, easy to use vaccines against cancer or virus-associated diseases.  相似文献   

15.
Dendritic cells can be considered natural adjuvants and are able to act as cellular vaccines to protect against disease. Adoptive transfer of Ag-pulsed bone marrow-derived dendritic cells (BMDCs) enhanced expulsion of the intestinal nematode, Trichinella spiralis, from the small intestine. IL 9 is a critical cytokine in protective immunity to intestinal nematode infection and is believed to enhance Th2 immune responses. Deriving dendritic cells from an IL-9 transgenic (IL-9t) mouse has enabled a detailed investigation of the importance of IL-9 during Ag presentation. Indeed, IL-9t dendritic cells significantly enhanced T cell proliferation and Th2 responses and, after adoptive transfer, enhanced parasite-specific IgG1 and intestinal mastocytosis in vivo, leading to accelerated expulsion of adult worms from the intestine. Overall, this paper demonstrates that dendritic cell vaccination can be used to successfully protect the host against intestinal nematode infection and suggests that IL-9 can act as a potent type 2 adjuvant during Ag presentation and the early stages of Th2 activation.  相似文献   

16.
Zhang H  Fayad R  Wang X  Quinn D  Qiao L 《Journal of virology》2004,78(19):10249-10257
Mucosal surfaces are the primary portals for human immunodeficiency virus (HIV) transmission. Because systemic immunization, in general, does not induce effective mucosal immune responses, a mucosal HIV vaccine is urgently needed. For this study, we developed papillomavirus pseudoviruses that express HIV-1 Gag. The pseudoviruses are synthetic, nonreplicating viruses, yet they can produce antigens for a long time in the immune system. Here we show that oral immunization of mice by the use of papillomavirus pseudoviruses encoding Gag generated mucosal and systemic Gag-specific cytotoxic T lymphocytes that effectively lysed Gag-expressing target cells. Furthermore, the pseudoviruses generated Gag-specific gamma interferon-producing T cells and serum immunoglobulin G (IgG) and mucosal IgA. In contrast, oral immunization with plasmid DNA encoding HIV-1 Gag did not induce specific immune responses. Importantly, oral immunization with the pseudoviruses induced Gag-specific memory cytotoxic T lymphocytes and protected mice against a rectal mucosal challenge with a recombinant vaccinia virus expressing HIV-1 Gag. Thus, papillomavirus pseudoviruses encoding Gag are a promising mucosal vaccine against AIDS.  相似文献   

17.
Summary Immunopotentiation by cytostatic drugs continuously released from osmotic minipumps, was investigated in a guinea-pig contact-sensitivity model. These pumps are designed to release their content within a period of 7 days. Vepesid (VP-16) and 5-fluorouracil were released into oxazolone-stimulated lymph nodes by subcutaneous implantation of pumps containing either of these drugs. The pumps were implanted at the intended sensitization site, 2 days before sensitization. Strong potentiation of T-cell-mediated immunity, evaluated by delayed-type hypersensitivity measurements, was observed with both drugs tested. Daily injections with VP-16 also caused an enhancement of the immune response. However, daily injections with 5-fluorouracil, a drug assumed to be cell-cycle-specific in its action, failed to potentiate delayed hypersensitivity to oxazolone. Intralesional administration of cytostatic drugs has been put forward as an effective treatment modality in various types of cancer. Therapeutic effects may depend on both local tumorcytotoxic and immunopotentiating activities. Our present results suggest that osmotic minipumps can be applied to broaden the applicability and effectiveness of local chemotherapy.  相似文献   

18.
19.
Vaccines intended to prevent mucosal transmission of HIV should be able to induce multiple immune effectors in the host including Abs and cell-mediated immune responses at mucosal sites. The aim of this study was to characterize and to enhance the immunogenicity of a recombinant modified vaccinia virus Ankara (MVA) expressing HIV-1 Env IIIB Ag (MVAenv) inoculated in BALB/c mice by mucosal routes. Intravaginal inoculation of MVAenv was not immunogenic, whereas intranasally it induced a significant immune response to the HIV Ag. Intranasal codelivery of MVAenv plus cholera toxin (CT) significantly enhanced the cellular and humoral immune response against Env in the spleen and genitorectal draining lymph nodes, respectively. Heterologous DNAenv prime-MVAenv boost by intranasal immunization, together with CT, produced a cellular immune response in the spleen 10-fold superior to that in the absence of CT. A key finding of these studies was that both MVAenv/MVAenv and DNAenv/MVAenv schemes, plus CT, induced a specific mucosal CD8(+) T cell response in genital tissue and draining lymph nodes. In addition, both immunizations also generated systemic Abs, and more importantly, mucosal IgA and IgG Abs in vaginal washings. Specific secretion of beta-chemokines was also generated by both immunizations, with a stronger response in mice immunized by the DNA-CT/MVA-CT regimen. Our findings are of relevance in the area of vaccine development and support the optimization of protocols of immunization based on MVA as vaccine vectors to induce mucosal immune responses against HIV.  相似文献   

20.
In inflammatory arthritis such as RA, osteoclastic activity is severely enhanced. GM-CSF was reportedly elevated in synovial fluid, but is a strong inhibitor of osteoclastogenesis; here lies a contradiction. Our objective was to examine what type of osteoclasts generate and resorb bone with resistance to GM-CSF in an inflammatory joint. Monocyte-derived cells generated in GM-CSF were morphologically and immunophenotypically different from both the conventional DC and macrophage. They could differentiate into osteoclasts in the presence of RANKL + M-CSF, acquiring a stronger osteoclastic activity under TNF treatment. Furthermore, their differentiation was not inhibited by GM-CSF, while monocyte-derived osteoclast differentiation was completely inhibited. The resorption was suppressed by GM-CSF, and the existence of another osteoclastic pathway has been suggested. Our findings indicate another type of osteoclast exists in inflammatory arthritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号