共查询到20条相似文献,搜索用时 15 毫秒
1.
Laurence Braun Farida Nato Bernard Payrastre Jean-Claude Mazié & Pascale Cossart 《Molecular microbiology》1999,34(1):10-23
The Listeria monocytogenes InlB protein is a 630-amino-acid surface protein that mediates entry of the bacterium into a wide variety of cell types, including hepatocytes, fibroblasts and epithelial cells such as Vero, HEp-2 and HeLa cells. Invasion stimulates host proteins tyrosine phosphorylation, PI 3-kinase activity and rearrangements in the actin cytoskeleton. We previously showed that InlB is sufficient for entry of InlB-coated latex beads into cells and recent results indicate that purified InlB can stimulate PI 3-kinase activity and is thus the first bacterial agonist of this lipid kinase. In this study, we identified the region of InlB responsible for entry and stimulation of signal transduction events. Eight monoclonal antibodies directed against InlB were raised and, of those, five inhibited bacterial entry. These five antibodies recognized epitopes within the leucine-rich repeat (LRR) region and/or the inter-repeat (IR) region. InlB-staphylococcal protein A (SPA) fusion proteins and recombinant InlB derivatives were generated and tested for their capacity to mediate entry into cultured mammalian cells. All the InlB derivatives that carried the amino-terminal 213-amino-acid LRR region conferred invasiveness to the normally non-invasive bacterium L. innocua or to inert latex beads and the corresponding purified polypeptides inhibited bacterial entry. In addition, the 213-amino-acid LRR region was able to stimulate PI 3-kinase activity and changes in the actin cytoskeleton (membrane ruffling). These properties were not detected with purified internalin, another invasion protein of L. monocytogenes that displays LRRs similar to those of InlB. Taken together, these results show that the first 213 amino acids of InlB are critical for its specific properties. 相似文献
2.
The Gram-positive pathogen Listeria monocytogenes induces its own internalization into some non-phagocytic mammalian cells by stimulating host tyrosine phosphorylation, phosphoinositide (PI) 3-kinase activity, and rearrangements in the actin cytoskeleton. Entry into many cultured cell lines is mediated by the bacterial protein InlB. Here we investigate the role of InlB in regulating mammalian signal transduction and cytoskeletal structure. Treatment of Vero cells with purified InlB caused rapid and transient increases in the lipid products of the PI 3-kinase p85-p110, tyrosine phosphorylation of the mammalian adaptor proteins Gab1, Cbl, and Shc, and association of these proteins with p85. InlB also stimulated large scale changes in the actin cytoskeleton (membrane ruffling), which were PI 3-kinase-dependent. These results identify InlB as the first reported non-mammalian agonist of PI 3-kinase and demonstrate similarities in the signal transduction events elicited by this bacterial protein and known agonists such as epidermal growth factor. 相似文献
3.
Deciphering how Listeria monocytogenes exploits the host cell machinery to invade mammalian cells during infection is a key issue for the understanding how this food-borne pathogen causes a pleiotropic disease ranging from gastro-enteritis to meningitis and abortions. Using multidisciplinary approaches, essentially combining bacterial genetics and cell biology, we have identified two bacterial proteins critical for entry into target cells, InlA and InlB. Their cellular ligands have been also identified: InlA interacts with the adhesion molecule E-cadherin, while InlB interacts with the receptor for the globular head of the complement factor C1q (gC1q-R), with the hepatocyte growth factor receptor (c-Met) and with glycosaminoglycans (including heparan sulphate). The dynamic interaction between these cellular receptors and the actin cytoskeleton is currently under investigation. Several intracellular molecules have been recognized as key effectors for Listeria entry into target cells, including catenins (implicated in the connection of E-cadherin to actin) and the actin depolymerising factor/cofilin (involved in the rearrangement of the cytoskeleton in the InlB-dependent internalisation pathway). At the organism level, species specificity has been discovered concerning the interaction between InlA and E-cadherin, leading to the generation of transgenic mice expressing the human E-cadherin, in which the critical role of InlA in the crossing of the intestinal barrier has been clearly determined. Listeria appears as an instrumental model for addressing critical questions concerning both the complex process of bacterial pathogenesis and also fundamental molecular processes, such as phagocytosis. 相似文献
4.
Deciphering how Listeria monocytogenes exploits the host cell machinery to invade mammalian cells during infection isa key issue for the understanding how this food-borne pathogen causes a pleiotropic disease ranging from gastro-enteritis to meningitis and abortions. Using multidisciplinary approaches, essentially combining bacterial genetics and cell biology, we have identified two bacterial proteins critical for entry into target cells, InlA and InlB. Their cellular ligands have been also identified: InlA interacts with the adhesion molecule E-cadherin, while InlB interacts with the receptor for the globular head of the complement factor Clq (gClq-R), with the hepatocyte growth factor receptor (c-Met) and with glycosaminoglycans(including heparan sulphate). The dynamic interaction between these cellular receptors and the actin cytoskeleton is currently under investigation. Several intracellular molecules have been recognized as key effectors for Listeria entry into target cells,including catenins (implicated in the connection of E-cadherin to actin) and the actin depolymerising factor/cofilin (involved in the rearrangement of the cytoskeleton in the InlB-dependent internalisation pathway). At the organism level, species specificity has been discovered concerning the interaction between InlA and E-cadherin, leading to the generation of transgenic mice expressing the human E-cadherin, in which the critical role of InlA in the crossing of the intestinal barrier has been clearly determined. Listeria appears as an instrumental model for addressing critical questions concerning both the complex process of bacterial pathogenesis and also fundamental molecular processes, such as phagocytosis. 相似文献
5.
Marino M Banerjee M Copp J Dramsi S Chapman T van der Geer P Cossart P Ghosh P 《Biochemical and biophysical research communications》2004,316(2):379-386
The Listeria monocytogenes protein InlB promotes invasion of mammalian cells through activation of the receptor tyrosine kinase Met. The InlB N-cap, a approximately 40 residue part of the domain that binds Met, was previously observed to bind two calcium ions in a novel and unusually exposed manner. Because subsequent work raised questions about the existence of these calcium-binding sites, we assayed calcium binding in solution to the InlB N-cap. We show that calcium ions are bound with dissociation constants in the low micromolar range at the two identified sites, and that the sites interact with one another. We demonstrate that the calcium ions are not required for structure, and also find that they have no appreciable effect on Met activation or intracellular invasion. Therefore, our results indicate that the sites are fortuitous in InlB, but also suggest that the simple architecture of the sites may be adaptable for protein engineering purposes. 相似文献
6.
Bacterial pathogens have developed a variety of strategies to induce their own internalization into mammalian cells which are normally nonphagocytic. The Gram-positive bacterium Listeria monocytogenes enters into many cultured cell types using two bacterial surface proteins, InlA (internalin) and InlB. In both cases, entry takes place after engagement of a receptor and induction of a series of signaling events. 相似文献
7.
8.
Stability of the Listeria monocytogenes ActA protein in mammalian cells is regulated by the N-end rule pathway 总被引:3,自引:1,他引:3
Upon infection of mammalian cells, Listeria monocytogenes lyses the phagosome and enters the cytosol, where it secretes proteins necessary for its intracellular growth cycle. Consequently, bacterial proteins exposed to the cytosol are potential targets for degradation by host cytosolic proteases. One pathway for degradation of host cytosolic proteins, the N-end rule pathway, involves recognition of the N-terminal amino acid and is mediated by the proteasome. However, very few natural N-end rule substrates have been identified. We have examined the L. monocytogenes ActA protein as a potential target for this pathway. ActA is an essential determinant of L. monocytogenes pathogenesis that is required to induce actin-based motility and cell-to-cell spread. We show that the half-life of a secreted form of ActA can be altered in the mammalian cytosol by changing the N-terminal amino acid. Moreover, the introduction of a destabilizing N-terminus into the functional, surface-bound form of ActA results in a small-plaque phenotype in L2 cells, which is partially reversible by an inhibitor of the proteasome. These results indicate that the L. monocytogenes ActA protein is a natural N-end rule substrate, and that optimal function of ActA in mediating cell-to-cell spread is dependent upon its intracellular turnover rate. 相似文献
9.
Kibardin A Karpova T Sapenko T Vazquez-Boland JA Kiselev S Ermolaeva S 《FEMS immunology and medical microbiology》2006,46(2):284-290
Peptidoglycan recognition proteins are a family of evolutionary conserved proteins that play a basic role in the innate immunity of insects, but their role in the immunity of mammals remains unclear. To elucidate its functions, a mouse member of the peptidoglycan recognition proteins family, TagL, was stably expressed in colon adenocarcinoma HT29 cells, and its effect on the invasion and intracellular growth of the enteroinvasive pathogenic bacterium Listeria monocytogenes was assessed. The expression of TagL substantially impaired bacterial invasion and early intracellular growth. The observed effects were partly caused by a loss of viability by intraphagosomal bacteria. Efficient phagosome escaping but not efficient invasion helped bacteria to overplay TagL. 相似文献
10.
InlB, a surface-localized protein of Listeria monocytogenes, induces phagocytosis in non-phagocytic mammalian cells by activating Met, a receptor tyrosine kinase. InlB also binds glycosaminoglycans and the protein gC1q-R, two additional host ligands implicated in invasion. We present the structure of InlB, revealing a highly elongated molecule with leucine-rich repeats that bind Met at one end, and GW domains that dissociably bind the bacterial surface at the other. Surprisingly, the GW domains are seen to resemble SH3 domains. Despite this, GW domains are unlikely to act as functional mimics of SH3 domains since their potential proline-binding sites are blocked or destroyed. However, we do show that the GW domains, in addition to binding glycosaminoglycans, bind gC1q-R specifically, and that this binding requires release of InlB from the bacterial surface. Dissociable attachment to the bacterial surface via the GW domains may be responsible for restricting Met activation to a small, localized area of the host cell and for coupling InlB-induced host membrane dynamics with bacterial proximity during invasion. 相似文献
11.
gC1q-R/p32, a C1q-binding protein, is a receptor for the InlB invasion protein of Listeria monocytogenes 总被引:12,自引:0,他引:12
下载免费PDF全文

InlB is a Listeria monocytogenes protein that promotes entry of the bacterium into mammalian cells by stimulating tyrosine phosphorylation of the adaptor proteins Gab1, Cbl and Shc, and activation of phosphatidyl- inositol (PI) 3-kinase. Using affinity chromatography and enzyme-linked immunosorbent assay, we demonstrate a direct interaction between InlB and the mammalian protein gC1q-R, the receptor of the globular part of the complement component C1q. Soluble C1q or anti-gC1q-R antibodies impair InlB-mediated entry. Transient transfection of GPC16 cells, which are non-permissive to InlB-mediated entry, with a plasmid-expressing human gC1q-R promotes entry of InlB-coated beads. Furthermore, several experiments indicate that membrane recruitment and activation of PI 3-kinase involve an InlB-gC1q-R interaction and that gC1q-R associates with Gab1 upon stimulation of Vero cells with InlB. Thus, gC1q-R constitutes a cellular receptor involved in InlB-mediated activation of PI 3-kinase and tyrosine phosphorylation of the adaptor protein Gab1. After E-cadherin, the receptor for internalin, gC1q-R is the second identified mammalian receptor promoting entry of L. monocytogenes into mammalian cells. 相似文献
12.
Listeria monocytogenes uptake by nonphagocytic cells is promoted by the bacterial invasion proteins internalin and InlB, which bind to their host receptors E-cadherin and hepatocyte growth factor receptor (HGF-R)/Met, respectively. Here, we present evidence that plasma membrane organization in lipid domains is critical for Listeria uptake. Cholesterol depletion by methyl-beta-cyclodextrin reversibly inhibited Listeria entry. Lipid raft markers, such as glycosylphosphatidylinositol-linked proteins, a myristoylated and palmitoylated peptide and the ganglioside GM1 were recruited at the bacterial entry site. We analyzed which molecular events require membrane cholesterol and found that the presence of E-cadherin in lipid domains was necessary for initial interaction with internalin to promote bacterial entry. In contrast, the initial interaction of InlB with HGF-R did not require membrane cholesterol, whereas downstream signaling leading to F-actin polymerization was cholesterol dependent. Our work, in addition to documenting for the first time the role of lipid rafts in Listeria entry, provides the first evidence that E-cadherin and HGF-R require lipid domain integrity for their full activity. 相似文献
13.
14.
Pathway for polyarginine entry into mammalian cells 总被引:11,自引:0,他引:11
Cationic peptides known as protein transduction domains (PTDs) provide a means to deliver molecules into mammalian cells. Here, nonaarginine (R(9)), the most efficacious of known PTDs, is used to elucidate the pathway for PTD internalization. Although R(9) is found in the cytosol as well as the nucleolus when cells are fixed, this peptide is observed only in the endocytic vesicles of live cells. Colocalization studies with vesicular markers confirm that PTDs are internalized by endocytosis rather than by crossing the plasma membrane. The inability of R(9) to enter living cells deficient in heparan sulfate (HS) suggests that binding to HS is necessary for PTD internalization. This finding is consistent with the high affinity of R(9) for heparin (K(d) = 109 nM). Finally, R(9) is shown to promote the leakage of liposomes but only at high peptide:lipid ratios. These and other data indicate that the PTD-mediated delivery of molecules into live mammalian cells involves (1) binding to cell surface HS, (2) uptake by endocytosis, (3) release upon HS degradation, and (4) leakage from endocytic vesicles. 相似文献
15.
The bacterium Listeria monocytogenes has the unusual capacity to enter and to multiply in nonphagocytic cells. Bacterially induced phagocytosis is triggered mainly by the two surface proteins internalin (also called InlA) and InlB, which interact with host cell receptors and either mimic or act in place of the normal cellular ligands. Internalin interacts specifically with human E-cadherin, whereas InlB activates the tyrosine kinase receptor Met and also interacts with the ubiquitous receptor gC1qR and proteoglycans. Signals induced by crosstalk between the bacterium and the host cell allow internalization, which is a prelude to intracellular multiplication, actin-based movement and spread of the bacterium from cell to cell. Manipulating the bacterial invasion proteins offers us an unprecedented tool with which to understand the complex phenomenon of phagocytosis. 相似文献
16.
17.
18.
The 126 kDa iron-regulated protein of Listeria monocytogenes is not a transferrin binding protein 总被引:1,自引:0,他引:1
Reshma Bhatt Dlawer A.A. Ala'Aldeen Tom Baldwin S. Peter Borriello 《FEMS microbiology letters》1994,123(1-2):119-123
Abstract An energy-dependent efflux system for ethidium and related cations has been detected in Enterococcus hirae ATCC 9790. The system was partially expressed when the organism was grown on a complex medium but was induced by the addition of phosphonium ions and realated compounds. Mutants showing constitutive expression of the efflux system have been isolated on the basis of increased resistance to ethidium. 相似文献
19.
20.
Kataoka C Kaname Y Taguwa S Abe T Fukuhara T Tani H Moriishi K Matsuura Y 《Journal of virology》2012,86(5):2610-2620
The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) serves as an efficient viral vector, not only for abundant gene expression in insect cells, but also for gene delivery into mammalian cells. Lentivirus vectors pseudotyped with the baculovirus envelope glycoprotein GP64 have been shown to acquire more potent gene transduction than those with vesicular stomatitis virus (VSV) envelope glycoprotein G. However, there are conflicting hypotheses about the molecular mechanisms of the entry of AcMNPV. Moreover, the mechanisms of the entry of pseudotyped viruses bearing GP64 into mammalian cells are not well characterized. Determination of the entry mechanisms of AcMNPV and the pseudotyped viruses bearing GP64 is important for future development of viral vectors that can deliver genes into mammalian cells with greater efficiency and specificity. In this study, we generated three pseudotyped VSVs, NPVpv, VSVpv, and MLVpv, bearing envelope proteins of AcMNPV, VSV, and murine leukemia virus, respectively. Depletion of membrane cholesterol by treatment with methyl-β-cyclodextrin, which removes cholesterol from cellular membranes, inhibited GP64-mediated internalization in a dose-dependent manner but did not inhibit attachment to the cell surface. Treatment of cells with inhibitors or the expression of dominant-negative mutants for dynamin- and clathrin-mediated endocytosis abrogated the internalization of AcMNPV and NPVpv into mammalian cells, whereas inhibition of caveolin-mediated endocytosis did not. Furthermore, inhibition of macropinocytosis reduced GP64-mediated internalization. These results suggest that cholesterol in the plasma membrane, dynamin- and clathrin-dependent endocytosis, and macropinocytosis play crucial roles in the entry of viruses bearing baculovirus GP64 into mammalian cells. 相似文献