首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sythesis and isolation in purified form of an analog of insulin with the interchain disulfide bridges elongated by a methylene group is described. This analog differs from the parent molecule in that the cystein residues occupying positions A-7 and A-20 and involved in the formation of the two interchain disulfide bridges of insulin have been replaced by homocysteine residues. For the synthesis of this compound the Hcy-7, 20-A chain of sheep insulin was chemically synthesized and isolated in the S-sulfonated form. Conversion of the latter product to the sulfhydryl derivative and combination with the S-sulfonated form of the B chain of sheep insulin yielded the [Hcy-7, 20-A] insulin. Isolation of the analog from the combination mixture was effected by chromatography on a carboxymethylcellulose column with acetate buffer (pH 3.3) and an exponential sodium chloride gradient. This analog, by the mouse convulsion assay methods and in doses at least 40-fold higher than those normally used for insulin assay, was inactive. By the radioimmunoassay method this synthetic analog was found to possess a potency of 2 i.u./mg. It is concluded that the biological activity of insulin depends critically on a particular geometry conferred on the molecule by the proper placement of the A and B chains.  相似文献   

2.
The C-terminal region of the A chain of insulin has been shown to play a significant role in the expression of the biological activity of the hormone. To further delineate the contribution of this segment, we have synthesized [21-desasparagine,20-cysteinamide-A]insulin and [21-desasparagine,20-cysteine isopropylamide-A]insulin, in which the C-terminal amino acid residue of the A chain of insulin, asparagine, has been removed and the resulting free carboxyl group of the A20 cysteine residue has been converted to an amide and an isopropylamide, respectively. Both insulin analogues display biological activity, 14-15% for the unsubstituted amide analogue and 20-22% for the isopropylamide analogue, both relative to bovine insulin. In contrast, a [21-desasparagine-A]insulin analogue has been reported to display less than 4% of the activity of the natural hormone [Carpenter, F. (1966) Am. J. Med. 40, 750-758]. The implications of these findings are discussed, and we conclude that the A20-A21 amide bond plays a significant role in the expression of the biological activity of insulin.  相似文献   

3.
An analog of human insulin, which differs from the parent molecule in that the histidine residue at position 10 of the B chain (B10) is replaced by lysine, has been synthesized and isolated in purified form. This analog, [10-lysine-B] insulin ([Lys10-B] insulin), in stimulating lipogenesis and in radioimmunoassays, exhibited potencies of 14.2% and 14.7%, respectively, as compared to the natural hormone. In insulin receptor binding in rat liver membranes, [Lys10-B] insulin was found to possess a potency of ~17% compared to insulin. We have shown previously that substitution of the B10 polar residue histidine with the nonpolar leucine results in an analog exhibiting inin vivo assays ~50% of the activity of the parent molecule. It is speculated that in insulin the relative size of the amino acid residue at B10, rather than its polarity, is the most important factor in maintaining a structure commensurate with high biological activity.  相似文献   

4.
We have synthesized [21-desasparagine,20-cysteine ethylamide-A]insulin and [21-desasparagine,20-cysteine 2,2,2-trifluoroethylamide-A]insulin, which differ from natural insulin in that the C-terminal amino residue of the A chain, asparagine, has been removed and the resulting free carboxyl group of the A20 cysteine residue has been converted to an ethylamide and a trifluoroethylamide group, respectively. [21-Desasparagine,20-cysteine ethylamide-A]insulin displayed equivalent potency in receptor binding and biological activity, ca. 12% and ca. 14%, respectively, relative to bovine insulin. In contrast, [21-desasparagine,20-cysteine 2,2,2-trifluoroethylamide-A]insulin displayed a divergence in these properties, ca. 13% in receptor binding and ca. 6% in biological activity. This disparity is ascribed to a difference in the electronic state of the A20-A21 amide bond in these two analogues. A model is proposed to account for the observation of divergence between receptor binding and biological activity in a number of synthetic insulin analogues and naturally occurring insulins. In this model, changes in the electronic state and/or the orientation of the A20-A21 amide bond can modulate biological activity independently of receptor binding affinity. The A20-A21 amide bond is thus considered as an important element in the "message region" of insulin.  相似文献   

5.
Two analogs of bovine insulin, [des(tetrapeptide B27--30), Tyr(NH2)26-B] and [des(pentapeptide B26--30), Phe(NH2)25-B] insulin, which differ from the parent molecule in that the C-terminal tetrapeptide and pentapeptide sequences, respectively, from the B chain have been eliminated and the newly exposed residues are amidated, have been synthesized. The [des(tetrapeptide B27--30), Tyr(NH2)26-B] insulin shows potencies of 16.8 IU/mg by the mouse convulsion assay method and 10.8 IU/mg by the radioimmunoassay method. The [des(pentapeptide B26--30), Phe(NH2)25-B] insulin possesses a potency of 10.5 IU/mg when assayed by the mouse convulsion method and 14 IU/mg by the radioimmunoassay technique. The potencies of these analogs are higher than the potencies of the respective non-amidated derivatives (Katsoyannis et al., 1973, 1974). It is speculated that the gradual decline of biological activity observed as amino acid residues are eliminated from the C-terminal region of the B chain of insulin is due to the proximity of a hydrophilic carboxyl group to the hydrophobic core of the protein molecule.  相似文献   

6.
Two analogs of sheep insulin, both differing from the native material by a single amino acid in the A chain, have been synthesized and isolated in highly purified form by procedures developed in this laboratory. In one case, the glutamine residue in position A5 was replaced by leucine ([Leu5-A]); in the other, the tyrosine residue in position A19 was replaced by phenylalanine ([Phe19-A]). The biological behavior of these analogs was compared with natural bovine insulin inin vitro tests and in receptor-binding assays, as well as in radioimmunoassay. In the stimulation of glucose oxidation by rat adipocytes, the analogs gave relative potencies of 30% and 7.8% for [Leu5-A] and [Phe19-A], respectively. Receptor-binding assays in rat liver plasma membranes showed similar behavior for both analogs. In radioimmunoassay, [Leu5-A] displayed a relative potency of 27.9%, while [Phe19-A] showed a relative potency of 19–27%, compared with bovine insulin. At high concentration, both analogs displayed the same maximal activity as bovine insulin, and the dose-response curves are essentially parallel. It is speculated that the interaction between the glutamine residue in position 5 and the tyrosine residue in position 19 of the A chain of insulin are important in maintaining a three-dimensional structure commensurate with high biological activity. The full intrinsic activity of both analogs at high concentrations and the similarity of the potency figures in receptor-binding and glucose-oxidation assays permit the further conclusion that the reduced potency in the latter assay can be ascribed wholly to the reduced binding affinity toward insulin receptors caused by the substitutions made in the analogs. The receptor-analog complexes are fully capable of triggering the next event in the chain leading to the biological response.  相似文献   

7.
We have synthesized [21-asparagine diethylamide-A]insulin, which differs from the parent molecule in that the free carboxyl group of the C-terminal amino acid residue, asparagine, of the A chain moiety has been converted to a diethylamide group. The analogue displays equivalent potency in receptor binding and biological activity, 48% and 56%, respectively, relative to bovine insulin. In contrast, we have reported previously [Burke, G. T., Chanley, J. D., Okada, Y., Cosmatos, A., Ferderigos, N., & Katsoyannis, P. G. (1980) Biochemistry 19, 4547-4556] that [21-asparaginamide-A]insulin exhibits a divergence in these properties, ca. 60% in receptor binding and ca. 13% in biological activity. The disparity in the biological behavior of these analogues is discussed, and we ascribe the modulation of biological activity independent of receptor binding activity observed between these analogues to the difference in the negativity of the carbonyl oxygen of the A chain moiety C-terminal amino acid residue.  相似文献   

8.
An analog of human insulin, which differs from the parent molecule in that the histidine residue at position 10 of the B chain (B10) is replaced by lysine, has been synthesized and isolated in purified form. This analog, [10-lysine-B] insulin ([Lys10-B] insulin), in stimulating lipogenesis and in radioimmunoassays, exhibited potencies of 14.2% and 14.7%, respectively, as compared to the natural hormone. In insulin receptor binding in rat liver membranes, [Lys10-B] insulin was found to possess a potency of 17% compared to insulin. We have shown previously that substitution of the B10 polar residue histidine with the nonpolar leucine results in an analog exhibiting inin vivo assays 50% of the activity of the parent molecule. It is speculated that in insulin the relative size of the amino acid residue at B10, rather than its polarity, is the most important factor in maintaining a structure commensurate with high biological activity.For the previous paper in this series see Schwartzet al. (1981).  相似文献   

9.
The β-turn formed by the amino acid residues 20–23 of the B-chain of insulin has been implicated as an important structural feature of the molecule. In other biologically active peptides, stabilization of β-turns has resulted in increases in activity. We have synthesized three insulin analogues containing modifications which would be expected to increase the stability of the β-turn. In two analogues, we have substituted α-aminoisobutyric acid (Aib) for the Glu residue normally present in position B21 or for the Arg residue normally present in position B22; in a third compound, we have replaced the Glu residue with its D-isomer. Biological evaluation of these compounds showed that [B21 Aib]insulin displays a potencyca. one-fourth that of natural insulin, while [B22 Aib]insulin is less than 10% as potent. In contrast, [B21 D-Glu]insulin is equipotent with natural insulin. We conclude that the β-turn region of the insulin molecule normally possesses considerable flexibility, which may be necessary for it to assume a conformation commensurate with high biological activity. If this is the case, [B21 D-Glu]insulin may exhibit a stabilized geometry similar to that of natural insulin when bound to the insulin receptor.  相似文献   

10.
Hydrogen bonding involving peptide bonds of the backbone of the insulin molecule may play an important role in insulin-receptor interaction. Our previous work suggested that the A2-A8 helical segment of the hormone molecule participates in this interaction. To investigate the possible involvement of peptide bonds of this segment in insulin-receptor interaction the [2-N-methylisoleucine-A]insulin and [3-N-methylvaline-A]insulin ([MeIle2-A]- and [MeVal3-A]insulins) were synthesized. The circular dichroic spectra of the analogues were obtained and their properties were examined in several biological assays. The circular dichroic spectra suggested that the analogues remained monomeric at concentrations at which insulin is predominantly dimeric, and that their A2-A8 helical segments are distorted. The in vitro biological activity and the receptor binding affinity of these analogues were compared with that of natural insulin. Both analogues are weak full agonists. [MeIle2-A]insulin displayed a potency of 5.4 +/- 0.3% in stimulating lipogenesis and 4.6 +/- 2.3% in receptor binding affinity in rat fat cells and rat liver plasma membranes respectively. [MeVal3-A]insulin displayed a potency of 2.1 +/- 0.2% in lipogenesis and 1.0 +/- 0.3% in receptor binding assays. In radioimmunoassays [MeIle2-A]- and [MeVal3-A]insulins exhibited potencies of 13% and 11% respectively relative to the natural hormone. The substantially decreased biological activity and receptor binding affinity of these analogues may be attributed partly to the change of conformation and partly to the loss of hydrogen bonding capacity of the A2-A8 segment brought about by N-methylation of the A1-A2 or A2-A3 peptide bonds.  相似文献   

11.
An insulin A chain analogue, [A13-14 GABA, A21 Ala]A chain, for which the dipeptide Leu-Try at A13-A14 was substituted by a non-coded amino acid, gamma-amino butyric acid (GABA) and A21 Asn by Ala, was prepared by stepwise Fmoc solid-phase manual synthesis and then combined with the natural B chain of porcine insulin to yield an insulin analogue, [A13-14 GABA, A21Ala] porcine insulin (GABA substituted insulin). This insulin analogue still retains 50% in vivo biological activity and 59% in receptor binding capacity. It can also be crystallized. These results indicate that its overall conformation is similar to the native form and that the side chains of A13Leu and A14Tyr are not essential for insulin activity. In addition, the replacement of a normal C-N peptide bond by an unnatural C-C bond may have general meaning in structure and function studies of other proteins.  相似文献   

12.
The replacement of tyrosine at position A19 by leucine in the insulin molecule led to an analogue, [19-leucine-A]insulin [( Leu19-A]insulin), displaying insignificant receptor binding affinity and in vitro biological activity less than 0.1 and 0.05%, respectively, compared to the natural hormone. This analogue along with the previously reported [2-glycine-A]-, [2-alanine-A]-, and [2-norleucine-A]insulins is the least potent insulin analogue we have examined. Circular dichroic studies showed that all these analogues are monomeric at concentrations at which insulin is primarily dimeric. We conclude that an aromatic ring at position A19 and the presence of the side chain of isoleucine at position A2 are each of critical importance for high biological activity in insulin. It appears that the van der Waals interaction between the side chain of isoleucine A2 and tyrosine A19, present in crystalline insulin, is among the most important determinants for high biological activity in insulin.  相似文献   

13.
The following paper describes the synthesis of the [LysA13]bovine insulin A chain analog as [Lys(Tfa)A13]A(SO3H)4 and NalphaA1-Msc-[LysA13]A(SO3H)4 derivatives using the S-tert-butylmercapto residue for thiol protection. Although the intermediate S-tert-butylmercaptocysteinyl-peptide derivatives showed a good solubility in organic solvents the resulting fully protected A chain derivatives had a poor solubility in organic solvents and therefore were deblocked converted into the tetra(S-sulfonic acid) derivatives and purified via ionexchange chromatography.  相似文献   

14.
The C-terminal residue of the insulin A chain is invariant and kept as asparagine in all known insulin molecules from hagfish through birds to mammals. To get information on the role of this conserved residue, which is still unclear, the three-dimensional structures of four human insulin mutants, A21 Asn-->Gly, A21 Asn-->Asp, A21 Asn-->Ala, and A21 Asn-->Gln DesB30, were determined by X-ray crystallography. The four mutants crystallize separately into two kinds (rhombohedral and cubic) of crystals. In the refined structures, conformational correlation and coupled motion between the A chain C-terminal residue A21 and the B25 side chain was observed, in contrast to the nearly unchanged general structures as compared with the native insulin structures in their respective crystals. A detailed analysis suggests that residue A21 can affect insulin receptor binding by interaction with the B25 side chain and the B chain C-terminal segment to assist the B25 side chain rearranging into the 'active' conformation.  相似文献   

15.
The amino acid sequences for the ovarian hormone relaxin, now determined for pig, rat and shark, indicate that the molecule may have an internal structure similar to that of insulin. The combined results from six secondary structure prediction methods applied to the sequences of both relaxin and insulin support the concept of a similar folding for the B chain between the disulphide bridges. Model building with a computer graphics system has shown that the rat relaxin sequence cannot be superimposed on the 2Zn insulin structure without close contacts occurring between the residues in the central core. However, the residues can be accommodated in the more open framework assumed by 4Zn insulin (molecule I). With the relaxin models built according to the insulin fold, surface residues shared by the three relaxin sequences (B9(Arg), B13(Arg), A13 and A14 (Lys or Arg)) all lie in a localized area on the molecule. This group of residues focuses attention on a larger area on the molecule's surface which may well be the receptor binding site.  相似文献   

16.
The sequences of amino acid residues 109--224 of the A chain, and residues 109--22 of the B chain, of human subcomponent C1q are given. These results, along with previously published sequence data on the N-terminal, collagen-like, regions of the A and B chains [Reid (1979) Biochem. J. 179, 367--371] yield the complete amino acid sequences of the A and B chains of subcomponent C1q. The asparagine residue at position A-124 has been identified as the major site of asparagine-linked carbohydrate in subcomponent C1q. When the sequences of the C-terminal, 135-residue-long, 'globular' regions of A and B chains are compared they show 40% homology. The degree of homology over certain stretches of 15--20 residues, within the C-terminal regions, rises up to values of 73%, indicating the presence of strongly conserved structures. Structure prediction studies indicate that both the A and B chain C-terminal regions may adopt a predominantly beta-type structure with apparently little alpha-helical structure.  相似文献   

17.
【目的】对葡激酶的T和B细胞抗原表位重叠的关键氨基酸Arg77和Glu80进行定点突变以降低葡激酶的免疫原性。【方法】基于Arg77和Glu80的溶剂可及表面积设计葡激酶的突变体;突变体在大肠杆菌DH5α中进行表达。经过三步层析法纯化后,分析突变体的纤溶活性和免疫原性。【结果】免疫学实验提示,葡激酶导致Th2免疫反应;Glu80突变为丙氨酸和丝氨酸减少了溶剂可及表面积,同时去除了部分T和B细胞抗原表位;Arg77突变为天冬酰胺、谷氨酰胺和赖氨酸仅去除了部分T细胞抗原表位;6个组合突变体中,Sak(R77Q/E80A)和Sak(R77Q/E80S)有效去除了部分B和T细胞抗原表位,降低了葡激酶的免疫原性;Sak(R77Q/E80A)and Sak(R77Q/E80S)的纤溶活性和催化效率与r-Sak相当。  相似文献   

18.
The hormone insulin is synthesized in the beta cell of the pancreas as the precursor, proinsulin, where the carboxyl terminus of the B-chain is connected to the amino terminus of the A-chain by a connecting or C-peptide. Proinsulin is a weak insulin agonist that possesses a longer in vivo half-life than does insulin. A form of proinsulin clipped at the Arg65-Gly66 bond has been shown to be more potent than the parent molecule with protracted in vivo activity, presumably as a result of freeing the amino terminal residue of the A-chain. To generate a more active proinsulin-like molecule, we have constructed an "inverted" proinsulin molecule where the carboxyl terminus of the A-chain is connected to the amino terminus of the B-chain by the C-peptide, leaving the critical Gly1 residue free. Transformation of Escherichia coli with a plasmid coding for A-C-B human proinsulin led to the stable production of the protein. By a process of cell disruption, sulfitolysis, anion-exchange chromatography, refolding, and reversed-phase high-performance liquid chromatography, two forms of the inverted proinsulin differing at their amino termini as Gly1 and Met0-Gly1 were identified and purified to homogeneity. Both proteins were shown by a number of analytical techniques to be of the inverted sequence, with insulin-like disulfide bonding. Biological analyses by in vitro techniques revealed A-C-B human proinsulin to be intermediate in potency when compared to human insulin and proinsulin. The time to maximal lowering of blood glucose in the fasted normal rat appeared comparable to that of proinsulin. Additionally, we were able to generate fully active, native insulin from A-C-B human proinsulin by proteolytic transformation. The results of this study lend themselves to the generation of novel insulin-like peptides while providing a simplified route to the biosynthetic production of insulin.  相似文献   

19.
Various methods have been investigated for the isolation and purification of fusion proteins of precursors of human insulin in the form of S-sulfonates, from the biomass of transformed Escherichia coli cells. Fusion proteins were prepared with different sizes and structures of the leader peptide and the poly-His position (inserted for purification by metal chelate affinity chromatography). The fusion proteins contained an IgG-binding B domain of protein A from Staphylococcus aureus at the N-terminus and an Arg residue between the leader peptide of the molecule and the proinsulin sequence, for trypsin cleavage of the leader peptide. Six residues of Cys in proinsulin allow the chemical modification of the protein as a (Cys-S-SO(-)(3))(6) derivative (S-sulfonate), which increases its polyelectrolytic properties and improves the efficiency of its isolation. Various methods of oxidative sulfitolysis were compared with catalysis by sodium tetrathionate or cystine and Cu2+ or Ni2+ ions. An optimum scheme for the isolation and purification of S-sulfonated fusion proteins was developed by the combination of metal-chelating affinity and ion-exchange chromatography. Highly purified (95%) S-sulfonated fusion protein was recovered which was 85% of the fusion protein contained in the biomass of E. coli cells. Folding of fusion protein S-sulfonate occurred with high yield (up to 90-95%). We found that the fusion protein-S-sulfonate has proinsulin-like secondary structure.This structure causes highly efficient fusion protein folding.  相似文献   

20.
Comparison of the primary structures of ribonuclease U2 isoforms.   总被引:3,自引:1,他引:2       下载免费PDF全文
The primary structures of the two isoforms of ribonuclease U2, RNAases U2-A and U2-B, were analysed and compared with each other. Among the chymotryptic peptides obtained from the reduced and S-carboxymethylated enzymes, only peptides C-3 were different from each other in terms of chromatographic behaviour on reverse-phase h.p.l.c. On the basis of chemical analyses of these peptides, it was shown that RNAase U2-B had an isopeptide bond in which Asp-32 was linked to Gly-33 through the beta-carboxy group in its side chain instead of the alpha-carboxy group. Deamidation of Asn-32 in RNAase U2-A led to the formation of this unusual linkage. The previously reported sequence of RNAase U2 [Sato & Uchida (1975) Biochem. J. 145, 353-360] was corrected by changing amino acid residues at eight different positions and by inserting an asparagine residue at position 32. The numbering of the positions of amino acid residues located downstream of Asn-32 was therefore shifted by 1. Accordingly, RNAase U2-A was shown to be composed of 114 amino acid residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号