共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
The aim of this study was to investigate the role of cyclic AMP in the regulation of tryptophan hydroxylase activity localized in retinal photoreceptor cells of Xenopus laevis, where the enzyme plays a key role in circadian melatonin biosynthesis. In photoreceptor-enriched retinas that lack serotonergic neurons, tryptophan hydroxylase activity is markedly stimulated by treatments that increase intracellular levels of cyclic AMP or activate cyclic AMP-dependent protein kinase, including forskolin, phosphodiesterase inhibitors, and cyclic AMP analogues. In contrast, cyclic AMP has no effect on tryptophan hydroxylase mRNA abundance. Experiments using cycloheximide and actinomycin D demonstrate that cyclic AMP exerts its regulatory effect via posttranslational mechanisms mediated by cyclic AMP-dependent protein kinase. The effect of cyclic AMP is independent of the phase of the photoperiod, suggesting that the nucleotide is not a mediator of the circadian rhythm of tryptophan hydroxylase. Cyclic AMP accumulation is higher in darkness than in light, as is tryptophan hydroxylase activity. Furthermore, the stimulatory effect of forskolin and that of darkness are inhibited by H89, an inhibitor of cyclic AMP-dependent protein kinase. In conclusion, cyclic AMP may mediate the acute effects of light and darkness on tryptophan hydroxylase activity of retinal photoreceptor cells. 相似文献
3.
Abstract: Melatonin deacetylase, an enzyme activity recently discovered in the Xenopus laevis retina, regulates local melatonin levels. The deacetylase occurs in retina, retinal pigment epithelium, and skin, all sites of melatonin action, and is widely distributed among vertebrates. We have solubilized the enzyme from Xenopus retina and pigment epithelium using nonionic detergents, and have developed a specific enzyme assay. We have characterized the enzyme and now report that the deacetylase is relatively specific for melatonin and is inhibited by the melatonin precursor N -acetylserotonin and the product of the deacetylase, 5-methoxytryptamine. Inhibition of deacetylase activity by eserine (physostigmine) suggests a relationship between deacetylase and cholinesterase activities. However, among a variety of cholinesterase inhibitors tested, only eserine inhibits the deacetylase. Furthermore, eserine is much less potent as an inhibitor of the deacetylase than the cholinesterases, and purified cholinesterases failed to deacetylate melatonin. We also show that melatonin deacetylase and aryl acylamidase (an enzyme related to cholinesterases) activities are differentially extractable from Xenopus ocular tissues, and that they exhibit different pH optima and inhibition profiles. Our results provide an initial characterization of the Xenopus retinal melatonin deacetylase, and indicate that deacetylase activity is distinct from cholinesterase and aryl acylamidase activities. 相似文献
4.
Avian Melatonin Synthesis: Photic and Circadian Regulation of Serotonin N-Acetyltransferase mRNA in the Chicken Pineal Gland and Retina 总被引:2,自引:5,他引:2
Marianne Bernard P. Michael Iuvone †Vincent M. Cassone Patrick H. Roseboom Steven L. Coon David C. Klein 《Journal of neurochemistry》1997,68(1):213-224
Abstract: The circadian rhythms in melatonin production in the chicken pineal gland and retina reflect changes in the activity of serotonin N -acetyltransferase (arylalkylamine N -acetyltransferase; AA-NAT; EC 2.3.1.87). Here we determined that the chicken AA-NAT mRNA is detectable in follicular pineal cells and retinal photoreceptors and that it exhibits a circadian rhythm, with peak levels at night. AA-NAT mRNA was not detected in other tissues. The AA-NAT mRNA rhythm in the pineal gland and retina persists in constant darkness (DD) and constant lighting (LL). The amplitude of the pineal mRNA rhythm is not decreased in LL. Light appears to influence the phase of the clock driving the rhythm in pineal AA-NAT mRNA in two ways: The peak is delayed by ∼6 h in LL, and it is advanced by >4 h by a 6-h light pulse late in subjective night in DD. Nocturnal AA-NAT mRNA levels do not change during a 20-min exposure to light, whereas this treatment dramatically decreases AA-NAT activity. These observations suggest that the rhythmic changes in chicken pineal AA-NAT activity reflect, at least in part, clock-generated changes in mRNA levels. In contrast, changes in mRNA content are not involved in the rapid light-induced decrease in AA-NAT activity. 相似文献
5.
Serotonin Levels in the Rabbit Retina Are Elevated Following Intraocular Injection of Forskolin 总被引:1,自引:0,他引:1
Analysis of the mammalian retina for serotonin immunoreactivity suggests an absence of the amine. However, following an intraocular injection of forskolin (1 microM) into a rabbit eye 1 h before analysis of the retina, serotonin immunoreactivity is associated with a subpopulation of amacrine cells. These cells correspond in size and position to the "indoleamine-accumulating cells" of the retina. Biochemical experiments show that forskolin treatment produces an increase in levels of endogenous serotonin and 5-hydroxytryptophan but has no effect on the uptake of serotonin or tryptophan or the metabolism of 5-hydroxytryptophan. These results suggest that the "indoleamine-accumulating cells" in the retina are "serotonergic cells" and that the level of amine is elevated sufficiently for localisation following forskolin treatment. It would appear that forskolin either directly or indirectly activates tryptophan hydroxylase. 相似文献
6.
P. Michael Iuvone 《Journal of neurochemistry》1990,54(5):1562-1568
In chicken retinas, melatonin levels and the activity of serotonin N-acetyltransferase (NAT), a key regulatory enzyme of melatonin biosynthesis, are expressed as circadian rhythms with peaks of levels and activity occurring at night. In the present study, NAT activity was examined in retinas of embryonic and posthatch chicks to assess the ontogenic development of regulation of the enzyme by light, circadian oscillators, and the second messenger cyclic AMP. During embryonic development, NAT activity was consistently detectable by embryonic day 6 (E6). Significant light-dark differences were first observed on E20, and increased to a maximum amplitude of sixfold by posthatch day 3 (PH3). Circadian rhythmicity of NAT activity appears to develop at or prior to hatching, as evidenced by day-night differences of activity in constant darkness observed in PH1 chicks that had been exposed to a light-dark cycle in ovo only. NAT activity is regulated by a cyclic AMP-dependent mechanism. Activity was significantly increased by incubating retinas with forskolin or dibutyryl cyclic AMP as early as E7, and seven- to ninefold increases were observed following treatment with these agents on E14. Thus, development of the cyclic AMP-dependent mechanism for increasing NAT activity significantly precedes that of rhythmicity, suggesting that the onset of rhythmicity may be related to the onset of photoreception or development of the circadian oscillator in chick retina. 相似文献
7.
Stimulation of the Serotonin Autoreceptor Prevents the Calcium-Calmodulin-Dependent Increase of Serotonin Biosynthesis in Rat Raphe Slices 总被引:1,自引:0,他引:1
The role of the serotonin (5-hydroxytryptamine) autoreceptor in the regulation of the activity of tryptophan hydroxylase was investigated in rat raphe slices. The activity of tryptophan hydroxylase was estimated by measuring the accumulation of 5-hydroxytryptophan in the presence of inhibition of aromatic L-amino acid decarboxylase using 3-hydroxy-4-bromobenzyloxy-amine by HPLC with fluorescence detection. Serotonin and its agonists N,N-dimethyl-5-methoxytryptamine and 1-(m-chlorophenyl)-piperazine reduced the formation of 5-hydroxytryptophan to 50-60% at 10(-5) M. The effect of serotonin was reversed by 10(-5) M methiothepin, an antagonist of the serotonin autoreceptor. The calmodulin antagonists N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) and N-(6-aminohexyl)-1-naphthalenesulfonamide (W-5), dose-dependently reduced the basal formation of 5-hydroxytryptophan to 40-50% at 10(-6) and 10(-4) M, respectively. W-7 also reduced the activated formation by A-23187 or dibutyryl cyclic AMP in a dose-dependent manner. W-7 had no effect on 5-hydroxytryptophan formation reduced by serotonin at 10(-5) M. These results suggest that the role of the serotonin autoreceptor was related to the prevention of the calcium-calmodulin-dependent activation of tryptophan hydroxylase. 相似文献
8.
Soichi Miwa Motokazu Fujiwara Ken Lee Motohatsu Fujiwara 《Journal of neurochemistry》1987,48(5):1577-1580
After intraperitoneal injection of rats with 6-fluorotryptophan (6-FT), brain 5-hydroxytryptamine (5-HT) levels decreased exponentially over 1 h. Depletion was dose-dependent and maximum depletion was observed at 200 mg/kg. 6-FT (200 mg/kg) did not significantly alter the content of 5-hydroxyindoleacetic acid. Turnover rates of 5-HT obtained by the 6-FT and other methods were fairly consistent. 6-FT had little effect on the content of noradrenaline and dopamine. These data suggest that 6-FT completely inhibits tryptophan hydroxylase, in vivo, without affecting the release of 5-HT from 5-HT neurons and with little effect on the activities of tyrosine hydroxylase. Therefore, 6-FT is a good pharmacological tool for studying the turnover rate of 5-HT in the brain. 相似文献
9.
Dorotea Mück-eler Adlija Jevric-Causevic Mirko Diksic 《Journal of neurochemistry》1996,67(6):2434-2442
Abstract: The aim of the present study was to test the hypothesis that there should be a difference between the effects of an acute and an 8-day (chronic) administration of fluoxetine (10 mg/kg) on the rate of serotonin [5-hydroxytryptamine (5-HT)] synthesis. The 5-HT synthesis rate was measured in discrete regions of the rat brain using the α-[14 C]methyl- l -tryptophan autoradiographic method. The results show that the acute and chronic fluoxetine treatments influence the 5-HT synthesis rate in different ways. A single dose of fluoxetine induced a significant increase in 5-HT synthesis in the visual, auditory, and parietal cortices, substantia nigra, hypothalamus, ventral thalamus, and dorsal hippocampus. In contrast, after a chronic treatment a decrease was observed in the substantia nigra, caudate, and nucleus accumbens, the auditory, parietal, sensorimotor, and frontal cortices, and ventral tegmental area. A significant decrease in the rate of 5-HT synthesis was observed in the dorsal raphe after both the single and chronic treatments. The results suggest that extracellular 5-HT has a delayed influence on the brain 5-HT synthesis rate in structures with serotonergic terminals. The findings from the acute study could be important for patients who have just started receiving fluoxetine treatment, as an increase in the 5-HT synthesis rate might occur in the acute phase of their treatment. In addition, the findings from the chronic treatment study might give us a better understanding of how the brain serotonergic system adapts during a prolonged exposure to extracellular 5-HT. 相似文献
10.
Abstract— Circadian variations in the activity of tyrosine hydroxylase, tyrosine aminotransferase, and tryptophan hydroxylase were observed in the rat brain stem. Tyrosine hydroxylase exhibited a bimodal pattern with peaks occurring during both the light and dark phases of the circadian cycle. Tyrosine aminotransferase had one daily peak of activity occurring late in the light phase, whereas tryptophan hydroxylase activity was maximal late in the dark phase. Circadian fluctuations in tyrosine hydroxylase activity did not correlate well with circadian variations in the turnover rates of norepinephrine or dopamine nor with levels of these catecholamines. This supports the idea that although tyrosine hydroxylase is the rate-limiting enzyme in the synthesis of catecholamines, other factors must also be involved in the in vivo regulation of this process. Administration of α -methyl- p -tyrosine (AMT) methyl ester HC1 (100 mg/kg) had no effect on the activity of tryptophan hydroxylase, but effectively eliminated the peak of tyrosine hydroxylase activity that occurred during the light phase. AMT also lowered levels of tyrosine aminotransferase, but only at times near the daily light to dark transition. These chronotypic effects of AMT emphasize the importance of "time of day" as a factor that must be taken into account in evaluating the biochemical as well as the pharmacological and toxicological effects of drugs. 相似文献
11.
The region with the potential to form the heart has traditionally been called the heart field. This region can be approximated by, but is not identical to, the expression domain of the early cardiac gene Nkx2.5. The region expressing Nkx2.5 does not change in size, although there are major shape changes and a subdivision of the region into non-myogenic and myogenic lineages. Using a variety of embryo manipulations, we have sought to determine whether cellular interactions could change the size of the initial Nkx2.5-expressing region and thus change the size of the heart. We have shown that if the heart is isolated from the dorsal half of the embryo, the volume of tissue expressing myocardial differentiation markers increases, indicating that signals restricting the size of the heart come from the dorsal side. Despite the change in myocardial volume, the non-myogenic heart lineages are still present. The ability of dorsal tissues to restrict the size of the heart is further demonstrated by fusing two Xenopus embryos shortly after gastrulation, generating twinned embryos where the heart of one embryo would develop adjacent to different tissues of the second embryo. The final size of the differentiated heart was markedly reduced if it developed in close proximity to the dorso-anterior surface of the head but not if it developed adjacent to the flank or belly. In all cases, the manipulations that restricted the size of the myocardium also restricted the expression of Nkx2.5 and GATA-4, both key regulatory genes in the cardiogenic pathway. These results provide evidence for a model in which signals from dorso-anterior tissues restrict the size of the heart after gastrulation but before neural fold closure. 相似文献
12.
The possible involvement of calcium in the regulation of retinal serotonin N-acetyltransferase (NAT) activity was investigated using eye cups of Xenopus laevis cultured in defined medium. Omitting CaCl2 from the culture medium completely inhibited the dark-dependent increase of NAT activity at night. Approximately 10(-4)-10(-3) M free Ca2+ was found to be required for the maximal increase of NAT activity in the dark. Other divalent cations--Ba2+, Sr2+, and Mn2+--did not substitute for Ca2+. Antagonists of voltage-sensitive calcium channels, including nifedipine, methoxyverapamil (D600), Co2+, and Mg2+, were found to be effective inhibitors of the dark-dependent increase of retinal NAT activity. Trifluoperazine also decreased retinal NAT activity. These studies indicate that the increase of retinal NAT activity in the dark is mediated by a specific Ca2+-dependent process and that Ca2+ influx through voltage-sensitive calcium channels is involved. 相似文献
13.
To follow the subsequent history of grafted tissue in experiments designed to study regulation and commitment in the amphibian neural plate, previous workers have relied on graft scars, vital dyes applied externally to cells, or xenoplastic grafts. Each of these methods has been criticized on the grounds that they do not indicate unambiguously the origins of individual cells within the operated host. To overcome these difficulties, homoplastic, genetically marked embryonic grafts were taken from the prospective spinal neuroectoderm of triploid and tetraploid Xenopus laevis frogs and transplanted to presumptive eye and prosencephalic regions of the neural plate of diploid X. laevis embryos. Orthotopic presumptive eye grafts also were done. Marked cells were scored in section either by nucleolar number or computerized nuclear size analysis. Of 28 heterotopically grafted embryos that survived to stage 41, when the retina has differentiated, prospective spinal cord neuroectoderm in eight animals gave rise to cell types unique to the eye. The remaining 20 survivors appeared to be mosaic. These results substantiate claims of regulation in the neural plate and extend these observations to the level of individual cell types, a level of resolution not previously obtained in other studies. 相似文献
14.
Inactivation of Tryptophan Hydroxylase by Nitric Oxide: Enhancement by Tetrahydrobiopterin 总被引:2,自引:0,他引:2
Abstract: Tryptophan hydroxylase, the initial and rate-limiting enzyme in the biosynthesis of the neurotransmitter serotonin, is inactivated by the nitric oxide generators sodium nitroprusside, diethylamine/nitric oxide complex, and S -nitroso- N -acetylpenicillamine. Physiological concentrations of tetrahydrobiopterin, the natural and endogenous cofactor for the hydroxylase, significantly enhance the inactivation of the enzyme caused by each of these nitric oxide generators. The substrate tryptophan does not have this effect. The chemically reduced (tetrahydro-) form of the pterin is required for the enhancement, because neither biopterin nor dihydrobiopterin is effective. The 6 S -isomer of tetrahydrobiopterin, which has little cofactor efficacy for tryptophan hydroxylase, does not enhance enzyme inactivation as does the natural 6 R -isomer. A number of synthetic, reduced pterins share with tetrahydrobiopterin the ability to enhance nitric oxide-induced inactivation of tryptophan hydroxylase. The tetrahydrobiopterin effect is not prevented by agents known to scavenge hydrogen peroxide, superoxide radicals, peroxynitrite anions, hydroxyl radicals, or singlet oxygen. On the other hand, cysteine partially protects the enzyme from both the nitric oxide-induced inactivation and the combined pterin/nitric oxide-induced inactivation. These results suggest that the tetrahydrobiopterin cofactor enhances the nitric oxide-induced inactivation of tryptophan hydroxylase via a mechanism that involves attack on free protein sulfhydryls. Potential in vivo correlates of a tetrahydrobiopterin participation in the inactivation of tryptophan hydroxylase can be drawn to the neurotoxic amphetamines. 相似文献
15.
Kramer BM Song JY Westphal NJ Jenks BG Roubos EW 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2002,132(1):269-274
In the amphibian Xenopus laevis, suprachiasmatic melanotrope-inhibiting neurons (SMINs) play an important role in the regulation of the background adaptation process. In this study, we investigated the innervation of the SMINs at the light- and electron- microscopical level. Immunocytochemistry in combination with confocal laser scanning microscopy revealed co-existence of neuropeptide Y (NPY) and synaptobrevin in spots in the direct vicinity of the SMINs, suggesting the existence of NPY-containing synapses on these cells. At the ultrastructural level, the SMINs showed a high degree of plasticity, containing more electron-dense vesicles and a larger extent of RER in white- than in black-adapted animals. In black-adapted animals, symmetric synapses (Gray type II) were observed on the soma of the SMINs, suggesting an inhibitory input to these cells. The synaptic profiles contained electron-lucent and electron-dense vesicles, indicating the involvement of both a classical neurotransmitter and a neuropeptide (possibly NPY) in this input. In white-adapted animals, synapses were only found at some distance from the SMIN somata. Our findings indicate a striking plasticity of the innervation of the SMINs in relation to background adaptation and support the hypothesis that the SMINs are innervated by NPY-containing interneurons that inhibit SMIN activity in black-adapted animals. 相似文献
16.
The mRNA that encodes a serotonin transporter was expressed using the Xenopus laevis oocyte expression system. Poly(A)+ RNA isolated from mouse brainstem was injected into Xenopus laevis oocytes, and the ability of oocytes to take up serotonin was measured 3 days postinjection. RNA-dependent serotonin uptake was sensitive to citalopram, a specific inhibitor of serotonin uptake, whereas background levels of serotonin uptake were not citalopram sensitive. Two RNA size fractions, 4.0 and 4.5 kb, were most efficient in stimulating uptake. Injection into Xenopus laevis oocytes of the 4.5-kb size fraction of mouse brainstem RNA resulted in threefold more serotonin uptake than did injection of unfractionated poly(A)+ RNA. 相似文献
17.
Tryptamine Concentrations in Areas of 5-Hydroxytryptamine Terminal Innervation After Electrolytic Lesions of Midbrain Raphe Nuclei 总被引:3,自引:1,他引:2
The possible existence of tryptamine-containing neurons originating in the midbrain raphe is suggested by several reports of tryptamine-mediated responses to electrical stimulation of the raphe nuclei. To assess this hypothesis, we have investigated the effects of electrolytic lesions of the median and dorsal raphe nuclei on striatal, hypothalamic, and hippocampal concentrations of tryptamine, 5-hydroxytryptamine (5-HT), and 5-hydroxyindoleacetic acid. In addition, the rat striatal tryptophan concentrations were also determined. No changes in the concentrations of tryptamine were observed at 1 or 2 weeks after lesioning the dorsal and median raphe nuclei, at which time the other 5-hydroxyindoles were markedly reduced; furthermore, no reductions were observed in tryptamine concentrations in the striatum, hypothalamus, or hippocampus of rats pretreated with a monoamine oxidase inhibitor. The only change observed in these rats was a limited increase in striatal tryptamine and tryptophan observed at 1 day after lesioning. The results indicate that tryptamine concentration is independent of the integrity of 5-HT-containing neurons of the midbrain raphe nuclei. Furthermore, if tryptamine-containing neurons that have terminal projections to the striatum, hypothalamus, and hippocampus exist, their cell bodies are located in regions outside the dorsal and median raphe nuclei. Another possibility could be that tryptamine is located in glial cells. 相似文献
18.
Regulation of Xenopus laevis DNA topoisomerase I activity by phosphorylation in vitro 总被引:7,自引:0,他引:7
DNA topoisomerase I has been purified to electrophoretic homogeneity from ovaries of the frog Xenopus laevis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the most purified fraction revealed a single major band at 110 kDa and less abundant minor bands centered at 62 kDa. Incubation of the most purified fraction with immobilized calf intestinal alkaline phosphatase abolished all DNA topoisomerase enzymatic activity in a time-dependent reaction. Treatment of the dephosphorylated X. laevis DNA topoisomerase I with a X. laevis casein kinase type II activity and ATP restored DNA topoisomerase activity to a level higher than that observed in the most purified fraction. In vitro labeling experiments which employed the most purified DNA topoisomerase I fraction, [gamma-32P]ATP, and the casein kinase type II enzyme showed that both the 110- and 62-kDa bands became phosphorylated in approximately molar proportions. Phosphoamino acid analysis showed that only serine residues became phosphorylated. Phosphorylation was accompanied by an increase in DNA topoisomerase activity in vitro. Dephosphorylation of DNA topoisomerase I appears to block formation of the initial enzyme-substrate complex on the basis of the failure of the dephosphorylated enzyme to nick DNA in the presence of camptothecin. We conclude that X. laevis DNA topoisomerase I is partially phosphorylated as isolated and that this phosphorylation is essential for expression of enzymatic activity in vitro. On the basis of the ability of the casein kinase type II activity to reactivate dephosphorylated DNA topoisomerase I, we speculate that this kinase may contribute to the physiological regulation of DNA topoisomerase I activity. 相似文献
19.
Jerzy Z. Nowak Arkadiusz Kazula Krystyna Gotembiowska 《Journal of neurochemistry》1992,59(4):1499-1505
The administration of melatonin, either peripherally (0.01-10 mg/kg) or intraocularly (0.001-10 mumol/eye), to light-exposed chicks dose-dependently increased serotonin N-acetyltransferase (NAT) activity in retina but not in pineal gland. The effect of melatonin was slightly but significantly reduced by luzindole (2-benzyl-N-acetyltryptamine), and not affected by two other purported melatonin antagonists, N-acetyltryptamine and N-(2,4-dinitrophenyl)-5-methoxytryptamine (ML-23). The elevation of the enzyme activity induced by melatonin was substantially stronger than that evoked by 5-hydroxytryptamine, N-acetyl-5-hydroxytryptamine, or 5-methoxytryptamine. The melatonin-evoked rise in the retinal NAT activity was counteracted by two dopamine D2 receptor agonists, quinpirole and apomorphine, and prevented by the dopamine D2 receptor blocker spiroperidol, and by an inhibitor of dopamine synthesis, alpha-methyl-p-tyrosine. Melatonin (0.1-10 mg/kg i.p.) dose-dependently decreased the levels of dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC), as well as the DOPAC/dopamine ratio, in chick retina but not in forebrain. The results obtained (1) indicate that melatonin in vivo potently inhibits dopamine synthesis selectively in retina, and (2) suggest that the increase in retinal NAT activity evoked by melatonin in light-exposed chicks is an indirect action of the compound, and results from the disinhibition of the NAT induction process from the dopaminergic (inhibitory) signal. The results provide in vivo evidence supporting the idea (derived on the basis of in vitro findings) that a mutually antagonistic interaction between melatonin and dopamine operates in retinas of living animals. 相似文献