首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Charge-pulse relaxation studies with the positively charged PV-K+ complex (cyclo-(d-Val-l-Pro-l-Val-d-Pro)3) and the negatively charged lipophilic ion dipicrylamine (DPA) have been performed in order to study the influence of structural properties on ion transport through lipid bilayer membranes. First, the thickness of monoolein membranes was varied over a wide range using differentn-alkanes and slovent-free membranes. The thickness (d) of the hydrocarbon core of these membranes varied between 4.9 and 2.5 nm. For both transport systems the partition coefficient was found to be rather insensitive to variations ind. The same was valid for the translocation rate constantk MS of PV-K+, whereas a strong increase of the translocation rate constantk i of DPA-with decreasingd was observed. In a further set of experimental conditions the structure of the lipids, such as number and position of the double bonds in the hydrocarbon chain and its chain length as well as the nature of the polar head group, was varied. The translocation constantk MS of PV-K+ transport was found to be much more sensitive to these variations thank i of DPA-.Much larger variations ink i andk MS were observed in membranes made from lipids with ether instead of ester linkages between glycerol backbone and hydrocarbon chain. The results are in qualitative agreement with the surface potentials of monolayers made from corresponding lipids. Increasing amounts of cholesterol in membranes of dioleoylphosphatidylcholine caused a strong decrease ofk MS (PV-K+), whereask i was found to be rather insensitive to this variation.In monoolein membranes cholesterol causes a decrease ofk MS up to sixfold and a increase ofk i up to eightfold. The partition coefficient of DPA was insensitive to cholesterol, whereas of PV-K+ was found to decrease about eightfold in these membranes. The influence of cholesterol onk MS is discussed on the basis of viscosity changes in the membrane and the change ink i of DPA and of PV-K+ on the basis of a possible change of the dipole potential of the membranes. The other sterols, epicholesterol and ergosterol cause no change in the kinetics of the two probes.The different influence of membrane properties like thickness, viscosity, and dipole potential on the two transport systems is discussed under the assumption that the adsorption planes of the two probes have different positions in a membrane. Possibly because of a larger hydrophobic interaction, the adsorption plane of PV-K+ is located more towards the hydrocarbon side and that of DPA more towards the aqueous side of the dipole layer.  相似文献   

2.
According to the liquid hydrocarbon model, the lipid bilayer is viewed simply as a thin slice of bulk hydrocarbon liquid. This allows the water permeability of the bilayer to be calculated from bulk properties. In this paper the prediction of the liquid hydrocarbon model is compared with the known water permeability coefficient of the glycerol monoolein/n-hexadecane bilayer (Fettiplace, R. (1978) Biochim. Biophys. Acta 513, 1–10). As the alkyl chain of glycerol monoolein is equivalent to 8-heptadecene, the water permeability coefficient of 8-heptadecene/n-hexadecane mixtures was measured for temperatures between 20 and 35°C. The mole fraction of n-hexadecane in the bulk liquid was chosen at each temperature to match the known mole fraction of n-hexadecane in the bilayer (White, S. (1976) Nature 262, 421–422). The predicted water permeability coefficient agrees with the measured value at 32°C but is 40% above the measured value at 20°C. The apparent activation energy predicted by the liquid hydrocarbon model is 9.0 ± 0.3 kcal/mol, while the measured value is 14.2 ± 1.0 kcal/mol. The failure of the liquid hydrocarbon model probably results from a different molecular organization of the hydrocarbon chains in the bilayer and in the bulk liquid.  相似文献   

3.
Kolusheva S  Friedman J  Angel I  Jelinek R 《Biochemistry》2005,44(36):12077-12085
DP-109, a lipophilic bivalent metal ion modulator currently under preclinical development for neurodegenerative disorders, was designed to have membrane-associated activity, thereby restricting its action to the vicinity of cell membranes. We describe the application of a colorimetric phospholipid/polydiacetylene (PDA) biomimetic membrane assay in elucidating DP-109 membrane interactions and penetration into lipid bilayers. In this membrane model, visible quantifiable color changes were monitored in studying membrane interactions. The colorimetric data identified a biphasic concentration-dependent interaction, with a break point around the critical micelle concentration (CMC) of DP-109. The kinetics and colorimetric dose-response profile of DP-109 indicate that the compound inserts into the lipid bilayers rather than being localized at the bilayer surface. Analysis of interactions of DP-109 with phospholipid/PDA vesicles in which ionic gradients were imposed indicates that membrane activity of DP-109 is strongly affected by electrochemical gradients imposed by K+ and Zn2+. The ionic gradient effects suggest that the insertion of DP-109 into the membrane may depend on the membrane potential.  相似文献   

4.
Permeability of ferrocene derivatives through a planer bilayer lipid membrane (BLM) was examined by an electrochemical method using microelectrodes. Location of the microelectrode tip inside the unstirred layer enables the detection of electroactive substances permeating the membrane without unstirred layer perturbation.  相似文献   

5.
Frequent reports have suggested that Dimethylsulfoxide (DMSO) increases the flux of other molecules through biological membranes. This paper reports experiments in the single barnacle cell which permits differentiation of trans-membrane fluxes from those utilizing intercellular pathways. Several non-electrolytes were injected and wash-out rates observed. There was no change in the time course of the wash-out of these molecules when DMSO was added to the injected fluid. The conclusion of these experiments is that DMSO in low concentration does not change the permeation of non-electrolyte across the cell membrane.  相似文献   

6.
Potassium channels enable K(+) ions to move passively across biological membranes. Multiple nanosecond-duration molecular dynamics simulations (total simulation time 5 ns) of a bacterial potassium channel (KcsA) embedded in a phospholipid bilayer reveal motions of ions, water, and protein. Comparison of simulations with and without K(+) ions indicate that the absence of ions destabilizes the structure of the selectivity filter. Within the selectivity filter, K(+) ions interact with the backbone (carbonyl) oxygens, and with the side-chain oxygen of T75. Concerted single-file motions of water molecules and K(+) ions within the selectivity filter of the channel occur on a 100-ps time scale. In a simulation with three K(+) ions (initially two in the filter and one in the cavity), the ion within the central cavity leaves the channel via its intracellular mouth after approximately 900 ps; within the cavity this ion interacts with the Ogamma atoms of two T107 side chains, revealing a favorable site within the otherwise hydrophobically lined cavity. Exit of this ion from the channel is enabled by a transient increase in the diameter of the intracellular mouth. Such breathing motions may form the molecular basis of channel gating.  相似文献   

7.
The exposure to metal nanoparticles (NPs) has increased with their widespread use in industry, research and medicine. It is well known that NPs may enter cells and that this mechanism is crucial to exert both the therapeutic and toxicity effects. The main cellular entrance route is endocytosis-based, however, recent experimental studies, have reported that NPs can also enter the cell crossing directly the plasma membrane, it is thus important to investigate this alternative internalization mechanism. Size, surface chemistry, solubility and shape play a role in NP ability of entering the cell, but it is still to be elucidated how these properties act on cell membrane. We have demonstrated that a direct permeation of metal oxide NPs through the lipid bilayer of the cell membrane can occur, giving direct access to the cytoplasm. In this paper, using the powerful tool of Xenopus laevis oocytes and two electrode Voltage Clamp, we have investigated several parameters that can influence the direct crossing. The most significant of them is the NP hydrodynamic size as clearly shown by the comparison of the behaviour between Co3O4 and NiO NPs. By collecting biophysical membrane parameters in different conditions, we have shown that NPs that are able to cross the membrane share the ability to maintain a hydrodynamic size lower than 200 nm. The presence of this route of entrance must be considered for a better comprehension of the effect at intracellular level considering possible mechanism in order to a safer design of engineered NPs.  相似文献   

8.
H W Huang 《Biophysical journal》1986,50(6):1061-1070
The deformation free energy of a lipid bilayer is presented based on the principle of a continuum theory. For small deformations, the free energy consists of a layer-compression term, a splay-distortion term, and a surface-tension term, equivalent to the elastic free energy of a two-layer smectic liquid crystal with surface tension. Minimization of the free energy leads to a differential equation that, with boundary conditions, determines the elastic deformation of a bilayer membrane. When a dimeric gramicidin channel is formed in a membrane of thickness greater than the length of the channel, the membrane deformation reduces the stability of the channel. Previously this effect was studied by comparing the variation of channel lifetime with the surface tension of bilayers (Elliott, J. R., D. Needham, J. P. Dilger, and D. A. Hayden, 1983, Biochim. Biophys. Acta, 735:95-103). The tension was assumed to pull a dimer for a distance z before the channel loses ion conductivity. To account for the data, z was found to be 18 A. With the deformation free energy, the data can be accounted for with z less than or approximately to 1 A, which is consistent with the breaking of hydrogen bonds in a dimer dissociation. Increasing the strength of lipid-protein interactions is not the only consequence of the complete free energy compared with the previous discussions. It also changes the shape of membrane deformation around an embedded channel from convex to concave, and increases the range of deformation from less than 10 A to greater than 20 A. Clearly these will be important factors in the general considerations of lipid-protein interactions and membrane-mediated interactions between proteins. In addition, thermal fluctuations of a membrane are calculated; in particular, we calculate the relations between the intrinsic thickness and the experimentally measured values. The experimental parameters of monoolein-squalene membranes are used for quantitative analyses.  相似文献   

9.
Charge-pulse relaxation experiments with the negatively charged lipophilic ions, dipicrylamine and tetraphenylborate, (as well as with the positively charged carrier system Rb+-valinomycin) have been carried out in order to study the influence of sterols on the ion transport through the lipid bilayer membrane. The mol fraction of the sterols (cholesterol, epicholesterol, ergosterol, stigmasterol, dihydrocholsterol, epicoprostanol and cholesterololeate) as referred to total lipid was varied in a wide range (mol fractions 0–0.8).The monoolein/sterol or dioleoylphosphatidylcholine/sterol mixtures were dissolved in n-hexadecane in order to minimize effects of the sterol on the membrane thickness.Cholesterol had a strong influence on the transport of the lipophilic ions. Its incorporation into monoolein membranes increased the rate constant i of translocation up to 8-fold, but incorporation into phosphatidylcholine membranes had virtually no influence on ki. The other sterols with one hydroxy group and cholesterololeate had no influence on the rate constant or the partition coefficient β. The results are discussed on the basis of a possible change of dipole potential of the membrane caused by cholesterol and its derivatives.In the case of valinomycin-mediated Rb+ transport only cholesterol had a strong influence on transport properties. The rate constants of association (kR) as well as the rate constants of translocation of the complex (kMS) and of the free carrier (kS) were reduced by incorporation of cholesterol up to eight-fold. The decrease of kS and kMS are possibly caused by a decrease of membrane fluidity, whereas the decrease of kR may be due to an increase of surface potential. The different action of cholesterol on the two transport systems is discussed under the assumption that the adsorption plane of the lipophilic ion is located more towards the aqueous side and that of the ion-carrier complexes more towards the hydrocarbon side of the dipole layer.  相似文献   

10.
Cadmium and thallous ion permeabilities through lipid bilayer membranes   总被引:3,自引:0,他引:3  
Cadmium (Cd2+) and thallous ion (Tl+) permeabilities were measured in planar (Mueller-Rudin) lipid bilayer membranes made from diphytanoylphosphatidylcholine in decane. Permeabilities of the electroneutral Cl- complexes, measured with tracers (109Cd and 204Tl), were about 10(-8) cm X s-1 for CdCl2 and 10(-6) cm X s-1 for TlCl. Electrical conductance measurements showed that permeabilities to Cd2+ and Tl+ were approx. 10(-11) cm X s-1, similar to the Na+ permeability. The low permeabilities to both Cd2+ and CdCl2 are consistent with biological studies which suggest that Cd transport and toxicity are protein mediated and correlated with Cd2+, not CdCl2, concentration. However, the low bilayer permeability to Tl+ raises questions about recent reports that Tl+ is a lipid permeable cation in biological membranes and liposomes. An alternative explanation for the lipid permeable behavior of Tl+ is presented, based on the diffusion of TlCl and other complexes of Tl+ with inorganic and organic anions.  相似文献   

11.
The interaction of surfactants with the vesicle membrane of the negatively charged lipid, dilauroylphosphatidic acid, was investigated through their effect on the gel-to-liquid-crystalline phase transition of the lipid bilayer. Three types of surfactants (anionic, cationic and non-ionic) with different hydrocarbon chain length were examined. (i) Anionic sodium alkylsulfates affected the phase transition temperature, Tm, only weakly. (ii) Non-ionic alkanoyl-N-methylglucamides decreased Tm monotonously with increasing concentration. The depression of Tm induced by these surfactants was analyzed by applying the van't Hoff model for the freezing-point depression, and the partition coefficients of the surfactants between bulk water and lipid membrane were estimated. (iii) Cationic alkyltrimethylammonium bromides affected Tm in a complex manner depending on the hydrocarbon chain length of the surfactants. Octyl-/tetradecyl-trimethylammonium bromide depressed/elevated Tm monotonously with increasing concentration, whereas the change in Tm induced by decyl- and dodecyltrimethylammonium bromides was not monotonous but biphasic. This complex behavior of the phase transition temperature was well explained, based on the statistical mechanical theory presented by Suezaki et al. (Biochim. Biophys. Acta, 818 (1985) 31-37), which takes into account the interaction between surfactant molecules incorporated in the lipid membrane.  相似文献   

12.
13.
Summary Potassium currents of various durations were obtained from squid giant axons voltage-clamped in artificial seawater solutions containing sufficient tetrodotoxin to block the sodium conductance completely. From instantaneous potassium current-voltage relations, the reversal potentials immediately at the end of these currents were determined. On the basis of these reversal potential measurements, the potassium ion concentration gradient across the membrane was shown to decrease as the potassium current duration increased. The kinetics of this change was shown to vary monotonically with the potassium ion efflux across the membrane estimated from the integral over time of the potassium current divided by the Faraday, and to be independent of both the external sodium ion concentration and the presence or absence of membrane series resistance compensation. It was assumed that during outward potassium current flow, potassium ions accumulated in a periaxonal space bounded by the membrane and an external diffusion barrier. A model system was used to describe this accumulation as a continuous function of the membrane currents. On this basis, the mean periaxonal space thickness and the permeability of the external barrier to K+ were found to be 357 Å and 3.21×10–4 cm/sec, respectively. In hyperosmotic seawater, the value of the space thickness increased significantly even though the potassium currents were not changed significantly. Values of the resistance in series with the membrane were calculated from the values of the permeability of the external barrier and these values were shown to be roughly equivalent to series resistance values determined by current clamp measurements. Membrane potassium ion conductances were determined as a function of time and voltage. When these were determined from data corrected for the potassium current reversal potential changes, larger maximal potassium conductances were obtained than were obtained using a constant reversal potential. In addition, the potassium conductance turn-on with time at a variety of membrane potentials was shown to be slower when potassium conductance values were obtained using a variable reversal potential than when using a constant reversal potential.  相似文献   

14.
Compounds such as N-dodecylimidazole and N-dodecylmorpholine kill cells in culture. Their cytotoxicity has been attributed to accumulation in lysosomes where protonation confers detergent properties resulting in membrane destabilization. This hypothesis has been tested by examining the ability of N-dodecylimidazole and N-dodecylmorpholine to decrease the latency of alpha-glucosidase in isolated rat liver lysosomes. No effect was observed. Nor was N-dodecylimidazole apparently able to increase the permeability of isolated rat liver lysosomes to L-alanine, as no diminution of the disruptive effect of L-alanine methyl ester was seen. N-Dodecylimidazole (10-20 micrograms per ml) caused lactate dehydrogenase release from cystinotic fibroblasts, but marginally toxic concentrations failed to induce cystine release, as might have been expected if lysosome membrane damage had occurred. It is concluded that the cytotoxic effects of lysosomotropic detergents may be mediated by a non-lysosomal mechanism.  相似文献   

15.
The prolactin (PRL) permeation through the pericardium depending on the species of origin (porcine, bovine and ovine) was studied, and the parameters of its bioavailability were calculated. An in vitro model using pericardium as a natural membrane and Frantz cell method was applied. Significant differences in permeation were observed depending on the species of origin. Within 5 h, 17.5% of bovine PRL, 27.2% of porcine PRL and 90.3% of ovine PRL permeated the pericardium. The amount of permeated ovine PRL was 3.3-fold higher than porcine PRL and 5.2-fold higher than bovine PRL. The maximum concentration of permeated PRL was reached in the thirtieth minute of the experiment and was the highest for ovine PRL (C(max) = 677.21 μg/cm2) and the lowest for bovine PRL (C(max) = 259.97 μg/cm2). Bioavailability of PRL through the pericardium is 3.3-fold greater for ovine PRL in comparison to porcine or bovine PRL. The relative extent of bioavailability for bovine and ovine prolactin versus the porcine PRL standard was 85.6% and 229.3%, respectively.  相似文献   

16.
The effects of millimeter microwaves in the frequency range of 54–76 GHz on capacitance and conductance of lipid bilayer membranes (BLM) were studied. Some of the membranes were modified by gramicidin A and amphotericin B or by tetraphenylboron anions (TPhB?). The millimeter microwaves were pulse-modulated (PW) at repetition rates ranging from 1 to 100 pps, PW at 1000 pps, or unmodulated continuous waves (CW). The maximum output power at the waveguide outlet was 20 mW. It was found that CW irradiation decreased the unmodified BLM capacitance by 1.2% ± 0.5%. At the same time, membrane current induced by TPhB transport increased by 5% ± 1%. The changes in conductance of ionic channels formed by gramicidin A and amphotericin B were small (0.6% ± 0.4%). No “resonance-like” effects of mm-wave irradiation on membrane capacitance, ionic channel currents, or TPhB transport were detected. All changes in membrane capacitance and currents were independent of the modulation employed and were equivalent to heating by approximately 1.1 °C. © 1995 Wiley-Liss, Inc.  相似文献   

17.
The effect of phloretin on the carrier-mediated electrically silent ion fluxes through the bilayer lipid membrane (BLM) was studied. The measurements were carried out according to our conventional technique, i.e. electrical potential recording in the presence of a protonophore, and by a new method--direct measurements of pH shifts in the unstirred layers of the BLM by pH microelectrode. Both techniques gave similar results. It was shown that the addition of phloretin increased the rate of cation/H+ exchange induced by nigericin and decreased the rate of anion/OH(-)-exchange induced by tributyltin. The effect of phloretin was higher in the presence of cholesterol in the BLM. Cholesterol decreased the nigericin- and tributyltin-induced fluxes under our experimental conditions. The application of an external voltage to the membrane had no effect on the ion fluxes thereby showing that these fluxes were electroneutral. The most probable explanation of these results bases on the effect of the membrane dipole potential on the electroneutral fluxes of ions. The possible mechanism of the dipole potential effect on the carrier-mediated electrically silent ion fluxes was discussed in terms of two competing hypotheses--the translocation through the membrane or the reactions at the membrane surface being the rate-limiting steps of the whole transport process.  相似文献   

18.
Using both analytical solutions obtained from simplified systems and numerical results from more realistic cases, we investigate the role played by the dielectric constant of membrane proteins epsilon(p) and pore water epsilon(w) in permeation of ions across channels. We show that the boundary and its curvature are the crucial factors in determining how an ion's potential energy depends on the dielectric constants near an interface. The potential energy of an ion outside a globular protein has a dominant 1/epsilon(w) dependence, but this becomes 1/epsilon(p) for an ion inside a cavity. For channels, where the boundaries are in between these two extremes, the situation is more complex. In general, we find that variations in epsilon(w) have a much larger impact on the potential energy of an ion compared to those in epsilon(p). Therefore a better understanding of the effective epsilon(w) values employed in channel models is desirable. Although the precise value of epsilon(p) is not a crucial determinant of ion permeation properties, it still needs to be chosen carefully when quantitative comparisons with data are made.  相似文献   

19.
竹红菌甲素对红细胞膜内脂双层的微扰   总被引:3,自引:0,他引:3  
In this paper, using human erythrocyte membrane, the effect of Hypocrellin A on the lipid bilayer of the membrane was studied by measuring the change of the fluidity of the membrane, the energy transfer of the fluorescent probes, the shift of the fluorescent emission peaks, and the split of band-a of Hypocrellin A. The results showed that in the presence of HA, the fluidity of erythrocyte membrane was increased, the fluorescence intensity of the probes was decreased, and the fluorescence peaks shifted blue. These phenomena took place more seriously with the increment of HA concentration. Meanwhile, the band-a of HA excitation spectra was splitted. It was suggested from all of the results that HA could significantly perturb the lipid bilayer of erythrocyte membrane, there were interactions existing between the Hypocrellin A and the membrane. The HA was mainly located in the middle range of the membrane lipid bilayer when in high concentration (mainly to the 12-16 positions of the long chain fatty acid).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号