首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analytical method for the enantioselective determination of selfotel in human urine has been developed and validated. The method is based on high-performance liquid chromatography and utilizes CGS 20005 (a selfotel analog) as the internal standard. Urine samples were derivatized in situ with o-phthalic dicarboxaldehyde–3-mercaptopropionic acid and 9-fluorenylmethyl chloroformate (FMOC). Chromatographic separations of the FMOC derivatives of selfotel enantiomers and the internal standard were achieved using a column switching system consisting of an Inertsil ODS-2 column (75×4.6 mm I.D., 5 μm) and a Chiralcel OD-R column (250×4.6 mm I.D., 10 μm). The composition of the mobile phase was acetonitrile–0.1 M phosphate buffer, pH 2.50 (35:65) for the Inertsil ODS-2 column and acetonitrile–0.1 M phosphate buffer, pH 2.00 (35:65) for the Chiralcel OD-R column. The analytes were monitored using fluorescence detection at an excitation wavelength of 262 nm and an emission wavelength of 314 nm. The limit of quantification (LOQ) for this method is 0.25 μg/ml for each selfotel enantiomer. The method was successfully utilized to determine preliminary selfotel stereospecific pharmacokinetics.  相似文献   

2.
A direct, isocratic, and simple reversed-phase HPLC method was described for the separation of enantiomers of the proton pump inhibitor, rac-pantoprazole (PAN) using cellulose-based chiral stationary phases (Chiralcel OD-R and Chiralcel OJ-R). Some structurally related chiral benzimidazole sulfoxides, rac-omeprazole (OME) and raclansoprazole (LAN), were also studied. Chiralcel OJ-R was successful in the resolution of enantiomers of rac-PAN and rac-OME, while Chiralcel OD-R was most suitable for resolving the enantiomers of rac-LAN. Highest enantioselectivity to rac-PAN and rac-OME was achieved on Chiralcel OJ-R by using acetonitrile as an organic modifier, whereas methanol afforded better resolution of rac-LAN on Chiralcel OD-R than acetonitrile. Increases in buffer concentration and column temperature decreased retention and did not improve the resolution of the enantiomers on both columns. Using a mixture of 50 mM sodium perchlorate solution and acetonitrile as a mobile phase at a flow rate of 0.5 ml/min, maximum separation factors of 1.26 and 1.13 were obtained for the enantiomers of rac-PAN and rac-OME using a Chiralcel OJ-R column, while maximum separation factor of 1.16 was obtained for the enantiomers of rac-LAN using a Chiralcel OD-R column. © 1995 Wiley-Liss, Inc.  相似文献   

3.
A new ion-pair high-performance liquid chromatographic method with column-switching has been developed for the determination of paraquat in human serum samples. The diluted serum sample was injected onto a precolumn packed with LiChroprep RP-8 (25-40 μm) and polar serum components were washed out by 3% acetonitrile in 0.05 M phosphate buffer (pH 2.0) containing 5 mM sodium octanesulfonate. After valve switching to inject position, concentrated compounds were eluted in the back-flush mode and separated on an Inertsil ODS-2 column with 17% acetonitrile in 0.05 M phosphate buffer (pH 2.0) containing 10 mM sodium octanesulfonate. The total analysis time per sample was about 30 min and mean recovery was 98.5±2.8% with a linear range of 0.1–100 μg/ml. This method has been successfully applied to serum samples from incidents by paraquat poisoning.  相似文献   

4.
An HPLC method for determining a flavonoid, naringin, and its metabolite, naringenin, in human plasma is presented for application to the pharmacokinetic study of naringin. Isocratic reversed-phase HPLC was employed for the quantitative analysis by using genistin (for naringin) or daidzein (for naringenin) as an internal standard and solid-phase extraction using a Sep-Pak t C18 cartridge. For the determination, HPLC was carried out using an Inertsil ODS-2 column (250x4.6 m I.D., 5 μm particle size). The mobile phases were acetonitrile-0.1 M ammonium acetate solution (20:80, v/v; pH 7.1) for naringin and acetonitrile-0.1 M ammonium acetate solution-acetic acid (30:69:1, v/v; pH 4.9) for naringenin. The flow-rate was 1 ml min−1. The analyses were performed by monitoring the wavelength of maximum UV absorbance at 280 nm for naringin and at 292 nm for naringenin. The detection limits on-column were about 0.2 ng for the two flavonoids.  相似文献   

5.
An HPLC method for determining a flavonoid naringin and its metabolite, naringenin, in human urine is presented for application to the pharmacokinetic study of naringin. Isocratic reversed-phase HPLC was employed for the quantitative analysis by using hesperidin for naringin or hesperetin for naringenin as internal standard and solid-phase extraction using a strong anion exchanger, Sep-Pak Accell QMA cartridge. The HPLC assay was carried out using an Inertsil ODS-2 column (250×4.6 mm I.D., 5 μm particle size). The mobile phases were acetonitrile–0.1 M ammonium acetate–acetic acid (18:81:1, v/v; pH 4.7) for naringin and acetonitrile–0.1 M ammonium acetate–triethylamine (25:75:0.05; v/v; pH 8.0) for naringenin. The flow-rate was 1.0 ml min−1. The analyses were performed by monitoring the wavelength of maximum UV absorbance at 282 nm for naringin and at 324 nm for naringenin. The lower limits of quantification were ca. 25 ng/ml for naringin and naringenin with R.S.D. less than 10%. The lower limits of detection (defined as a signal-to-noise ratio of about 3) were approximately 5 ng for naringin and 1 ng for naringenin. A preliminary experiment to investigate the urinary excretion of naringin, naringenin and naringenin glucuronides after oral administration of 500 mg of naringin to a healthy volunteer demonstrated that the present method was suitable for determining naringin and naringenin in human urine.  相似文献   

6.
A single-solvent extraction step high-performance liquid chromatographic method is described for quantitating cocaine and its three metabolites in rat serum microsamples (50 μl). The separation used a 2.1-mm I.D. reversed-phase Brownlee C18 column with an isocratic mobile phase consisting of methanol–acetonitrile–25.8 mM sodium acetate buffer, pH 2.2, containing 1.29·10−4M tetrabutylammonium phosphate (12.5:10:77.5, v/v/v). The detection limit was 2.5 ng/ml for all the compounds using an ultraviolet detector operated at 235 nm. The method was used to study the pharmacokinetics of cocaine after an intravenous (i.v.) bolus dose (4 mg/kg).  相似文献   

7.
A sensitive and automated method for the separation and individual determination of tramadol enantiomers in plasma has been developed using solid-phase extraction (SPE) on disposable extraction cartridges (DECs) in combination with chiral liquid chromatography (LC). The SPE operations were performed automatically by means of a sample processor equipped with a robotic arm (ASPEC system). The DEC filled with ethyl silica (50 mg) was first conditioned with methanol and phosphate buffer, pH 7.4 A 1.0-ml volume of plasma was then applied on the DEC. The washing step was performed with the same buffer. The analytes were eluted with 0.15 ml of methanol, and 0.35 ml of phosphate buffer, pH 6.0, containing sodium perchlorate (0.2 M) were added to the extract before injection into the LC system. The enantiomeric separation of tramadol was achieved using a Chiralcel OD-R column containing cellulose tris-(3,5-dimethylphenylcarbamate) as chiral stationary phase. The mobile phase was a mixture of phosphate buffer, pH 6.0, containing sodium perchlorate (0.2 M) and acetonitrile (75:25). The mobile-phase pH and the NaClO4 concentration were optimized with respect to enantiomeric resolution. The method developed was validated. Recoveries for both enantiomers of tramadol were about 100%. The method was found to be linear in the 2.5–150 ng/ml concentration range [r2=0.999 for (+)- and (−)-tramadol]. The repeatability and intermediate precision at a concentration of 50 ng/ml were 6.5 and 8.7% for (+)-tramadol and 6.1 and 7.6% for (−)-tramadol, respectively.  相似文献   

8.
A novel and rapid method for the separation and determination of R-(−)- and S-(+)-enantiomers of apomorphine in serum by high-performance liquid chromatography with UV detection is reported. The method involved a solid-phase extraction of the R-(−)- and S-(+)-enantiomers of apomorphine and the internal standard R-(−)-propylnorapomorphine from serum using a C8 Bond-Elut column. The HPLC system consisted of a reversed-phase cellulose-based chiral column (Chiralcel OD-R, 250×4.6 mm I.D.) with a mobile phase of 35:65 (v/v) acetonitrile-0.05 M sodium perchlorate (pH 2.0, adjusted with 60–62% perchloric acid) at a flow-rate of 0.5 ml/min with UV detection at 273 nm. The detection and quantitation limits were 10 ng/ml for each enantiomer using 1 ml of serum. Linear calibration curves from 10 to 1000 ng/ml for both R-(−)- and S-(+)-enantiomers show coefficient of determination of more than 0.9995. Precision calculated as %R.S.D. and accuracy calculated as % error were 0.2–4.7 and 3.1–6.9%, respectively, for the R-(−)-enantiomer and 1.3–4.2 and 0.3–6.8%, respectively, for the S-(+)-enantiomer.  相似文献   

9.
A new high-performance liquid chromatographic method with column switching has been developed for the simultaneous determination of metampicillin and its metabolite ampicillin in biological fluids. The plasma, urine and bile samples were injected onto a precolumn packed with LiChrosorb RP-8 (25–40 μm) after simple dilution with an internal standard solution in 0.05 M phosphate buffer (pH 7.0). The polar plasma components were washed out using 0.05 M phosphate buffer (pH 7.0). After valve switching, the concentrated drugs were eluted in the back-flush mode and separated by an Ultracarb 5 ODS-30 column with a gradient system of acetonitrile-0.02 M phosphate buffer (pH 7.0) as the mobile phase. The method showed excellent precision, accuracy and speed with a detection limit of 0.1 μg/ml. The total analysis time per sample was less than 40 min and the coefficients of variation for intra- and inter-assay were less than 5.1%. This method has been successfully applied to plasma, urine and bile samples from rats after intravenous injection of metampicillin.  相似文献   

10.
A high-performance liquid chromatographic assay with UV detection has been developed for the determination of ketoconazole in human plasma. Quantitative extraction was achieved by a single solvent extraction involving a mixture of acetonitrile–n-butyl chloride (1:4, v/v). Ketoconazole and the internal standard (clotrimazole) were separated on a column packed with Inertsil ODS-80A material and a mobile phase composed of water–acetonitrile–tetrahydrofuran–ammonium hydroxide–triethylamine (45:50.2:2.5:0.1:0.1, v/v). The column effluent was monitored at a wavelength of 206 nm with a detector range set at 0.5. The calibration graph was linear in the range of 20–2000 ng/ml, with a lower limit of quantitation of 20.0 ng/ml. The extraction recoveries for ketoconazole and clotrimazole in human plasma were 93±9.7% and 83±10.0%, respectively. The developed method has been successfully applied to a clinical study to examine the pharmacokinetics of ketoconazole in a cancer patient.  相似文献   

11.
The objective of this research was to develop a rapid, sensitive and reliable method for the separation of phosphonodipeptide prodrugs and parent compounds to facilitate the evaluation of cell permeation using in vitro cell culture models. Separation was accomplished isocratically within 10.0 min using a C18 (150×4.6 mm I.D., 3 μm) reversed-phase column. The mobile phase consisted of 5 mM tetrahexyl ammonium (ion-pair reagent) in 0.02 M phosphate buffer pH 6.5-acetonitrile (48.5:51.5, v/v). The flow-rate was 1.1 ml/min with detection at 221 nm. The standard curves were linear (r2>0.999) over the concentration range 1–100 μM. The method was reliable and reproducible, with the limit of quantitation being 1 μM (25 ng on column).  相似文献   

12.
High-performance liquid chromatography with a successive column-switching technique was developed for simultaneous determination of citalopram and its four metabolites in plasma. Plasma samples were injected directly, and the target compounds were purified and concentrated with an inexpensive commercial octadecyl guard column. Then, the six-port valve was switched, and the compounds retained in the column were eluted by the back-flush method using 20 mM phosphate buffer (pH 4.6)-acetonitrile (70:30, v/v) containing 0.1% diethylamine and separated with an ODS column. The compounds were assayed with a fluorescence detector at an excitation wavelength of 249 nm and an emission wavelength of 302 nm. At least 30 plasma samples could be treated with an octadecyl guard column. The limits of quantitation of this method were 2.0 ng/ml for citalopram, desmethylcitalopram, didesmethylcitalopram, citalopram propionic acid and citalopram N-oxide. This method was applied to a pharmacokinetic study in dogs and a toxicokinetic study in rats.  相似文献   

13.
A rapid high-performance liquid chromatographic method for the quantitation of citalopram in human plasma is presented. The sample preparation involved liquid–liquid extraction of citalopram with hexane–isoamyl alcohol (98:2 v/v) and back-extraction of the drug to 0.02 M hydrochloric acid. Liquid chromatography was performed on a cyano column (45×4.6 mm, 5 μm particles), the mobile phase consisted of an acetonitrile–phosphate buffer, pH 6.0 (50:50, v/v). The run time was 2.6 min. The fluorimetric detector was set at an excitation wavelength of 236 nm and an emission wavelength of 306 nm. Verapamil was used as the internal standard. The limit of quantitation was 0.96 ng/ml using 1 ml of plasma. Within- and between-day precision expressed by relative standard deviation was less than 7% and inaccuracy did not exceed 6%. The assay was applied to the analysis of samples from a pharmacokinetic study.  相似文献   

14.
A simple, rapid and reproducible high-performance liquid chromatographic assay for cisapride and norcisapride in human plasma is described. Samples of plasma (150 μl) were extracted using a C18 solid-phase cartridge. Regenerated tubes were eluted with 1.0 ml of methanol, dried, redissolved in 150 μl of methanol and injected. Chromatography was performed at room temperature by pumping acetonitrile–methanol–0.015 M phosphate buffer pH 2.2–2.3 (680:194:126, v/v/v) at 0.8 ml/min through a C18 reversed-phase column. Cisapride, norcisapride and internal standard were detected by absorbance at 276 nm and were eluted at 4.3, 5.3 and 8.1 min, respectively. Calibration plots in plasma were linear (r>0.998) from 10 to 150 ng/ml. Intraday precisions for cisapride and norcisapride were 3.3% and 5.4%, respectively. Interday precisions for cisapride and norcisapride were 9.6% and 9.0%, respectively. Drugs used which might be coadministered were tested for interference.  相似文献   

15.
A rugged, simple, and selective method for the determination of danofloxacin and its primary metabolite, N-desmethyldanofloxacin, in cattle (liver, muscle, kidney, and fat) and chicken (liver and muscle) tissues was developed. The method is selective for danofloxacin and N-desmethyldanofloxacin over other veterinary important fluoroquinolones, such as enrofloxacin, ciprofloxacin, norfloxacin, and ofloxacin. Selectivity is achieved through a combination of extraction, chromatography, and fluorescence detection. The analytes were extracted from homogenized tissues using a methanolperchloric-phosphoric acid solution. After centrifugation, direct injection of extraction supernate was possible. The limit of quantitation was 20 pg on column. Separation was achieved on an Inertsil C8 (5 μm, 100 Å) column with dimensions of 250×4.6 mm I.D. The mobile phase consisted of 0.05 M phosphate buffer (pH 3.5)-acetonitrile (88:12). A fluorescence detector was utilized with an excitation wavelenght of 280 nm and an emission wavelength of 440 nm. The assay was accurate and reproducible within the range of 10 to 500 ng/g for both danofloxacin and N-desmethyldanofloxacin. Intra-assay accuracy was between 98 and 101%, and precision was less than 4%. Inter-assay accuracy was between 99 and 102%, while precision was less than 2%. Recoveries for both analytes over the dynamic range were greater than 90% for all the tissues.  相似文献   

16.
We present a method for the enantioselective analysis of propafenone in human plasma for application in clinical pharmacokinetic studies. Propafenone enantiomers were resolved on a 10-μm Chiralcel OD-R column (250×4.6 mm I.D.) after solid-phase extraction using disposable solid-phase extraction tubes (RP-18). The mobile phase used for the resolution of propafenone enantiomers and the internal standard propranolol was 0.25 M sodium perchlorate (pH 4.0)–acetonitrile (60:40, v/v), at a flow-rate of 0.7 ml/min. The method showed a mean recovery of 99.9% for (S)-propafenone and 100.5% for (R)-propafenone, and the coefficients of variation obtained in the precision and accuracy study were below 10%. The proposed method presented quantitation limits of 25 ng/ml and was linear up to a concentration of 5000 ng/ml of each enantiomer.  相似文献   

17.
A method for the quantification of mycophenolate mofetil (MMF, CellCept) in plasma using solid-phase extraction and HPLC is described here. A solution of internal standard is added to a 0.5-ml plasma aliquot. The resulting sample is treated with water and dilute HCl and applied to a C18 solid-phase extraction column. After a water wash, the MMF and internal standard are eluted with methanol-0.1 M citrate-phosphate buffer, pH 2.6 (80:20, v/v). A 20-μl aliquot of the eluate is injected onto a C18 column (5 μm particle size, 150 × 4.6 mm I.D.) and eluted at ambient temperature with acetonitrile-0.05 M citrate-phosphate buffer, pH 3.6, containing 0.02 M heptanesulfonic acid (41:59, v/v). Quantification is achieved by UV detection at 254 nm. The method is reproducible, accurate and specific for MMF. Using 0.5 ml of plasma for analysis, the quantification limit is 0.400 μg/ml and the range is 0.400–20 μg/ml. Based on the stability profile of MMF in plasma, it is recommended that blood samples collected following intravenous infusion be immediately stored on ice and that plasma be prepared rapidly, immediately stored frozen at −80°C and analyzed within four months of collection.  相似文献   

18.
A simple and sensitive column-switching high-performance liquid chromatographic method was developed for the simultaneous determination of omeprazole and its two main metabolites, 5-hydroxyomeprazole and omeprazole sulfone, in human plasma. Omeprazole, its two metabolites and lansoprazol as an internal standard were extracted from 1 ml of alkalinized plasma sample using diethyl ether-dichloromethane (45:55, v/v). The extract was injected into a column I (TSK-PW precolumn, 10 microm, 35 mm x 4.6 mm i.d.) for clean-up and column II (Inertsil ODS-80A column, 5 microm, 150 mm x 4.6mm i.d.) for separation. The mobile phase consisted of phosphate buffer-acetonitrile (92:8 v/v, pH 7.0) for clean-up and phosphate buffer-acetonitrile-methanol (65:30:5 v/v/v, pH 6.5) for separation, respectively. The peak was detected with an ultraviolet detector set at a wavelength of 302 nm, and total time for chromatographic separation was approximately 25 min. The validated concentration ranges of this method were 3-2000 ng/ml for omeprazole, 3-50 ng/ml for 5-hydroxyomeprazole and 3-1000 ng/ml for omeprazole sulfone. Mean recoveries were 84.3% for omeprazole, 64.3% for 5-hydroxyomeprazole and 86.1% for omeprazole sulfone. Intra- and inter-day coefficient variations were less than 5.1 and 6.6% for omeprazole, 4.6 and 5.0% for 5-hydroxyomeprazole and 4.6 and 4.9% for omeprazole sulfone at the different concentrations. The limits of quantification were 3 ng/ml for omeprazole and its metabolites. This method was suitable for use in pharmacokinetic studies in human volunteers, and provides a useful tool for measuring CYP2C19 activity.  相似文献   

19.
For the determination of cisapride from serum samples, an automated microbore high-performance liquid chromatographic method with column switching has been developed. After serum samples (100 μl) were directly injected onto a Capcell Pak MF Ph-1 pre-column (10×4 mm I.D.), the deproteinization and concentration were carried out by acetonitrile–phosphate buffer (20 mM, pH 7.0) (2:8, v/v) at valve position A. At 2.6 min, the valve was switched to position B and the concentrated analytes were transferred from MF Ph-1 pre-column to a C18 intermediate column (35×2 mm I.D.) using washing solvent. By valve switching to position A at 4.3 min, the analytes were separated on a Capcell Pak C18 UG 120 column (250×1.5 mm I.D.) with acetonitrile–phosphate buffer (20 mM, pH 7.0) (5:5, v/v) at a flow-rate of 0.1 ml/min. Total analysis time per sample was 18 min. The linearity of response was good (r=0.999) over the concentration range of 5–200 ng/ml. The within-day and day-to-day precision (CV) and inaccuracy were less than 3.7% and 3.8%, respectively. The mean recovery was 96.5±2.4% with the detection limit of 2 ng/ml.  相似文献   

20.
A high-performance liquid chromatographic–electrochemical assay was developed and validated for the quantitation of BMS-181885 (I), an anti-migraine agent, in monkey plasma. The assay involved a solid-phase extraction of I and BMY-46317 (internal standard; I.S.) on a 1-ml cyano cartridge using the automatic solid-phase extraction cartridge (ASPEC) system. Immediately following the conditioning of the cyano column (3 ml of methanol and 2 ml of 1% glacial acetic acid), plasma (0.25 ml) was loaded on to the column. The column was then washed with a 3 ml of 0.1 M ammonium acetate buffer (pH 6). The final elution of the analytes was performed using 2 ml of methanol. The eluate was then evaporated to dryness (gentle stream of nitrogen at 40°C) and the residue was dissolved in the mobile phase and injected on to a YMC basic column (15 cm×4.6 mm; 5 μm particle size) at a flow-rate of 1 ml/min. A mixture of 0.1 M ammonium acetate at pH 6–acetonitrile–methanol (70:20:10, v/v) was used as the mobile phase. Standard curves, with a lower limit of quantitation of 2 ng/ml of I were linear (r2≥0.998; range: 2–50 ng/ml). Based on the analysis of the quality control (QC) samples, the assay was both accurate and precise. The stability of I was established following freeze–thaw cycles and storage at or below −20°C. The extraction recovery of I from monkey plasma was about 82%. The validated assay method was applied to determine the pharmacokinetics of I in monkeys following a single 1 mg/kg intravenous dose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号