首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simultaneous determination of vanilmandelic acid, homovanillic acid, creatinine and uric acid using capillary electrophoresis was investigated. The optimum conditions of buffer concentration, pH and surfactant concentration were studied, and high resolution was obtained using a 30 mM phosphate buffer (pH 7.0) containing 150 mM sodium dodecyl sulfate. The detection was by UV absorbance at 245 nm and the column was a fused-silica capillary of 67 cm×75 μm I.D.. The determination of these metabolites in human urine was completed within 15 min without any interferences.  相似文献   

2.
A chitosan-glutaraldehyde crosslinked uricase was immobilized onto Prussian blue nanoparticles (PBNPs) absorbed onto carboxylated multiwalled carbon nanotube (c-MWCNT) and polyaniline (PANI) layer, electrochemically deposited on the surface of Au electrode. The nanohybrid-uricase electrode was characterized by scanning electron microscopic (SEM), Fourier transform infrared spectroscopy (FTIR) and cyclic voltammetry. An amperometric uric acid biosensor was fabricated using uricase/c-MWCNT/PBNPs/Au electrode as working electrode, Ag/AgCl as standard and Pt wire as auxiliary electrode connected through a potentiostat. The biosensor showed optimum response within 4 s at pH 7.5 and 40 °C, when operated at 0.4 V vs. Ag/AgCl. The linear working range for uric acid was 0.005-0.8 mM, with a detection limit of 5 μM. The sensor was evaluated with 96% recovery of added uric acid in sera and 4.6 and 5.4% within and between batch of coefficient of variation respectively and a good correlation (r = 0.99) with standard enzymic colorimetric method. This sensor measured uric acid in real serum samples. The sensor lost only 37% of its initial activity after its 400 uses over a period of 7 months, when stored at 4 °C.  相似文献   

3.
A xanthine oxidase enzyme electrode (xanthine oxidase immobilized on electrochemically modified graphite and conveniently coated with gelatine electrode working surface) for quantitative analysis of xanthine is proposed. The detection of thus developed electrochemical system is based on the electroreduction of hydrogen peroxide generated in enzyme layer and offered L-ascorbic and uric acid reducing interference effect on the substrate determination. At a working potential -50 mV (vs. Ag/AgCl) the detection limit of 4.5 microM and the linearity of the amperometric signal up to substrate concentration of about 40 microM were found. At that working potential, the electrode is practically inert towards L-ascorbic- and uric acid present. The response time did not exceed 2 min.  相似文献   

4.
In this paper we propose a new fast free zone capillary electrophoresis method for the simultaneous determination of ascorbic acid (AA) and uric acid (UA) in human plasma. We investigated the effect of analytical parameters, such as concentration and pH of borate running buffer, cartridge temperature, and sample treatment, on resolution, migration times, corrected peak areas, and efficiency. A good separation was achieved using a 60.2-cmx75-microm uncoated silica capillary and 100 mmol/L sodium borate buffer, pH 8, when metaphosphoric acid was employed as protein precipitant, in less than 4 min. These conditions gave a good reproducibility of migration times (CV 0.35 and 0.34%) and peak areas (CV 3.2 and 3.1%) for ascorbate and urate, respectively. The limit of detection was 0.5mg/L for both analytes when the detection was performed at 254 nm for AA and at 292 nm for UA. We compared the present method with a validated capillary electrophoresis assay by measuring plasma urate and ascorbate in 32 normal subjects and the obtained data were analyzed by the Passing and Bablok regression.  相似文献   

5.
A novel analytical microsystem with fully integrated electrodes for electrophoresis and amperometrical detection is described. With respect to the lab-on-a-chip concept a capillary electrophoresis (CE) microsystem has been fabricated with a total of six gold electrodes for sample injection, separation and electrochemical detection using standard microfabrication technologies. The device is a ready-to-use system that does not need any extra mechanical apparatus for electrode insertion. The CE-chip has successfully been tested by measuring hydrogen peroxide, ascorbic acid and uric acid simultaneously. All three oxidizable species could be detected in less than 70 s. Glucose was detected by performing an enzymatic reaction along the separation channel. The microsystem showed a very good reproducibility.  相似文献   

6.
A three-dimensional (3D) continuous and interconnected network graphene foam (GF) was synthesized by chemical vapor deposition using nickel foam as a template. The morphologies of the GF were observed by scanning electron microscopy. X-ray diffraction and Raman spectroscopy were used to investigate the structure of GF. The graphene with few layers and defect free was closely coated on the backbone of the 3D nickel foam. After etching nickel, the GF was transferred onto indium tin oxide (ITO) glass, which acted as an electrode to detect uric acid using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The GF/ITO electrode showed a high sensitivity for the detection of uric acid: approximately 9.44 mA mM−1 in the range of 25 nM–0.1 μM and 1.85 mA mM−1 in the range of 0.1–60 μM. The limit of detection of GF/ITO electrode for uric acid is 3 nM. The GF/ITO electrode also showed a high selectivity for the detection of uric acid in the presence of ascorbic acid. This electrode will have a wide range of potential application prospects in electrochemical detection.  相似文献   

7.
An amperometric uric acid biosensor was fabricated by immobilizing uricase (EC 1.7.3.3) onto gold nanoparticle (AuNP)/multiwalled carbon nanotube (MWCNT) layer deposited on Au electrode via carbodiimide linkage. Determination of uric acid was performed by oxidation of enzymically generated H2O2 at 0.4 V. The sensor showed optimal response within 7 s at 40 °C in 50 mM Tris–HCl buffer (pH 7.5). The linear working range of the biosensor was 0.01–0.8 mM. The limit of detection (LOD) was 0.01 mM. The sensor measured uric acid levels in serum of healthy individuals and persons suffering from gout. The analytical recoveries of the added uric acid, 10 and 20 mg L–1, were 98.0% and 96.5%, respectively. Within- and between-batch coefficients of variation were less than 5.6% and less than 4.7%, respectively. A good correlation (r = 0.998) was obtained between serum uric acid values by the standard enzymic colorimetric method and the current method. A number of serum substances had practically no interference. The sensor was used in more than 200 assays and had a storage life of 120 days at 4 °C.  相似文献   

8.
Xanthine, a precursor of uric acid, is measured here in serum, urine, and cerebrospinal fluids by capillary electrophoresis (CE) after deproteinization with acetonitrile. The migration time is about 7.5 min with a minimum detection limit of 0.4 mg/l. Different purines and pyrimidines did not interfere with the determination. The method demonstrates the suitability of the CE for determination of small molecules present in a complex matrix at levels of ca. 1 mg/l. It also demonstrates that acetonitrile deproteinization is a simple and effective method for preparing samples for CE, allowing a large volume to be introduced into the capillary.  相似文献   

9.
An uric acid biosensor fabricated from a uricase-immobilized eggshell membrane and an oxygen electrode was presented. The detection schemes involve the enzymatic reactions of the uricase leading to the depletion of dissolved oxygen level upon exposure to uric acid solution. The decrease in oxygen level was monitored and related to the uric acid concentration. The scanning electron micrographs show the microstructure of the eggshell membrane within which the uricase is successfully immobilized. The effects of enzyme loading, pH, temperature, and phosphate buffer concentration on the response of the biosensor were investigated in detail. The uric acid biosensor has a linear response range of 4.0-640 microM with a detection limit of 2.0 microM (S/N=3). The response time was less than 100 s. The biosensor exhibited good repeatable response to a 0.10mM uric acid solution with a relative standard deviation of 3.1% (n=7). The reproducibility of fabrication of the biosensors using four different membranes was good with a R.S.D. of 3.2%. The biosensor showed extremely good stability with a shelf-life of at least 3 months. Some common potential interferents in samples such as glucose, urea, ascorbic acid, lactic acid, glycine, DL-alpha-alanine, DL-cysteine, KCl, NaCl, CaCl2, MgSO4, and NH4Cl showed no interferences on the response of the uric acid biosensor. The biosensor was successfully applied to determine the uric acid level in some human serum and urine samples, and the results agreed well with those obtained by a commercial colorimetric assay kit.  相似文献   

10.
As large numbers of people are suffering from gout, an accurate, rapid, and sensitive method for the detection of gout biomarker, uric acid, is important for its effective control, diagnosis, and therapy. Although colorimetric detection methods based on uricase have been considered, they still have limitations as they produce toxic H2O2 and are expensive and not stable. Here, a novel uricase-free colorimetric method was developed for the sensitive and selective detection of uric acid based on the light-induced oxidase-mimicking activity of a new photosensitized covalent organic framework (COF) (2,4,6-trimethylpyridine-3,5-dicarbonitrile–4-[2-(4-formylphenyl)ethynyl]benzaldehyde COF [DCTP–EDA COF]). DCTP–EDA COF has a strong ability to harvest visible light, and it could catalyze the oxidation of 1,4-dioxane, 3,3′,5,5′-tetramethylbenzidine under visible light irradiation to produce obvious color changes. With the addition of uric acid, however, the significant inhibition of the oxidase-mimicking activity of DCTP–EDA COF remarkably faded the color, and thus uric acid could be colorimetrically detected in the range of 2.0–150 μM with a limit of detection of 0.62 μM (3σ/K). Moreover, the present colorimetric method exhibited high selectivity; uric acid level in serum samples was successfully determined, and the recoveries ranged from 96.5% to 105.64%, suggesting the high accuracy of the present colorimetric method, which demonstrates great promise in clinical analysis.  相似文献   

11.
Uric acid (2,6,8-trihydroxypurine) is a metabolic product of purine, which is one of the important markers of human health. The development of a rapid, facile, highly sensitive, and selective method for uric acid detection is critical for the diagnosis of related diseases and is still a strategic challenge. In this study, we developed a highly sensitive and selective colorimetric assay for the detection of uric acid using biogenic palladium nanoparticles (Pd NPs). The synthesized nanoparticles were shown to acquire peroxidase mimetic activity that oxidized 3,3′,5,5′-tetramethylbenzidine and produced a blue colour in an assay. The developed colorimetric assay is instrument-free detection of uric acid with a limit of detection of 0.05 μM and a 1.11 μM limit of quantification (LOQ). This is the first report determining the LOQ for a colorimetric assay that gives the lowest quantity of analyte that can be evaluated with more precision under the specified conditions of the analysis. The developed assay had a linear response at low uric acid concentrations of 0.05 to 1 μM and a 0.99841 linear regression correlation coefficient. This colorimetric detection provides a rapid, cost-effective, and easy-to-use platform for the clinical diagnosis of uric acid biomarkers.  相似文献   

12.
Measurement of the uric acid level in the body can be improved by biosensing with respect to the accuracy, sensitivity and time consumption. This study has reported the immobilization of uricase onto graphene oxide (GO) and its function for electrochemical detection of uric acid. Through chemical modification of GO using 1-ethyl-3-(dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysulfosuccinimide (NHS) as cross-linking reagents, the enzyme activity of the immobilized uricase was much comparable to the free enzyme with 88% of the activity retained. The modified GO-uricase (GOU) was then subjected to electrocatalytic detection of uric acid (UA) via cyclic voltammetry (CV). For that reason, a glassy carbon electrode (GCE) was modified by adhering the GO along with the immobilized uricase to facilitate the redox reaction between the enzyme and the substrate. The modified GOU/GCE outperformed a bare electrode through the electrocatalytic activity with an amplified electrical signal for the detection of UA. The electrocatalytic response showed a linear dependence on the UA concentration ranging from 0.02 to 0.49 mM with a detection limit of 3.45 μM at 3σ/m. The resulting biosensor also exhibited a high selectivity towards UA in the presence of other interference as well as good reproducibility.  相似文献   

13.
Oxidative stress has been proposed as one of the potential causes for infertility in men. Ascorbic acid and uric acid play important role in protection of spermatozoa against free radicals. A method for the simultaneous determination of ascorbic acid and uric acid in human seminal plasma using HPLC with UV detection and investigation their clinical significance as antioxidants protecting male germ cells against oxidative damage are described. Semen samples were obtained from consecutive male partners of couples presenting for a fertility evaluation. After liquefaction, the samples were centrifuged and the supernatants were diluted with dithiothreitol solution and after a filtration injected onto an analytical column. For the separation, a reverse-phase column MAG 1, 250 mm × 4.6 mm, Labiospher PSI 100 C18, 5 μm, was used. The mixture of ethanol and 25 mmol/L sodium dihydrogenphosphate (2.5:97.5, v/v), pH 4.70 was used as a mobile phase. Analytical performance of this method is satisfactory for both ascorbic acid and uric acid: the intra-assay and inter-assay coefficients of variation were below 10%. Quantitative recoveries from spiked seminal plasma were between 92.1 and 102.1%. We have found no significant differences in both ascorbic acid and uric acid concentration between the smokers and non-smokers (351.0 ± 237.9 μmol/L and 323.7 ± 99.5 μmol/L vs. 444.8 ± 245.5 μmol/L and 316.6 ± 108.9 μmol/L, p>0.05). This assay is a simple and reproducible HPLC method for the simultaneous measurement of ascorbic acid and uric acid in human seminal plasma.  相似文献   

14.
Serum uric acid (SUA) is a new therapeutic target for non‐alcoholic fatty liver disease (NAFLD). In this study, we introduced a chemiluminescence (CL) method combined with microarray technology and a simple fabrication procedure to obtain a highly sensitive SUA probe based on a mesoporous metal oxide nanomaterial. The high‐throughput method was based on the generation of H2O2 from SUA by immobilized uricase and its measurement by a CL reaction catalyzed by mesoporous metal oxide nanomaterials. The CL probe was designed for SUA The linear range of the uric acid concentration was 0.6–9 μM and the detection limit was 0.1 μM. In comparison with the other SUA detection techniques, this method has the advantages of a low detection limit, high sensitivity and simplicity. A new sensitive high‐throughput approach was obtained for the determination of SUA.  相似文献   

15.
目的:探讨血清尿酸水平与老年轻度高血压患者的内皮功能相关性。方法:选取我院2020年1月到2020年12月共收治的200例老年轻度高血压患者作为研究对象,所有患者均为未使用过降压药物治疗,将其分为轻度高血压组。另选取同期收治的200例高血压常规药物治疗患者作为重度高血压组与200名健康者作为对照组,对比三组患者血清尿酸水平与血管内皮功能。对观察组所有患者依照血清尿酸水平进行分组,将血清尿酸水平208-360μmol/L的患者分为低尿酸组,共计136例,将血清尿酸水平≥360μmol/L的患者分为高尿酸组,共计64例。对比两组患者的一般临床指标、血管内皮功能与氧化应激指标,并分析血清尿酸水平与老年轻度高血压患者的内皮功能相关性。结果:重度、轻度高血压组与对照组患者NO、ET-1、SUA水平对比差异显著,具有统计学意义(P<0.05);高尿酸组与低尿酸组患者TG、TC、DBP、SBP水平对比无明显差异(P>0.05),高尿酸组患者Cr水平高于低尿酸组,组间对比,差异具有统计学意义(P<0.05);高尿酸组与低尿酸组患者T-AOC、GSH-Px、LHP、MDA、NO、ET-1水平对比差异显著,高尿酸组患者LHP、MDA和ET-1水平明显高于低尿酸组,高尿酸组患者T-AOC、GSH-Px、NO水平明显低于低尿酸组,组间对比,差异具有统计学意义(P>0.05);Spearman相关分析结果显示:TG、TC、Cr、DBP、SBP与血尿酸水平无明显相关性(P>0.05),T-AOC、GSH-Px、NO与血清尿酸水平呈负相关(P<0.05),LHP、MDA、ET-1与血清尿酸水平呈正相关(P<0.05)。结论:血清尿酸水平与老年轻度高血压患者的内皮功能具有明显相关性,而且证明血尿酸水平的升高可能由患者氧化应激导致,因此氧化应激水平也是引起血管内皮功能障碍的一种潜在机制,希望本研究结果能够为高血压患者的疾病控制提供参考意见。  相似文献   

16.
We report the use of free solution capillary electrophoresis to identify and quantify low-molecular-mass compounds found in normal and uremic serum as well as in hemodialysate fluid. The method reported provides a multicomponent analysis, allowing a single-step screening for more than 19 metabolites in less than 16 min. Serum samples from healthy individuals and from patients who have been diagnosed with chronic renal failure are analyzed using a borate buffer system at pH 9.0, and an extended light path capillary. Several ionic sample constituents are identified by electrophoretic mobility, UV spectra, and spiking with authentic standards. An analysis of the relative concentration of several metabolites, including hypoxanthine, pseudouridine, hippuric acid, and uric acid is presented. Each of these four metabolites is found in both normal and uremic serum samples (limits of detection 1 to 6 μM). Moreover, each of these metabolites is present at significantly elevated levels in uremic patients. The method reported is shown to have promising clinical utility for profiling serum sample constituents, and for quantitative determination of a few important metabolites.  相似文献   

17.
A rapid, easy, and accurate method for the determination of uric acid and ascorbic acid in human serum by reversed-phase high-performance liquid chromatography with electrochemical detection has been developed. Human serum (0.5 ml) was mixed with 1.5 ml of an aqueous solution containing 2.0% metaphosphoric acid and the mixture was centrifuged at 3000g for 30 min. The supernatant was passed through a membrane filter to remove the particulate matter. Ten microliters of the filtrate was injected into the chromatographic system employed in this study. Complete separation of uric acid and ascorbic acid was achieved in about 2 min. The assay limit for quantitation was about 10 pg for uric acid and ascorbic acid under the present chromatographic conditions. The analytical recoveries of uric acid and ascorbic acid in human serum samples were found to be almost 100%.  相似文献   

18.
Although the separation efficiency of capillary electrophoresis (CE) is much higher than that of other chromatographic methods, it is sometimes difficult to adequately separate the complex ingredients in biological samples. This article describes how one effective and simple way to develop the separation efficiency in CE is to add some modifiers to the running buffer. The suitable running buffer modifier β-cyclodextrin (β-CD) was explored to fast and completely separate four phenylethanoid glycosides and aglycones (homovanillyl alcohol, hydroxytyrosol, 3,4-dimethoxycinnamic acid, and caffeic acid) in Lamiophlomis rotata (Lr) and Cistanche by capillary zone electrophoresis with ultraviolet (UV) detection. It was found that when β-CD was used as running buffer modifier, a baseline separation of the four analytes could be accomplished in less than 20 min and the detection limits were as low as 10−3 mg L−1. Other factors affecting the CE separation, such as working potential, pH value and ionic strength of running buffer, separation voltage, and sample injection time, were investigated extensively. Under the optimal conditions, a successful practical application on the determination of Lr and Cistanche samples confirmed the validity and practicability of this method.  相似文献   

19.
Commercially available uricase and peroxidase have been immobilized onto alkylamine glass and arylamine glass beads respectively. A discrete method has been developed to determine uric acid in serum using immobilized uricase and peroxidase. The method is based on generation of H2O2 from serum uric acid by immobilized uricase and its measurement by a colour reaction catalyzed by immobilized peroxidase. The minimum detection limit of the method was 8 microg/0.1 ml sample. The mean analytical recovery of added uric acid in serum was 87.5%. The within and between assay coefficient of variation (C.V.) were <6.58% and <10.77% respectively. The serum uric acid in apparently healthy adults and persons suffering from different disease was found to be 25-55 microg/ml, 32+/-2.25 (range, mean+/-S.D.) and 55-200 microg/ml; 52+/-6.4 (range, mean+/-S.D.) respectively by our method. A good correlation (r = 0.8170) was obtained between the serum urate values by this method and with those obtained by commercial Enzo-kit method.  相似文献   

20.
【背景】高尿酸症由血液中尿酸含量明显升高而导致,利用乳酸菌对人体的益生作用缓解高尿酸血症越来越受到关注。【目的】获得具有降解尿酸能力的乳酸菌复合菌系与纯培养菌株。【方法】以泡菜为样品来源,以尿酸为底物,采用MRS培养基筛选降解尿酸的乳酸菌复合菌系,通过高效液相色谱法测定复合菌系对尿酸的降解能力。【结果】得到一组乳酸菌复合菌系,当培养温度为37 °C、pH值为6.20、静置培养72 h后复合菌系对尿酸的降解率为12.08%;通过优化培养条件,当该菌系在以牛肉膏为单一氮源、初始pH值为5.00、温度为35 °C的条件下培养72 h,尿酸降解率上升至17.19%,降解率比优化前提高了42.3%;从该菌系中分离出两株具有尿酸降解能力的菌株UA-1与UA-2,它们的尿酸降解率分别为10.85%和8.65%;通过形态学观察和16S rRNA基因序列分析,经鉴定两株菌均为布氏乳杆菌(Lactobacillus buchneri)。将两株单菌组合降解尿酸试验发现,UA-1与UA-2比例为2:1的尿酸降解率为20.2%,比原复合菌系的降解能力提高了67.22%。【结论】研究证明了乳酸菌复合菌系对尿酸的降解能力优于单个菌株,为后续利用乳酸菌复合菌系应用提供了数据支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号