首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 748 毫秒
1.
2.
Ubiquitin carboxyl-terminal hydrolase 1 (UCH-L1) can be detected in mouse testicular germ cells, mainly spermatogonia and somatic Sertoli cells, but its physiological role is unknown. We show that transgenic (Tg) mice overexpressing EF1alpha promoter-driven UCH-L1 in the testis are sterile due to a block during spermatogenesis at an early stage (pachytene) of meiosis. Interestingly, almost all spermatogonia and Sertoli cells expressing excess UCH-L1, but little PCNA (proliferating cell nuclear antigen), showed no morphological signs of apoptosis or TUNEL-positive staining. Rather, germ cell apoptosis was mainly detected in primary spermatocytes having weak or negative UCH-L1 expression but strong PCNA expression. These data suggest that overexpression of UCH-L1 affects spermatogenesis during meiosis and, in particular, induces apoptosis in primary spermatocytes. In addition to results of caspases-3 upregulation and Bcl-2 downregulation, excess UCH-L1 influenced the distribution of PCNA, suggesting a specific role for UCH-L1 in the processes of mitotic proliferation and differentiation of spermatogonial stem cells during spermatogenesis.  相似文献   

3.
The interplay of proliferation and differentiation is essential for normal development and organogenesis. Geminin is a cell cycle regulator which controls licensing of origins for DNA replication, safeguarding genomic stability. Geminin has also been shown to regulate cellular decisions of self-renewal versus commitment of neuronal progenitor cells. We discuss here our recent analysis of mice with conditional inactivation of the Geminin gene in the immune system. Our data indicate that Geminin is not indispensable for every cell division: in the absence of Geminin, development of progenitor T-cells appears largely unaffected. In contrast, rapid cell divisions, taking place in vitro upon TCR receptor activation or in vivo during homeostatic proliferation, are defective.Key words: Geminin, Cdt1, stem cells, licensing, self-renewal, differentiation, cell cycle duration  相似文献   

4.
We previously showed that mammalian FSH stimulates the proliferation of newt spermatogonia and induces their differentiation into primary spermatocytes in vitro. In the current study, to examine a possibility that stem cell factor (SCF) is involved in the proliferation of newt spermatogonia and/or their differentiation into primary spermatocytes, human recombinant SCF (rhSCF) was added to organ culture of testicular fragments. rhSCF was found to stimulate the spermatogonial proliferation and the spermatogonia progressed to the seventh generation that is the penultimate stage before primary spermatocyte stage. However, the spermatogonia did not differentiate into primary spermatocytes, but instead died of apoptosis. These results indicate that rhSCF promotes the proliferation of newt spermatogonia, but not the initiation of meiosis.  相似文献   

5.
The conversion from mitosis to meiosis is a phenomenon specific to the cellular progenitors of gametes; however, the mechanism or mechanisms responsible for this conversion are poorly understood. To this end, some morphological and molecular changes that occur during the initiation of meiosis in newt spermatogenesis are reported in the present paper. In situ morphologic studies revealed that spermatogonial stages comprise two phases: early mitotic generations (G1-G4) and late mitotic generations (G5-G8). Morphologic conversion from secondary spermatogonia to primary spermatocytes occurred during the intermediate stage of premeiotic DNA replication. The expression of proliferating cell nuclear antigen (PCNA), a DNA polymerase-delta auxiliary protein, in spermatogonia was weak in G1, highest during DNA synthesis (S), decreased in G2 and was not detectable in dividing cells. Complementary DNA for newt homologs of DMC1 (disrupted meiotic cDNA), which is an Escherichia coli RecA-like protein specifically active during meiosis, were isolated. The newt Dmc1 mRNA was first expressed significantly during the preleptotene stage and this continued into the spermatid stage. These observations present a basis for investigating the mechanism(s) controlling the conversion of newt spermatogonial cells from mitosis to meiosis.  相似文献   

6.
PUF proteins are a conserved family of RNA binding proteins that regulate RNA stability and translation by binding to specific sequences in 3'-untranslated regions. Drosophila PUMILIO and C. elegans FBF are essential for self-renewal of germline stem cells, suggesting that a common function of PUF proteins may be to sustain mitotic proliferation of stem cells. Here, we show that PUF-8, the C. elegans PUF most related to PUMILIO, performs a different function in germ cells that have begun meiosis: in primary spermatocytes, puf-8 is required to maintain meiosis and prevent the return to mitosis. Primary spermatocytes lacking PUF-8 complete meiotic prophase but do not undergo normal meiotic divisions. Instead, they dedifferentiate back into mitotically cycling germ cells and form rapidly growing tumors. These findings reveal an unexpected ability for germ cells that have completed meiotic prophase to return to the mitotic cycle, and they support the view that PUF proteins regulate multiple transitions during germline development.  相似文献   

7.
The activity of ornithine decarboxylase (ODC) and levels of polyamines were measured in the testes of Asterias vulgaris collected throughout an annual spermatogenic cycle. Samples of the testes were prepared for light and electron microscopy to observe the associated changes in the cytology of germinal cells. The specific activity of ODC increased at the onset of testicular growth, decreased during the coldest period of the winter when testicular growth was minimal, and increased again early in the spring when testes grew maximally. Increased activity of ODC resulted in increased levels of polyamines and was correlated with either mitotic or meiotic germinal cell divisions, or both. Spermine levels were always greater than putrescine, followed by spermidine. Highest levels of polyamine synthesis coincided with the onset of spermatogonial proliferation during the fall and with the period of meiotic differentiation and spermiogenesis in the spring. Mid-summer (July) testes were small (0.3-0.5 gonad index (GI)) and contained amitotic spermatogonia arrested in G(1) of the cell cycle. Mitotic and pre-meiotic testes (October/November) increased slightly in size (0.3-1.4 GI) and contained actively dividing spermatogonia, most of which differentiated into primary spermatocytes. Testes from February and March were large (1-6.75 GI), but the proliferative status of their spermatogonia and primary spermatocytes varied. Spermatogonia and primary spermatocytes from early February testes were not dividing. In testes obtained in March, both spermatogonial mitosis and meiosis of spermatocytes resumed, coincident with increased field water temperatures.  相似文献   

8.
9.
Abé S 《Zoological science》2004,21(7):691-704
Meiosis is an event that occurs prerequisitely and specifically in gametogenesis. However, the mechanisms of conversion from mitosis to meiosis are poorly understood. I will review the results so far obtained by us using newt testis as a model system, and discuss about the extrinsic mechanism(s) controlling the conversion from mitosis to meiosis. In the newt spermatogonia enter meiosis in the 8th generation after 7 mitotic divisions. We developed organ and reaggregate culture systems with a chemically defined medium in which porcine follicle-stimulating hormone (pFSH) promotes spermatogonial proliferation and differentiation into primary spermatocytes. Human recombinant stem cell factor (RhSCF) in vitro stimulates the spermatogonial proliferation and progression to the 7th generation, but not the differentiation into primary spermatocytes; instead they die of apoptosis. The reason why rhSCF does not stimulate meiosis entrance seems to be due to the low level expression of c-kit protein at the 7th generation of spermatogonia. Ovine PRL induces apoptosis in the 7th generation of spermatogonia in vivo and in vitro. Incubation of newts at low temperature causes spermatogonial apoptosis by the elevation of plasma PRL titer. In the absence of FSH in organ culture spermatogonia can progress until the 7th generation, but the 8th generation never appear due to the apoptosis. Altogether there seems to be a regulatory checkpoint for entrance into meiosis in the 7th generation. Spermatogonia could circumvent the checkpoint by the influence of some factor(s) produced by Sertoli cells upon activation by FSH. Trial to isolate factor(s) responsible for the meiosis-initiation is now underway.  相似文献   

10.
The effect of temperature on testicular DNA synthesis in mice was studied in vitro. By using cultures of cryptorchid testis, DNA synthesis of differentiated germ cells, such as intermediate and type B spermatogonia and resting primary spermatocytes, was shown to be temperature-sensitive, while that of undifferentiated type A spermatogonia was not. DNA synthesis of non-germ cells was not temperature-sensitive. This temperature sensitivity of germ cells in DNA synthesis may be one cause of the thermal inhibition of germ cell differentiation.  相似文献   

11.
The effect of temperature on testicular DNA synthesis in mice was studied in vitro. By using cultures of cryptorchid testis, DNA synthesis of differentiated germ cells, such as intermediate and type B spermatogonia and resting primary spermatocytes, was shown to be temperature-sensitive, while that of undifferentiated type A spermatogonia was not. DNA synthesis of non-germ cells was not temperature-sensitive. This temperature sensitivity of germ cells in DNA synthesis may be one cause of the thermal inhibition of germ cell differentiation.  相似文献   

12.
Recent studies in mammals have revealed the heterogeneity of spermatogonial populations which contain differentiated and undifferentiated cells that further divide into actual stem cells and potential stem cells. In fish however, there are no functional definitions, and very few molecular markers, for germ cells. In our present study, specific antibodies were raised against Sycp3, Plzf and Cyclin B3 in zebrafish and then used to determine the localization of these proteins in the testis. We wished to confirm whether these molecules were potential markers for spermatocytes and spermatogonia. Immunohistochemical observations revealed that Sycp3 is specifically localized in spermatocytes in typical nuclear patterns at each meiotic stage. Plzf was found to be localized in the nucleus of both type A and type B spermatogonia until the 8-cell clone, similar to the pattern in Plzf-positive A(single)-A(aligned) undifferentiated spermatogonia in rodents. In addition to Plzf, the localization of Cyclin B3 was predominantly detected in the nuclei of type A and early type B spermatogonia until the 16-cell clone. Additionally, Cyclin B3 protein signals were detected in germ cells in large cysts, possibly corresponding to spermatocytes at the preleptotene stage. Our present data thus show that these molecules have properties that will enable their use as markers of spermatocytes and early spermatogonia in zebrafish.  相似文献   

13.
p53 protects cells from DNA damage by inducing cell-cycle arrest upon encountering genomic stress. Among other pathways, p53 elicits such an effect by inhibiting mammalian target of rapamycin complex 1 (mTORC1), the master regulator of cell proliferation and growth. Although recent studies have indicated roles for both p53 and mTORC1 in stem cell maintenance, it remains unclear whether the p53-mTORC1 pathway is conserved to mediate this process under normal physiological conditions. Spermatogenesis is a classic stem cell-dependent process in which undifferentiated spermatogonia undergo self-renewal and differentiation to maintain the lifelong production of spermatozoa. To better understand this process, we have developed a novel flow cytometry (FACS)-based approach that isolates spermatogonia at consecutive differentiation stages. By using this as a tool, we show that genetic loss of p53 augments mTORC1 activity during early spermatogonial differentiation. Functionally, loss of p53 drives spermatogonia out of the undifferentiated state and causes a consistent expansion of early differentiating spermatogonia until the stage of preleptotene (premeiotic) spermatocyte. The frequency of early meiotic spermatocytes is, however, dramatically decreased. Thus, these data suggest that p53-mTORC1 pathway plays a critical role in maintaining the homeostasis of early spermatogonial differentiation. Moreover, our FACS approach could be a valuable tool in understanding spermatogonial differentiation.  相似文献   

14.
Expression and phosphorylation of TOPK during spermatogenesis   总被引:1,自引:0,他引:1  
Among normal organs and tissues, the MAPKK-like mitotic protein kinase TOPK is expressed exclusively in the testis. We analyzed the expression and phosphorylation of TOPK to address the functional role of this kinase during spermatogenesis. TOPK protein is expressed mainly in the cytosol of spermatocytes and spermatids, but not in spermatids and spermatogonia in situ. TOPK-Thr-9, a cdk1/cyclin B target residue, was specifically phosphorylated during mitotic and meiotic phases, while TOPK-Thr-198, a key amino acid for the ATP pocket, was constantly phosphorylated irrespective of the cell cycle. These data indicate that spermatogenic germ cells with vital proliferation activity express TOPK. As TOPK-Thr-9 was phosphorylated during both mitosis and meiosis, TOPK was indicted to play a role in cytokinesis and/or chromosomal segregation but not in DNA replication.  相似文献   

15.
Spermatogenesis consists of complex cellular and developmental processes, such as the mitotic proliferation of spermatogonial stem cells, meiotic division of spermatocytes, and morphogenesis of haploid spermatids. In this study, we show that RNA interference (RNAi) functions throughout spermatogenesis in mice. We first carried out in vivo DNA electroporation of the testis during the first wave of spermatogenesis to enable foreign gene expression in spermatogenic cells at different stages of differentiation. Using prepubertal testes at different ages and differentiation stage-specific promoters, reporter gene expression was predominantly observed in spermatogonia, spermatocytes, and round spermatids. This method was next applied to introduce DNA vectors that express small hairpin RNAs, and the sequence-specific reduction in the reporter gene products was confirmed at each stage of spermatogenesis. RNAi against endogenous Dmc1, which encodes a DNA recombinase that is expressed and functionally required in spermatocytes, led to the same phenotypes observed in null mutant mice. Thus, RNAi is effective in male germ cells during mitosis and meiosis as well as in haploid cells. This experimental system provides a novel tool for the rapid, first-pass assessment of the physiological functions of spermatogenic genes in vivo.  相似文献   

16.
To study self-renewal and differentiation of spermatogonial stem cells, we have transplanted undifferentiated testicular germ cells of the GFP transgenic mice into seminiferous tubules of mutant mice with male sterility, such as those dysfunctioned at Steel (Sl) locus encoding the c-kit ligand or Dominant white spotting (W) locus encoding the receptor c-kit. In the seminiferous tubules of Sl/Sl(d) or Sl(17H)/Sl(17H) mice, transplanted donor germ cells proliferated and formed colonies of undifferentiated c-kit (-) spermatogonia, but were unable to differentiate further. However, these undifferentiated but proliferating spermatogonia, retransplanted into Sl (+) seminiferous tubules of W mutant, resumed differentiation, indicating that the transplanted donor germ cells contained spermatogonial stem cells and that stimulation of c-kit receptor by its ligand was necessary for maintenance of differentiated type A spermatogonia but not for proliferation of undifferentiated type A spermatogonia. Furthermore, we have demonstrated that their transplantation efficiency in the seminiferous tubules of Sl(17H)/Sl(17H) mice depended upon the stem cell niche on the basement membrane of the recipient seminiferous tubules and was increased by elimination of the endogenous spermatogonia of mutant mice from the niche by treating them with busulfan.  相似文献   

17.
As genetic information is transmitted through successive generations, it passes between pluripotent cells in the early embryo and germ cells in the developing foetus and adult animal. Tex19.1 encodes a protein of unknown function, whose expression is restricted to germ cells and pluripotent cells. During male spermatogenesis, Tex19.1 expression is highest in mitotic spermatogonia and diminishes as these cells differentiate and progress through meiosis. In pluripotent stem cells, Tex19.1 expression is also downregulated upon differentiation. However, it is not clear whether Tex19.1 has an essential function in germ cells or pluripotent stem cells, or what that function might be. To analyse the potential role of Tex19.1 in pluripotency or germ cell function we have generated Tex19.1(-/-) knockout mice and analysed the Tex19.1(-/-) mutant phenotype. Adult Tex19.1(-/-) knockout males exhibit impaired spermatogenesis. Immunostaining and histological analysis revealed defects in meiotic chromosome synapsis, the persistence of DNA double-strand breaks during meiosis, and a loss of post-meiotic germ cells in the testis. Furthermore, expression of a class of endogenous retroviruses is upregulated during meiosis in the Tex19.1(-/-) testes. Increased transposition of endogenous retroviruses in the germline of Tex19.1(-/-) mutant mice, and the concomitant increase in DNA damage, may be sufficient to disrupt the normal processes of recombination and chromosome synapsis during meiosis and cause defects in spermatogenesis. Our results suggest that Tex19.1 is part of a specialised mechanism that operates in the germline to repress transposable genetic elements and maintain genomic stability through successive generations.  相似文献   

18.
Mutations in the dominant-white spotting (W; c-kit) and stem cell factor (Sl; SCF) genes, which encode the transmembrane tyrosine kinase receptor and its ligand, respectively, affect both the proliferation and differentiation of many types of stem cells. Almost all homozygous W or Sl mutant mice are sterile because of the lack of differentiated germ cells or spermatogonial stem cells. To characterize spermatogenesis in c-kit/SCF mutants and to understand the role of c-kit signal transduction in spermatogonial stem cells, the existence, proliferation, and differentiation of spermatogonia were examined in the W/Wv mutant mouse testis. In the present study, some of the W/Wv mutant testes completely lacked spermatogonia, and many of the remaining testes contained only a few spermatogonia. Examination of the proliferative activity of the W/Wv mutant spermatogonia by transplantation of enhanced green fluorescent protein (eGFP)-labeled W/Wv spermatogonia into the seminiferous tubules of normal SCF (W/Wv) or SCF mutant (Sl/Sld) mice demonstrated that the W/Wv spermatogonia had the ability to settle and proliferate, but not to differentiate, in the recipient seminiferous tubules. Although the germ cells in the adult W/Wv testis were c-kit-receptor protein-negative undifferentiated type A spermatogonia, the juvenile germ cells were able to differentiate into spermatogonia that expressed the c-kit-receptor protein. Furthermore, differentiated germ cells with the c-kit-receptor protein on the cell surface could be induced by GnRH antagonist treatment, even in the adult W/Wv testis. These results indicate that all the spermatogonial stem cell characteristics of settlement, proliferation, and differentiation can be demonstrated without stimulating the c-kit-receptor signal. The c-kit/SCF signal transduction system appears to be necessary for the maintenance and proliferation of differentiated c-kit receptor-positive spermatogonia but not for the initial step of spermatogonial cell differentiation.  相似文献   

19.
Recent studies have shown that the dominant white spotting (W) locus encodes the proto-oncogene c-kit, a member of the tyrosine kinase receptor family. One symptom of mice bearing mutation within this gene is sterility due to developmental failure of the primordial germ cells during early embryogenesis. To elucidate the role of the c-kit in gametogenesis, we used an anti-c-kit monoclonal antibody, ACK2, as an antagonistic blocker for c-kit function to interfere with the development of male and female germ cells during postnatal life. ACK2 enabled us to detect the expression of c-kit in the gonadal tissue and also to determine the functional status of c-kit, which is expressed on the surface of a particular cell lineage. Consistent with our immunohistochemical findings, the intravenous injection of ACK2 into adult mice caused a depletion in the differentiating type A spermatogonia from the testis during 24-36 h, while the undifferentiated type A spermatogonia were basically unaffected. Intraperitoneal injections of ACK2 into prepuberal mice could completely block the mitosis of mature (differentiating) type A spermatogonia, but not the mitosis of the gonocytes and primitive type A spermatogonia, or the meiosis of spermatocytes. Our results indicate that the survival and/or proliferation of the differentiating type A spermatogonia requires c-kit, but the primitive (undifferentiated) type A spermatogonia or spermatogenic stem cells are independent from c-kit. Moreover, the antibody administration had no significant effect on oocyte maturation despite its intense expression of c-kit.  相似文献   

20.
The effects of steel mutation on testicular germ cell differentiation   总被引:3,自引:0,他引:3  
The effects of artificial cryptorchidism and its surgical reversal on spermatogenesis were examined in germ cell mutant, S1/+ and wild type, +/+, mice. In cryptorchid testes no difference was found between S1/+ and +/+ mice in the number of undifferentiated type A spermatogonia. The activity of type A spermatogonia in mutant mice appeared normal as judged by its mitotic cell number and DNA synthesis. The surgical reversal of cryptorchidism resulted in regenerative differentiation of mature germ cells in both types of mice, but the pattern of cellular differentiation in the mutant testes was completely different from that of the wild type testes. At two steps of cellular differentiation, intermediate or type B spermatogonia and spermatid, the numbers of cells were much smaller in the S1/+ testes than those in the +/+ testes. The steel gene was therefore suggested to exert its effects on the differentiation of type A spermatogonia to intermediate or type B spermatogonia, on meiotic division and/or the survival rate of these cells, but not on the undifferentiated type A spermatogonia or stem cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号