首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An internally standardized HPLC method to determine the concentration of 4-methylumbelliferone liberated from 4-methylumbelliferyl-β-d-glucuronide by human β-glucuronidase was developed. The assay allows the precise and rapid measurement of specific enzyme activity in human tissue homogenates. Without prior extraction the incubation mixture can be separated using a C8 column followed by fluorescence detection. The assay showed good accuracy and precision with a detection limit of 20 nM and a limit of quantification of 167 nM. The suitability of the method was shown in enzyme kinetic experiments with human liver homogenates.  相似文献   

2.
Two high-performance liquid chromatographic (HPLC) methods are described for determination of (±)-ethopropazine (ET) in rat plasma. After deproteination and liquid–liquid extraction, assay of (±)-ET was performed using either a C18 column (non-stereospecific assay) or an (α-R-naphthyl)ethylurea column (stereospecific assay). The UV detection was at 250 nm. Mean recovery was >85%. Both assays demonstrated excellent linear relationships between peak height ratios and plasma concentrations; quantitation limits were ≤25 ng/ml, based on 100 μl rat plasma. Accuracy and precision were <17% with both methods. Both methods were applied successfully to the measurement of ET plasma concentrations in rats given the drug intravenously.  相似文献   

3.
A high-performance liquid chromatographic method using an enzymic reactor for determination of l-α-glycerophosphorylcholine in pharmaceutical forms is described. The procedure includes incubation of l-α-glycerophosphorylcholine with glycerophosphorylcholine phosphodiesterase (EC 3.1.4.2), giving choline and glycerophosphate, and subsequent chromatography of choline with a post-column enzymic reactor and electrochemical detection. The results obtained show a close linearity of the whole assay from 2 to 150 nmol/ml l-α-glycerophosphorylcholine, the sensitivity being 2 pmol per 20 μl of injected sample. The precision of the method in the analysis of l-α-glycerophosphorylcholine in pharmaceutical forms, ampoules and capsules, was 1.34 and 1.21%, respectively.  相似文献   

4.
A high-performance liquid chromatographic (HPLC) method with fluorescence detection for the determination of total (unconjugated and conjugated) 71α-dihydroequilenin in male and female rat rabbit and male rhesus monkey plasma is described here. Plasma sample preparation involved hydrolysis with enzyme (Glusulase), addition of internal standard (14β-equilenin) and solvent extraction. The extracts were chromatographed on a C6, 5-μm reversed-phase HPLC column and detection was accomplished with a fluorescence detector operated at an excitation wavelength of 210 nm and an emission wavelength of 370 nm. The assay was linear over a range of 2.5 to 100 ng/ml in male and female rat plasma, and 5 to 500 ng/ml in female rabbit and male and female monkey plasma. The method was specific, accurate and reproducible (percent differences <14.5; coefficients of variation <9.5%) in all matrices examined. The applicability of this method was successfully tested by quantifying total plasma concentrations of 17α-dihydroequilenin in ovariectomized female rats, ovariectomized female rabbits and a normal female rhesus monkey receiving 2.0, 8.3 and 0.1 mg/kg, respectively, of 17α-dihydroequilenin sulfate intragastrically.  相似文献   

5.
(−)-β-d-2,6-Diaminopurine dioxolane (DAPD) and its metabolite dioxolane guanosine (DXG) have potent activity against hepatitis B virus and HIV, in vitro. A reversed-phase HPLC analytical method using UV and on-line radiochemical detection for the determination of DAPD and DXG in monkey serum and urine is described in this report. Retention times for DXG, DAPD and internal standard (2′,3′-didehydro-2′ deoxythymidine, D4T) were 5.0, 6.0 and 13.0 min, respectively. The extraction recovery was greater than 97% for DAPD and 94% for DXG. The limit of quantitation for UV detection was 100 ng/ml and 125 ng/ml for DXG and DAPD in monkey serum. The standard curves were linear from 0.1 μg/ml to 5 μg/ml for DXG and 0.125 μg/ml to 5 μg/ml for DAPD. For radiochemical detection, calibration curves of standard solutions of DAPD and DXG were linear in the range of 3500 Bq to 32 000 Bq and 7500 Bq to 60 000 Bq. The intra- and inter-day relative standard deviations were less than 7.2% using UV and less than 8.6% using on-line radiochemical detection. The HPLC method was applied to serum and urine samples collected from a male rhesus monkey that was administered 33.3 mg/kg DAPD with 200 μgCi of [3H]DAPD intravenously.  相似文献   

6.
This paper describes a simple and more sensitive reversed-phase HPLC method for the quantification of phenol, 4-nitrophenol and β-naphthol and some of their glucuronide and sulphate conjugates in aqueous solution and liver perfusate buffer. Methanol-water mobile phases with ion-pairing agents for each phenolic group are detailed. The assay showed good recovery, accuracy and precision and is suitable for the quantification of these phenolic compounds in liver perfusion experiments.  相似文献   

7.
8.
A sensitive radioenzymatic—thin-layer chromatographic assay for the quantitative analysis of the tetrahydroisoquinoline alkaloid, salsolinol, in plasma and neonatal rat tissue is described. The assay involves the enzymatic O-methylation of salsolinol by catechol-O-methyltransferase in presence of [3H] S-adenosylmethionine, and subsequent separation by thin-layer chromatography of the resultant [3H] O-methyl-salsolinol from the O-methylated derivatives of dopamine, epinephrine and norepinephrine. The method allows the detection of as little as 100 pg salsolinol per g tissue, and the accurate quantitation of as little as 100 pg/ml plasma and 500 pg/g tissue. This assay permitted the detection of trace amounts of endogenous salsolinol in neonatal rat tissue (< 500 pg/g tissue).  相似文献   

9.
d-Serine has recently been described to be present in the brain at high concentrations. However, while prior research has demonstrated that l-phosphoserine is the major precursor of l-serine in the brain, the possible role of d-phosphoserine as the direct precursor of d-serine is unknown. To address this problem, we developed an assay to separate and quantitate d- and l-phosphoserine. A very simple HPLC-UV procedure for the separation and quantification of d- and l-phosphoserine is presented using precolumn derivatization with a chiral reagent, Nα-(2,4-dinitro-5-fluorophenyl)-l-alaninamide (Marfey's reagent), and a conventional C18 reversed-phase column. The procedure is sensitive to 11 pmol on-column and derivatives are stable for at least two weeks at room temperature. Rat brain regions (cortex, hippocampus, striatum, and cerebellum) were analyzed for the presence of d- and l-phosphoserine. It was determined that the brain regions studied contained exclusively l-phosphoserine.  相似文献   

10.
Lysophosphatidic acid (LPA) is a lipid mediator with multiple biological functions. A highly selective and sensitive liquid chromatography–tandem mass spectrometry (LC/MS/MS) method was developed for the determination of LPAs (16:0 LPA, 18:0 LPA, 18:1 LPA, 20:4 LPA) in rat brain cryosections. After partitioning the LPAs from other lipophilic material present in the tissue with a liquid–liquid extraction, a reversed-phase column and ion pair technique was used for separating analytes with a gradient elution. An internal standard (17:0 LPA) was included in the analysis. Detection and quantification of the LPAs were carried out with a triple quadrupole mass spectrometer using negative electrospray ionization (ESI) and multiple reaction monitoring (MRM). The artificial formation of LPAs from lysophosphatidylcholines during the sample preparation procedure and instrumentation was carefully studied during the method development. The method was validated; acceptable selectivity, accuracy, precision, recovery, and stability were obtained for concentrations within the calibration curve range of 0.02–1.0 μM for LPAs. The quantification limit of the assay was 54 fmol injected into column for each LPAs. The method was applied to comparative studies of LPA levels in rat brain cryosections after the various chemical pre-treatments of the sections.  相似文献   

11.

Purpose of work

We have elucidated the significance of three key amino acid residues of l-aspartate α-decarboxylase that act remotely from its cleavage site for its functional self-cleavage as well as for its catalytic activity. These results provide useful fundamental information for engineering l-aspartate α-decarboxylase. l-Aspartate α-decarboxylase (ADC) from Corynebacterium glutamicum, and encoded by panD, was cloned and expressed in Escherichia coli and then purified. Three amino acid residues were found to be related to ADC self-cleavage. Mutating R3 to either A, Q, N, L, D, or E produced only the unprocessed pro-enzyme. Although mutating R54 and Y58 into A or K and A or T, respectively, partly influenced ADC self-cleavage, the specific activity of each of the four ßmutants decreased to 3.5, 4, 2.4, and 2.6 U mg?1, respectively, compared with a specific activity of 690 U mg?1 for the wild-type enzyme. Thus, R3 triggers ADC self-cleavage and completes the modification of the active site with assistance by R54 and Y58. These results will help to engineer ADC for improved industrial applications.  相似文献   

12.
1. Earlier reports from this and other laboratories have indicated that wide variations exist in estimates of the concentrations of norepinephrine in the brain and heart of the snail Helix aspersa. This is a report on investigations of norepinephrine concentrations in Helix aspersa tissues using high-performance liquid chromatography with electrochemical detection. In addition, the effects of treatment with some amino acid precursors or enzyme inhibitors on the concentrations of norepinephrine, dopamine, 5-hydroxytryptamine, and some of their metabolites were investigated. 2. The levels of norepinephrine in the brain were low (46 ng/g) in comparison to dopamine (2.1) micrograms/g) and 5-hydroxytryptamine (2.6 micrograms/g). Epinephrine was not observed in either snail heart of snail nervous tissue. 3. Administration of L-3,4-dihydroxyphenylalanine resulted in elevated snail brain dopamine, while 3,4-dihydroxyphenylserine treatment increased norepinephrine. Treatment with blockers of tyrosine hydroxylase and aromatic-L-amino acid decarboxylase reduced dopamine concentrations without affecting 5-hydroxytryptamine. 4. The dopamine metabolite 3,4-dihydroxyphenylacetic acid was observed only after administration of L-3,4-dihydroxyphenylalanine or dopamine and then only in very small amounts. At no time was the dopamine metabolite homovanillic acid or the 5-hydroxytryptamine metabolite 5-hydroxyindoleacetic acid observed in brain, heart, or whole-body extracts of the snail. 5. Incubation of nervous tissue with either dopamine or 5-hydroxytryptamine resulted in the production of electrochemically active metabolites which were identified by oxidation characteristics and cochromatography with synthesized standards as the gamma-glutamyl conjugates of the amines. Treatment of snails with 5-hydroxytryptamine or dopamine also resulted in the production of gamma-glutamyl conjugates. 6. The present experiments show that great care must be exercised when measuring monoamines and their metabolites in gastropod tissues by high-performance liquid chromatography with electrochemical detection.  相似文献   

13.
The preferential hydroxylation of (S)-mephenytoin to 4′-hydroxymephenytoin (4′-OH-M) displays a genetic polymorphism of drug metabolism in humans. Thus the excreted 4′-OH-M is considered to be an important marker for the hepatic (S)-mephenytoin 4′-hydroxylase. Accordingly, a mixture of urine containing total 4′-OH-M after enzymatic deconjugation and phenobarbital as internal standard (I.S.) was extracted with absolute diethyl ether. The residue remaining after evaporation was dissolved in 50 μl of eluate and 20 μl were injected into the chromatographic system. All components were separated isocratically on a reversed-phase column using acetonitrile-water (24:76, v/v) as the mobile phase at a flow-rate of 1.2 ml/min. The effluent was monitored at 204 nm. The retention times for 4′-OH-M and the I.S. were within 6 min. The absolute recovery was in the range 84–89% for 4′-OH-M and that of the I.S. was 75.9 ± 4.2%. Quantification was performed by measuring the peak-height ratio compared with the ratio of the amount of 4′-OH-M divided by that of the I.S. The intra- and inter-day variations were less than 8% and 10%, respectively. The proposed method is simpler and more convenient than those reported previously. Its practical applicability was assessed by phenotyping the efficient and deficient hydroxylators among the Chinese minorities and Han Chinese populations.  相似文献   

14.
The determination of propanolol enantiomers in microsamples of human plasma and urine by HPLC using a chiral stationary phase is described. After extraction from 200 μl of plasma or urine with racemic alprenolol as internal standard (I.S.), the enantiomers are separated on a β-cyclodextrin column with a polar organic mobile phase and determined by fluorescence detection. The retention times of I.S. and propranolol enantiomers are about 12–13 min and 16–18 min, respectively. Peak resolutions are 1.4 for I.S. and 2.2 for propranol. The use of alprenolol as I.S. improves significantly the coefficients of variation (C.V.: 0.6–4.2%). Sensitivity is approximately 1.5 ng/ml per propranolol enantiomer. The assay is applied to pharmacokinetic studies of racemic propranolol in human biological fluids. The (S)-propranolol levels are always higher than the (R)-antipode concentrations in plasma and urine.  相似文献   

15.
L-775,606 is under investigation as a selective 5-hydroxytryptamine 1D agonist for the treatment of migraine. A reliable and sensitive method for the analysis of L-775,606 in plasma was required in order to support preclinical evaluation of this compound. A semi-automated sample preparation method using the Beckman Biomek 2000 workstation to perform all liquid handling tasks has been established. The sample analysis was performed using HPLC–MS–MS with a cycle time of 3.5 min per sample. Intra- and inter-day assay accuracy and precision are excellent with a calibration range of 1–2000 ng/ml and a reproducible limit of quantification of 1 ng/ml.  相似文献   

16.
A direct high-performance liquid chromatographic (HPLC) assay was developed for the separation and determination of 4-methylumbelliferone (4MU) and its glucuronide (MUG) and sulfate (MUS) conjugates in the cell-free perfusate (“plasma”) from in situ perfused rat intestine—liver preparation. In addition, a procedure was developed to extract and determine 4MU in the whole blood perfusate. Perfusate plasma containing an internal standard (umbelliferone) was precipitated with methanol (1:4, v/v), and injected into a reversed-phase HPLC system with gradient elution. 4MU and the same internal standard were also extracted directly from the whole blood perfusate with ethyl acetate and injected into a reversed-phase HPLC system with isocratic elution. Inter- and intra-day precision studies (n = 5 for each) for both the plasma and whole blood procedures demonstrated relative standard deviations of less than 10% at all concentrations studied. The compounds were stable in either the plasma or blood extracts at room temperature for up to 72 h. The procedures were successfully used to analyze perfusate samples obtained from the single-pass in situ perfusion of rat intestine—liver system with either trace (0.95 nM) or 32.3 μM concentrations of 4MU. The intestine was responsible for the formation of most of the MUG formed by the intestine—liver preparation during steady-state perfusion with either input concentration of 4MU.  相似文献   

17.
Recent studies have shown that lead (Pb) could disrupt tissue prooxidant/antioxidant balance which lead to physiological dysfunction. Natural antioxidants are particularly useful in such situation. Current study was designed to investigate efficacy of green tea extract (GTE), on oxidative status in brain tissue and blood caused by chronic oral Pb administration in rats. Four groups of adult male rats (each 15 rats) were utilized: control group; GTE-group (oral 1.5% w/v GTE for 6 weeks); Pb-group (oral 0.4% lead acetate for 6 weeks), and Pb+GTE-group (1.5% GTE and 0.4% lead acetate for 6 weeks). Levels of prooxidant/antioxidant parameters [lipid peroxides (LPO), nitric oxides (NO), total antioxidant capacity (TAC), glutathione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD)] in plasma, erythrocytes, and brain tissue homogenate were measured using colorimetric methods. Pb concentrations in whole blood and brain tissue homogenate were measured by atomic absorption. In Pb-group, levels of LPO were higher while NO and GSH were lower in plasma, erythrocytes, and brain tissue than controls. TAC in plasma, SOD in erythrocytes, and GST in brain tissue homogenate were lower in Pb-group versus control. GTE co-administrated with Pb-reduced Pb contents, increased antioxidant status than Pb-group. In erythrocytes, Pb correlated positively with LPO and negatively with NO, GSH, SOD, and Hb. In brain tissue homogenate, Pb correlated positively with LPO and negatively with GSH. This study suggests that lead induce toxicity by interfering balance between prooxidant/antioxidant. Treatment of rats with GTE combined with Pb enhances antioxidant/ detoxification system which reduced oxidative stress. These observations suggest that GTE is a potential complementary agent in treatment of chronic lead intoxication.  相似文献   

18.
A rapid and specific LC–MS/MS based bioanalytical method was developed and validated for the determination of 18-(p-iodophenyl)octadecyl phosphocholine (CLR1401), a novel phosphocholine drug candidate, in rat plasma. The optimal chromatographic behavior of CLR1401 was achieved on a Kromasil silica column (50 mm × 3 mm, 5 μm) under hydrophilic interaction chromatography. The total LC analysis time per injection was 2.8 min with a flow rate of 1.5 mL/min under gradient elution. Liquid–liquid extraction in a 96-well format using ethyl acetate was developed and applied for method validation and sample analysis. The method validation was conducted over the curve range of 2.00–1000 ng/mL using 0.0500 mL of plasma sample. The intra- and inter-day precision and accuracy of the quality control samples at low, medium, and high concentration levels showed ≤ 5.9% relative standard deviation (RSD) and −10.8 to −1.4% relative error (RE). The method was successfully applied to determine the toxicokinetics of CLR1401 in rats from three dose groups of 0.4, 4.0, and 10.0 mg/kg/day via intravenous administration.  相似文献   

19.
Summary We describe two procedures for the simultaneous and successive localization of two antigens in the same tissue section. In the simultaneous staining procedure, the first antigen was localized using 3,3-diaminobenzidine (DAB), while the second antigen was stained using the 1-naphthol basic dye (1-NBD) method. The colour of the second antigen depended on the basic dye used, and no mixing of colours was observed when the two antigens were localized in different cells or structures. However, sequential double staining proved to be more convenient for the demonstration of two antigens in the same cell. In this procedure, the first antigen was stained using 1-NBD, and the interesting microscopic fields were photographed. The basic dye was then completely removed, and the second antigen was stained using DAB.Partially supported by a grant from the Italian Research Council, (special project Oncology; contract n.85.02364.44) and by the Italian Association for Cancer Research (AIRC)  相似文献   

20.
A continuous integrated process for on-line quantification of intracellular components has been developed. By applying the concept of expanded micro-beds in a flow injection system it was possible to first perform on-line cell disintegration followed by an on-line binding assay for quantification of a reporter protein (-galactosidase) from the cell interior. The disintegration process involved the use of an expanded bed with immobilised lysozyme followed by ultrasonic treatment in a flow-through cell. The cell debris does not interfere in the binding assay as it is carried out in an expanded bed. The time for an assay cycle is at present approx. 35 min. This integrated system can be used for quantification of proteins down to at least 10-7 mol/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号