首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple and rapid assay method for three stimulant drugs (amphetamine, methamphetamine, and dimethamphetamine) in human urine using solid-phase microextraction was developed. In solid-phase microextraction, the drugs were equilibrated between the adsorbent coated-fiber and aqueous sample matrix. After adsorption of the analytes, the fiber was directly transferred to the injector of a gas chromatograph, where the analytes were thermally desorbed and subsequently separated by the gas chromatograph and detected by mass spectrometer. The solid-phase microextraction method, which did not require solvents, was found to be a fast and simple analytical method. We optimized the solid-phase microextraction technique, for factors such as the NaCl salt effect (30%), pH effect (pH=12.4), equilibration time (30 min), desorption time (1 min) and coated-fiber type (100 μm poly(dimethylsiloxane)) and detected the stimulants in human urine, obtained from human subjects. The detection limits of each drug were below 1–10 ng/ml. The developed method can be applied to the abused drug test.  相似文献   

2.
A method based on poly (methacrylic acid-co-ethylene glycol dimethacrylate) (MAA-EGDMA) monolith microextraction (PMME) and field-enhanced sample injection (FESI) pre-concentration technique was proposed for sensitive capillary electrophoresis-ultraviolet (CE-UV) analysis of ephedrine (E) and pseudoephedrine (PE) in human plasma and urine. The PMME device consisted of a regular plastic syringe (1 mL), a poly (MAA-EGDMA) monolithic capillary (2 cm x 530 microm I.D.) and a plastic pinhead connecting the former two components seamlessly. The extraction was achieved by driving the sample solution through the monolithic capillary tube using a syringe pump, for the desorption step, an aliquot of organic solvent, which normally provided an excellent medium to ensure direct compatibility for FESI in CE, was injected via the monolithic capillary and collected into a vial for subsequent analysis by CZE. The best separation was achieved using a buffer composed of 0.1M phosphate electrolyte (pH 2.5) and 10% acetonitrile (v/v). The combination of both pre-concentration procedures allowed the detection limits of the analytes down to 5.3 ng/mL and 8.0 ng/mL in human plasma and urine, respectively. Excellent method of reproducibility was found over a linear range 50-5000 ng/mL in plasma and urine sample. Plasma and urine samples from volunteers receiving pseudoephedrine have also been successfully analysed.  相似文献   

3.
The demand for automation of liquid-liquid extraction (LLE) in drug analysis combined with the demand for reduced sample preparation time has led to the recent development of liquid-phase microextraction (LPME) based on disposable hollow fibres. In LPME, target drugs are extracted from aqueous biological samples, through a thin layer of organic solvent immobilised within the pores of the wall of a porous hollow fibre, and into an microl volume of acceptor solution inside the lumen of the hollow fibre. After extraction, the acceptor solution is subjected directly to a final analysis either by high performance liquid chromatography (HPLC), capillary electrophoresis (CE), mass spectrometry (MS), or capillary gas chromatography (GC) without any further treatments. Hollow fibre-based LPME may provide high enrichment of drugs and excellent sample clean-up, and probably has a broad application potential within the area of drug analysis. This review focuses on the principle of LPME, and recent applications of three-phase, two-phase, and carrier mediated LPME of drugs from plasma, whole blood, urine, and breast milk.  相似文献   

4.
A quantitative method for the simultaneous GC resolution and detection of fluoxetine and his metabolite norfluoxetine in human plasma was developed. The procedure required 1.0 ml of plasma, extraction with a mixed organic solvent and injection into a capillary gas chromatograph with an OV-1 fused-silica column coupled to a nitrogen-phosphorus detector. The calibration curves were linear over the range 5–3000 ng/ml. The detection limits were 0.3 and 2 ng/ml for fluoxetine and norfluoxetine, respectively. The assay is suitable for routine analysis.  相似文献   

5.
A poly (methacrylic acid-ethylene glycol dimethacrylate, MAA-EGDMA) monolithic capillary was used for the in-tube solid-phase microextraction (in-tube SPME) of several angiotensin II receptor antagonists (ARA-IIs) from human plasma and urine. Under the optimized extraction condition, the protein component of the biological sample was flushed through the monolithic capillary, while the analytes were successfully trapped. Coupled to HPLC with fluorescence detection, this on-line in-tube SPME method was successfully applied for the determination of candesartan, losartan, irbesartan, valsartan, telmisartan, and their detection limits were found to be 0.1-15.3ng/mL and 0.1-15.2ng/mL in human plasma and urine, respectively. The method was linear over the range of 0.5-200ng/mL for telmisartan, 5-2000ng/mL for candesartan and irbesartan, 10-2000ng/mL for valsartan, and 50-5000ng/mL for losartan with correlation coefficients being above 0.9985 in plasma sample and above 0.9994 in urine sample. The method reproducibility was evaluated at three concentration levels, resulting in the R.S.D. <7%. The poly (MAA-EGDMA) monolithic capillary was demonstrated to be robust and biocompatible by using direct injections of biological samples.  相似文献   

6.
The volatile organic compounds of different ground hay samples from Austria, Italy and Switzerland were collected at 50 degrees C on a Supelco Carbowax Divinylbenzene headspace solid-phase microextraction fibre, separated by capillary gas chromatography on an HP5-ms column running a temperature programme and using helium as carrier gas, detected with a mass sensitive detector and studied with principal component analyses after autoscaling selected variables. The analytes, mainly mono- and sesquiterpenes, were able to cluster differences resulting from the site of production. Coumarin can be used to differentiate hay grown north and south of the main chain of the Alps. Acetic acid is appropriate for distinguishing between hay from Kastelruth and Passeier Valley, two South Tyrolean regions. The average linalool content in aftermath is higher than in hay.  相似文献   

7.
Methenamine (hexamethylenetetramine), a urinary disinfectant, was determined in human plasma and urine by gas—liquid chromatography with a short (10 m) open-bone glass capillary column (split ratio 1:20) and nitrogen-selective detector. An almost quantitative recovery (92.1%) was achieved by simple dilution of water-containing samples (0.5 ml) with acetone (4.5 ml). After centrifugation and aliquot (2 μl) of the supernatant was injected into the gas chromatograph. Selectivity and sensitivity of the nitrogen detector allowed the quantitation of unchanged methenamine in plasma and urine up to 24 h after a single therapeutic dose of 1 g.Reproducibility of the method was 7.6 and 2.1% (C.V.) in serum and urine, respectively. The time required for the analysis of one sample was approx. 2 min. Due to the simple extraction and short analysis time it was possible to analyze the samples concurrently with sample taking. Absorption of standard tablets and an enterosoluble preparation of methenamine hippurate was compared.  相似文献   

8.
Solid-phase microextraction (SPME) was investigated as a sample preparation method for assaying the neuroleptic drug clozapine in human plasma. A mixture of human plasma, water, loxapine (as internal standard) and aqueous NaOH was extracted with a 100-μm polydimethylsiloxane (PDMS) fiber (Supelco). Desorption of the fiber was performed in the injection port of a gas chromatograph at 260°C (HP 5890; 30 m×0.53 mm I.D., 1 μm film capillary; nitrogen–phosphorous selective detection). Fibers were used repeatedly in up to about 75 analyses. The recovery was found to be 3% for clozapine from plasma after 30 min of extraction. However, in spite of the low recovery, the analyte was well separated and the calibration was linear between 100 and 1000 ng/ml. The within-day and between-day precision was consistently about 8 to 15% at concentrations of 200 ng/ml to 1000 ng/ml. No interfering drug was found. The limit of detection was 30 ng/ml. The sample volume was 250 μl. The influence of the concentration of proteins, triglycerides and salt, i.e., changes in the matrix on the peak areas and peak-area ratios was studied. The method is not impaired by physiological changes in the composition of the matrix. Good agreement was found with a liquid–liquid extraction–gas–liquid chromatography (LLE–GLC) standard method and an on-line column-switching high-performance liquid chromatography (HPLC) method for patients’ samples and spiked samples, respectively. It is concluded that the method can be used in the therapeutic drug monitoring of clozapine because the therapeutic window of clozapine is from 350 to 600 ng/ml.  相似文献   

9.
The present report describes a one-step method for the derivatization and extraction of nonesterified fatty acids in plasma with subsequent analysis by conventional capillary gas-liquid chromatography or gas-liquid chromatography-mass spectrometry. The procedure requires 200 microliters of citrated plasma, dilution with 200 microliters of methanol containing a suitable internal standard, and rapid methylation (10 min) with ethereal diazomethane. An aliquot (60%) of the ether layer is subsequently removed, taken to dryness with nitrogen gas, and the residue is dissolved in a small volume of hexane (usually 50 microliters) for chromatographic analysis (taking 1 microliter for on-column injection). Samples are ready for analysis within 15 min after initial preparation of the plasma. The method has been found to be simple and rapid, providing clean fatty acid profiles. Although the method has been tested with 200 microliters of rat and human plasma, it can easily be adapted to a 40 microliters plasma sample if the esterified plasma extract is suspended in a smaller volume of hexane and/or a larger aliquot of the extract were to be injected into the gas chromatograph through use of a splitless injector.  相似文献   

10.
A method based on liquid-liquid-liquid microextraction combined with corona discharge ion mobility spectrometry was developed for the analysis of amantadine in human urine and plasma samples. Amantadine was extracted from alkaline aqueous sample as donor phase through a thin phase of organic solvent (n-dodecane) filling the pores of the hollow fiber wall and then back extracted into the organic acceptor phase (methanol) located in the lumen of the hollow fiber. All variables affecting the extraction of analyte including acceptor organic solvent type, concentration of NaOH in donor phase, ionic strength of the sample and extraction time were studied. The linear range was 20-1000 and 5-250 ng/mL for plasma and urine, respectively (r(2)≥0.990). The limits of detection were calculated to be 7.2 and 1.6 ng/mL for plasma and urine, respectively. The relative standard deviation was lower than 8.2% for both urine and plasma samples. The enrichment factors were between 45 and 54. The method was successfully applied for the analysis of amantadine in urine and plasma samples.  相似文献   

11.
A reliable and sensitive method was developed for determination of thymol in human plasma by automated headspace solid-phase microextraction (SPME). After enzymatic cleavage of thymol sulfate thymol was extracted by a 65 microm polydimethylsiloxane-divinylbenzene crimped fiber (Supelco) after addition of sodium chloride and phosphoric acid (85%). Desorption of the fiber was performed in the injection port of a gas chromatograph at 220 degrees C (HP 5890; 50 m x 0.2 mm I.D., 0.2 microm HP Innowax capillary column; flame ionization detection). Fibers were used repeatedly up to 40 analysis. The recovery was 5% after 35 min of extraction. The calibration curve was linear in the range of 8.1-203.5 ng ml(-1) with a limit of quantitation (LOQ) of 8.1 ng ml(-1). The within-day and between-day precision and accuracy were < or = 20% at the LOQ and <15% at higher concentrations according to international guidelines for validation of bioanalytical methods. After administration of a thymol-containing herbal extract only thymol sulfate, no free thymol, could be detected in human plasma, thus analysis of thymol was after enzymatic cleavage of thymol sulfate. It is concluded that the newly developed automated method can be used in clinical trials on bioavailability and pharmacokinetics of thymol-containing herbal medicinal products.  相似文献   

12.
A method for the determination of isosorbide-5-mononitrate (5-ISMN) in human plasma by capillary gas chromatography with electron-capture detection was developed and applied to clinical samples. 9-Fluorenone was used as an internal standard, ethyl acetate was employed for liquid-liquid extraction. The advantage of the extraction procedure is the possibility of a direct injection of the plasma extract, without solvent removal/reconstitution of the sample. The precision and accuracy of the method were satisfactory in the concentration range 10-1600 ng/ml. The lower limit of quantification was 10 ng/ml.  相似文献   

13.
The present paper describes a method for the simultaneous determination of cocaine and cocaethylene in plasma. It was based in the extraction of the analytes by solid-phase microextraction (SPME), and gas chromatography-mass spectrometry (GC-MS) was used to identify and quantify the analytes in selected ion monitoring (SIM) mode. The method showed to be very simple, rapid and sensitive. The method was validated for the two compounds, including linearity (range 25-1000 ng/mL) and the main precision parameters. It was applied to ten plasma samples from cocaine and alcohol users, obtaining positive results in all cases.  相似文献   

14.
A simple, specific and selective method for the simultaneous determination of zolpidem and zopiclone in human plasma is described. After a liquid-liquid extraction, the extract is injected into a capillary gas chromatograph with an OV-1 fused-silica column coupled to a nitrogen-phosphorus detector. The detection limits are 1 and 2 ng/ml for zolpidem and zopiclone, respectivelly. The methood described is reproducible and linear over a range of concentrations, rendering it suitable for use for pharmacokinetic studies or toxicological evaluations. Absolute identification of the chromatographed compounds is accomplished by gas chromatography-mass spectrometry in both electron-impact and positive-ion chemical ionisation modes.  相似文献   

15.
A procedure for the determination of acetaldehyde, acetone, methanol, ethanol, 1-propanol and 2-propanol in blood was developed. Separation of analytes was carried out on DB-wax capillary column (l = 30 m, I.D. = 0.32 mm, dF = 0.5 microm) at 40 degrees C, hydrogen was used as a carrier gas (at 30 kPa) and FID as a detector. Quantification was performed with the use of 2-butanol as an internal standard. Headspace solid-phase microextraction was applied as the sample preparation technique. The usefulness of most commercially available fiber coatings was checked and 65 microm Carbowax/DVB proved most effective. Microextraction was carried out from the headspace at 60 degrees C for 10 min. The sample was stirred at 750 rpm. In order to improve the extraction efficiency of analytes, salting-out agents were also applied. Potassium carbonate turned out to be the most efficient. A 1.0-g amount of this salt and 0.1 ml of I.S. were added to 0.5 ml of sample. Validation of the worked-out method was performed. For each analyte, the limits of detection and quantification, linearity, working range, accuracy and precision were determined or tested.  相似文献   

16.
Detection, identification, and quantitation of ethanol and other low molecular weight volatile compounds in liquid matrices by headspace gas chromatography-flame ionization detection (HS-GC-FID) and headspace gas chromatography-mass spectrometry (HS-GC-MS) are becoming commonly used practices in forensic laboratories. Although it is one of the most frequently utilized procedures, sample preparation is usually done manually. Implementing the use of a dual-rail, programmable autosampler can minimize many of the manual steps in sample preparation. The autosampler is configured so that one rail is used for sample preparation and the other rail is used as a traditional autosampler for sample introduction into the gas chromatograph inlet. The sample preparation rail draws up and sequentially adds a saturated sodium chloride solution and internal standard (0.08%, w/v acetonitrile) to a headspace vial containing a biological sample, a calibrator, or a control. Then, the analytical rail moves the sample to the agitator for incubation, followed by sampling of the headspace for analysis. Using DB-624 capillary columns, the method was validated on a GC-FID and confirmed with a GC-MS. The analytes (ethanol, acetonitrile) and possible interferences (acetaldehyde, methanol, pentane, diethyl ether, acetone, isopropanol, methylene chloride, n-propanol, and isovaleraldehyde) were baseline resolved for both the GC-FID and GC-MS methods. This method demonstrated acceptable linearity from 0 to 1500 mg/dL. The lower limit of quantitation (LOQ) was determined to be 17 mg/dL and the limit of detection was 5 mg/dL.  相似文献   

17.
A comparative study was performed by solid phase microextraction and capillary gas chromatography to establish the ability of four polymer sorbents of different compositions to extract and concentrate volatile organic compounds from the gas phase above an aqueous solution. All polymer sorbents sorbed nonpolar monoterpene hydrocarbons via a cooperative mechanism with almost equal and high efficiency. Sorbents based on polymethyl disiloxane and its mixture with divinylbenzene were more effective in extracting acetates and sesquiterpenes. As the concentration of these compounds in the gas phase increased, their binding by sorbents decreased. It was found that the determination of polar compounds depended on the presence of a solvent in the system. Compounds that are highly soluble in water (alcohols, ketones, etc.) had low coefficients of distribution between gas and water phases. Consequently, their sorption to any of the polymer sorbents was negligible. In the absence of the solvent, the degree of their extraction from the gas phase above the sample was high. It was shown that the actual composition of compounds in the initial mixture of essential oils could significantly differ from their composition in the gas phase. This method is convenient and informative for the purpose of studying the composition of volatile compounds in the gas phase that determine the flavor of the product.  相似文献   

18.
Acetone is an important volatile disease marker. Due to its nature of activity and volatility, it is a difficult task to measure the concentration of acetone in biological samples with accuracy. In this paper, we developed a novel method for determination of trace amount acetone in human plasma by solid-phase microextraction technique with on-fiber derivatization. In this method, the poly(dimethylsiloxane)/divinylbenzene (PDMS/DVB) fiber was used and O-2,3,4,5,6-(pentafluorobenzyl) hydroxylamine hydrochloride (PFBHA) was first loaded on the fiber. Acetone in plasma sample was agitated into headspace and extracted by solid-phase microextraction (SPME) fiber and subsequently derivatized with PFBHA on the fiber. Acetone oxime was analyzed by gas chromatography-mass spectrometry (GC-MS). Quantitative analysis of acetone in plasma was carried out by using external standard method. The SPME conditions (extraction temperature and time) and the method validation were studied. The present method was tested by determination of acetone in diabetes plasma and normal plasma. Acetone concentration in diabetes plasma was found to be higher than 1.8mM, while in normal plasma was lower than 0.017 mM. The results show that the present method is a potential tool for diagnosis of diabetes.  相似文献   

19.
A gas-liquid chromatographic (GLC) assay suitable for the analysis of the cis(Z)-stereoisomer of the antipsychotic drug flupentixol in human serum or plasma was developed. The minimal quantifiable concentration was 0.5 ng/ml and the day-to-day coefficient of variation was 11.2% at 1 ng/ml and 8.7% at 10 ng/ml. Following addition of perphenazine as the internal standard (I.S.) and aqueous NaOH, samples (2 ml) are extracted with n-hexane-isoamyl alcohol (98.5:1.5, v/v) (solvent), back-extracted to 0.1 M HCl and after one washing-step and addition of aqueous NaOH again extracted into 100 μl solvent. After evaporation to dryness, the extract is reconstituted in 20 μl solvent and evaporated to approximative 10 μl. A 4-μl aliquot is injected cool on-column onto the GLC system. A gas chromatograph HP 5890 with on-column injection port, nitrogen-phosphorus detector (NPD), a HP-1 25 m × 0.32 mm I.D., 0.5 μm capillary and hydrogen (3 ml/min, automated pressure control) as the carrier gas was applied. The negative influence of light on the assay was measured and discussed. The suitability of this method for clinical pharmacokinetic studies and therapeutic drug monitoring (TDM) was determined by the analysis of serum samples of 12 schizophrenic patients.  相似文献   

20.
This paper describes sample enrichment in a single levitated droplet for capillary electrophoresis (CE) analysis. The droplet was trapped in an acoustical field. The minute sample volumes needed for the enrichment procedure were precisely handled using a piezoelectric flow-through liquid microdispenser. Droplets with a volume of 65 pl were ejected from the device at a repetition rate ranging from one single droplet up to several hundreds per second. By counting the number of droplets ejected and accumulated in the levitated drop the sample volume was controlled. Through solvent evaporation the analytes were enriched in the diminishing droplet. The droplet was then injected into a CE capillary and the analytes, dansyl-Gly and dansyl-Val dissolved in ethanol, were separated in a 100 mM borate buffer (pH 9.0) utilising UV-absorption detection at 200 nm near the capillary outlet. Enrichment of 36 000 sample droplets (2.3 μl) through solvent evaporation in the levitated drop resulted in a concentration limit of detection (CLOD) of 15 nM for the dansylated amino acids as compared to a CLOD of 2.5 μM which was achieved using standard hydrodynamic injection without preconcentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号