首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive and automated method for the separation and individual determination of tramadol enantiomers in plasma has been developed using solid-phase extraction (SPE) on disposable extraction cartridges (DECs) in combination with chiral liquid chromatography (LC). The SPE operations were performed automatically by means of a sample processor equipped with a robotic arm (ASPEC system). The DEC filled with ethyl silica (50 mg) was first conditioned with methanol and phosphate buffer, pH 7.4 A 1.0-ml volume of plasma was then applied on the DEC. The washing step was performed with the same buffer. The analytes were eluted with 0.15 ml of methanol, and 0.35 ml of phosphate buffer, pH 6.0, containing sodium perchlorate (0.2 M) were added to the extract before injection into the LC system. The enantiomeric separation of tramadol was achieved using a Chiralcel OD-R column containing cellulose tris-(3,5-dimethylphenylcarbamate) as chiral stationary phase. The mobile phase was a mixture of phosphate buffer, pH 6.0, containing sodium perchlorate (0.2 M) and acetonitrile (75:25). The mobile-phase pH and the NaClO4 concentration were optimized with respect to enantiomeric resolution. The method developed was validated. Recoveries for both enantiomers of tramadol were about 100%. The method was found to be linear in the 2.5–150 ng/ml concentration range [r2=0.999 for (+)- and (−)-tramadol]. The repeatability and intermediate precision at a concentration of 50 ng/ml were 6.5 and 8.7% for (+)-tramadol and 6.1 and 7.6% for (−)-tramadol, respectively.  相似文献   

2.
The purpose of this research was to use our previously validated dynamic injection apparatus as a rapid method for screening pH-adjusted formulations of a new vancomycin analog, Van-An, for their potential to precipitate upon dilution. In 1 vial, Van-An was reconstituted according to the manufacturer’s instructions. In a separate vial, the Van-An formulation’s existing phosphate buffer species was supplemented with acetate buffer, which has a pKa in the desired range: between the pH values of the formulation (pH 3.9) and blood (pH 7.4). The formulations were injected using the dynamic injection apparatus into a flowing stream of isotonic Sorensen’s phosphate buffer at rates of 0.25, 0.5, 1, and 2 mL/min. The peaks obtained with the spectrophotometer were reproducible for each injection rate/formulation combination. For the phosphate-buffered formulation, the least amount of precipitation was obtained at the 0.25 mL/min injection rate. Acetate buffer was able to substantially reduce such precipitation, even at the highest injection rate. The opacity peaks for the formulation with the acetate addition were significantly smaller (P<.05) than those obtained for the unaltered formulation at all 4 injection rates. The results suggest that acetate is a better buffer species than phosphate for the pH range defined. Furthermore, we present evidence to support a generally applicable approach to screening new formulations of drug products that may be clinically useful for reducing the incidence of phlebitis in humans. Published: January 13, 2006  相似文献   

3.
We report a novel affinity‐based purification method for proteins expressed in Escherichia coli that uses the coordination of a heme tag to an L ‐histidine‐immobilized sepharose (HIS) resin. This approach provides an affinity purification tag visible to the eye, facilitating tracking of the protein. We show that azurin and maltose binding protein are readily purified from cell lysate using the heme tag and HIS resin. Mild conditions are used; heme‐tagged proteins are bound to the HIS resin in phosphate buffer, pH 7.0, and eluted by adding 200–500 mM imidazole or binding buffer at pH 5 or 8. The HIS resin exhibits a low level of nonspecific binding of untagged cellular proteins for the systems studied here. An additional advantage of the heme tag‐HIS method for purification is that the heme tag can be used for protein quantification by using the pyridine hemochrome absorbance method for heme concentration determination.  相似文献   

4.
Assays of invertase activity in acidic soils: Influence of buffers   总被引:2,自引:0,他引:2  
D. J. Ross 《Plant and Soil》1987,97(2):285-289
Summary The influence of buffered and unbuffered systems for assays of invertase activity in a range of acidic soils (pH4.9–6.8), and a neutral soil (pH 7.1), from under pasture was determined. The buffers were those recently recommended in other studies,viz. a modified universal buffer (MUB) and a potassium phosphate buffer. The optimum pH for the invertase activity of a moderately acid soil (pH 5.5) wasc 4.0 and for the neutral soil was 5.0 With the acidic soils, invertase activity was lower in the assay system with MUB (initial pH 5.0) than in the unbuffered system, and decreased with increasing MUB molarity. The phosphate buffer was more satisfactory, even though the pH (5.0) was below its most effective range. Generally, either phosphate buffer or unbuffered systems appear suitable for measuring invertase activity in these acidic soils.  相似文献   

5.
Abstract

Several treatments were employed on Candida rugosa lipase (CRL) to improve its biocatalytic performance. Besides conventional alcohol treatment conditions, the effects of pH of the buffer solution used in the treatment as well as the changes in stirring, dialysis, and centrifugation steps of the treatment procedure were investigated for the first time for the resolution of racemic naproxen methyl ester. The highest enantioselectivity and conversion in S-naproxen production were achieved by CRL treated with pH 7.5 buffer solution. The elimination of the centrifugation step resulted in an increase in the enantioselectivity, whereas alcohol treatment of CRL was found to be inconvenient for S-naproxen production. Higher activity for p-nitrophenyl acetate was achieved when 20% butanol and pH 4 buffer solution were used, and when dialysis and stirring times were shortened.  相似文献   

6.
A 2 M sodium acetate buffer at pH 4.2 was tried to simplify the step of pH adjustment in a laboratory dry-grind procedure. Ethanol yields or conversion efficiencies of 18 sorghum hybrids improved significantly with 2.0–5.9% (3.9% on average) of relative increases when the method of pH adjustment changed from traditional HCl to the acetate buffer. Ethanol yields obtained using the two methods were highly correlated (R 2 = 0.96, P < 0.0001), indicating that the acetate buffer did not influence resolution of the procedure to differentiate sorghum hybrids varying in fermentation quality. Acetate retarded the growth of Saccharomyces cerevisiae, but did not affect the overall fermentation rate. With 41–47 mM of undissociated acetic acid in mash of a sorghum hybrid at pH 4.7, rates of glucose consumption and ethanol production were inhibited during exponential phase but promoted during stationary phase. The maximum growth rate constants (μ max) were 0.42 and 0.32 h−1 for cells grown in mashes with pH adjusted by HCl and the acetate buffer, respectively. Viable cell counts of yeast in mashes with pH adjusted by the acetate buffer were 36% lower than those in mashes adjusted by HCl during stationary phase. Coupled to a 5.3% relative increase in ethanol, a 43.6% relative decrease in glycerol was observed, when the acetate buffer was substituted for HCl. Acetate helped to transfer glucose to ethanol more efficiently. The strain tested did not use acetic acid as carbon source. It was suggested that decreased levels of ATP under acetate stress stimulate glycolysis to ethanol formation, increasing its yield at the expense of biomass and glycerol production. Names are necessary to report factually on available data; however, the U.S. Department of Agriculture neither guarantees nor warrants the standard of the product, and use of the name by the U.S. Department of Agriculture implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

7.
i-Urobilin and 1-stercobilin were separated by high-performance liquid chromatography on a reversed-phase octadecylsilane-bonded column and detected fluorimetrically through formation of phosphor with zinc ions in the eluent. The separation and the intensity of the fluorescence response were affected by concentrations of zinc acetate and sodium borate buffer, pH and methanol content in the eluent. The optimal eluent used consisted of 0.1% zinc acetate in 75 mM boric acid buffer (pH 6.0)—methanol (25:75). The detection limit was 0.2 μg/l for both i-urobilin and 1-stercobilin (signal-to-noise ratio 2), which makes the method 250–2500 times more sensitive than conventional methods.  相似文献   

8.
Luciferase from Indian firefly Luciola praeusta (Coleoptera: Lampyridae: Luciolinae) was isolated and the properties compared with that of the North American firefly, Photinus pyralis. Luciola praeusta luciferase was purified using acetone extraction, gel‐filtration column chromatography, ammonium sulfate precipitation and anion exchange chromatography. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis indicates a homogeneous preparation and the molecular mass was slightly higher than that of Photinus pyralis. The effect of pH, buffer composition and metal ions on the spectral characteristics was studied. The maximum bioluminescence activity of luciferase was observed in ACES buffer at pH 6.5. The emission maximum of 562 nm (in crude extract) was red shifted to 570 nm in Tricine buffer at pH 7.8. In addition, the effect of bovine serum albumin on the storage stability of the protein was investigated. Based on the unique spectral characteristics observed, we propose that Luciola praeusta luciferase in the native form is suitable for the assay of biochemical metabolites in acidic pH. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Summary Necturus kidneys were perfused with Tris-buffered solutions at three different pH values, i.e. 7.5, 6.0 and 9.0. A significant drop in fluid absorption occurred at pH 6.0, whereas pH 9.0 did not increase volume flow significantly. When acute unilateral, i.e. either in the lumen or the peritubular capillaries, and bilateral pH changes were elicited in both directions from 7.5 to 9.0 at a constant Tris-butyrate buffer concentration, both peritubular membrane potential differenceV 1 and transepithelial potential differenceV 3 hyperpolarized, independently of the side where the change in pH was brought about. Acid perfusions at pH 6.0 caused a similar response but of opposite sign. Analysis of the potential changes shows that pH influences not only the electromotive force and resistance of the homolateral membrane, but also the electrical properties of the paracellular path. Interference of pH with Na, Cl or K conductance was assessed. Any appreciable role for sodium or chloride was excluded, whereas the potassium transference number (t K) of the peritubular membrane increased 16% in alkaline pH. However, this increase accounts only for 19 to 36% of the observed hyperpolarization. Since changes in Tris-butyrate buffer concentration at constant pH do not affect V1 or V3 considerably, the hyperpolarization in pH 9 cannot be explained by an elevation in internal pH only, or by a Tris-H+ ion diffusion potential only. The role of the permeability of the buffers: bicarbonate, butyrate and phosphate, in determining electrical membrane parameters was evaluated. Transport numbers of the buffer anions ranked as follows:t HCO3>t butyrate>t phosphate. It is concluded that modulation of membrane potential by extracellular pH is mediated primarily by a change in peritubular cell membranet K and additionally by membrane currents carried by buffer anions.  相似文献   

10.
Investigation was carried out on demonstration of two substances constructing a precursor system located at a late stage of streptomycin biosynthesis by Streptomyces griseus. One of them is thought to be a natural precursor of Streptomycin(L) and the other is suggested as an enzymatic substance(H) transforming L to streptomycin. Both substances had no antibiotic potency and H was inactivated at low pH. L was obtained from a cell-free supernatant (active supernatant) prepared from suspension of young mycelium of Streptomyces griseus in glucose solution. H was obtained not only from active supernatant but also from cell-free extract of the organism.

Two ways of isolation were established for L. Active supernatant was adsorbed on a CM-cellulose column equilibrated with 0.05 m Tris-maleate buffer (pH 8.0). Elution of this column with the same buffer as was used for equilibration gave L-containing fraction separated from streptomycin which was eluted with the buffer including 1% of sodium chloride. L was adsorbed also on active carbon in aqueous solution at neutral pH and liberated from it at acidic pH with 95% methyl alcohol. The former method was useful to separate L from streptomycin, and the latter one was so to concentrate L.

H was isolated by using a column chromatography on DEAE-cellulose. After adsorbing active supernatant or cell-free extract of organism on a column equilibrated previously with the same buffer as above, H was eluted with the buffer including 1% of sodium chloride. Cell-free extract of S. griseus was a better source of H supply than the active supernatant.  相似文献   

11.
Conditions of maximum induction of back mutations byN-methyl-N-nitroso-N′-nitroguanidine (“nitrosoguanidine”) were studied in auxotrophic mutants ofMycobacterium phlei. In asynchronous cultures the effects of pH, buffer molarity and concentration and exposure time to nitrosoguanidine were studied. It was shown that between 6 and 10, pH does not affect the induction of back mutations but that with increasing pH up to 9 the lethal effect of nitrosoguanidine on cells is increased. Protracted treatment with nitrosoguanidine or buffer molarity did not affect the induction of back mutations. It was found with several strains ofMycobacterium phlei that it is most efficient to treat a culture with 0.5 mg or 1 mg nitrosoguanidine/ml for 20 min at pH 6. On the basis of these findings a method of induction of back mutations by nitrosoguanidine was developed for populations with synchronous cell division.  相似文献   

12.
Synopsis Treatment of tissue sections with enzymes which degrade specific types of glycosaminoglycans should provide a means for localizing glycosaminoglycans in tissue sections. The feasibility of this technique was examined by utilizing endogenously labelled glycosaminoglycans in chick and quail embryos. Less than 8% of the total glycosaminoglycans appear to be lost non-specifically during fixation and dehydration. BothStreptomyces hyaluronidase and chondroitinase ABC degraded more than 90% of their respective substrates and demonstrated minimal non-specific extraction of other glycosaminoglycans. The selectivity of chondroitinase ABC for sulphated glycosaminoglycans was substantially increased by raising the pH of the incubation buffer to 8.6. At this pH, chondroitinase ABC degraded negligible amounts of hyaluronic acid. Use of bothStreptomyces hyaluronidase and chondroitinase ABC confirmed that embryonic hyaluronic acid binds Alcian Blue under conditions that were previously believed specific for sulphated glycosaminoglycans. We suggest that this may be due to the increased molecular weight of embryonic hyaluronic acid compared to the hyaluronic acid in adult tissues. The results presented suggest that treatment of adjacent sections with buffer, chondroitinase ABC at pH 8.6, andStreptomyces hyaluronidase and subsequent staining with Alcian Blue provides a method for localizing and quantitating glycosaminoglycans in tissue sections.  相似文献   

13.
Abstract

The sweet-tasting protein brazzein is a candidate sugar substitute owing to its sweet, sugar-like taste and good stability. To commercialize brazzein as a sweetener, optimization of fermentation and purification procedure is necessary. Here, we report the expression conditions of brazzein in the yeast Kluyveromices lactis and purification method for maximum yield. Transformed K. lactis was cultured in YPGlu (pH 7.0) at 25?°C and induced by adding glucose:galactose at a weight ratio of 1:2 (%/%) during the stationary phase, which increased brazzein expression 2.5 fold compared to the previous conditions. Cultures were subjected to heat treatment at 80?°C for 1?h, and brazzein containing supernatant was purified using carboxymethyl-sepharose cation exchange chromatography using 50?mM NaCl in 50?mM sodium acetate buffer (pH 4.0) as a wash buffer and 400?mM NaCl (pH 7.0) for elution. The yield of purified brazzein under these conditions was 2.0-fold higher than that from previous purification methods. We also determined that the NanoOrange assay was a suitable method for quantifying tryptophan-deficient brazzein. Thus, it is possible to obtain pure recombinant brazzein with high yield in K. lactis using our optimized expression, purification, and quantification protocols, which has potential applications in the food industry.  相似文献   

14.
A high-performance liquid chromatographic method is described for separating and determining navelbine and possible metabolites in plasma, cell culture medium and MO4 cells. Navelbine is extracted from these fluids by ion-pair extraction with sodium octylsulphate as the counter-ion at pH 3. The system uses a cyano column as the stationary phase and a mobile phase of acetonitrile-0.12 M phosphate buffer (pH 3) (60:40, v/v). Application of the method to a study of the pharmacokinetic behaviour of navelbine in MO4 mouse fibrosarcoma cells is reported.  相似文献   

15.
New bis-piperazine-type pH buffer agents were synthesized and their buffering properties were evaluated. The compounds proved to have two-fold larger pH buffering ability than 2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid (HEPES), a Good’s buffer traditionally used to control the pH value of culture media.

Human-human hybridoma HB4C5 cells were cultured in a serum-free medium containing these buffer agents. The cell growth and antibody production, using 1,2-N,N′-bis[N′′,N′′′-di(2-sulfonoethyl)piperazinyl]ethane, were greater than when HEPES.  相似文献   

16.
Controlling pH is essential for a variety of biopharmaceutical process steps. The chemical stability of biologics such as monoclonal antibodies is pH‐dependent and slightly acidic conditions are favorable for stability in a number of cases. Since control of pH is widely provided by added buffer salts, the current study summarizes the buffer characteristics of acetate, citrate, histidine, succinate, and phosphate buffers. Experimentally derived values largely coincide with values calculated from a model that had been proposed in 1922 by van Slyke. As high concentrated protein formulations become more and more prevalent for biologics, the self‐buffering potential of proteins becomes of relevance. The current study provides information on buffer characteristics for pH ranges down to 4.0 and up to 8.0 and shows that a monoclonal antibody at 50 mg/mL exhibits similar buffer capacity as 6 mM citrate or 14 mM histidine (pH 5.0–6.0). Buffer capacity of antibody solutions scales linearly with protein concentration up to more than 200 mg/mL. At a protein concentration of 220 mg/mL, the buffer capacity resembles the buffer capacity of 30 mM citrate or 50 mM histidine (pH 5.0–6.0). The buffer capacity of monoclonal antibodies is practically identical at the process relevant temperatures 5, 25, and 40°C. Changes in ionic strength of ΔI=0.15, in contrast, can alter the buffer capacity up to 35%. In conclusion, due to efficient self‐buffering by antibodies in the pH range of favored chemical stability, conventional buffer excipients could be dispensable for pH stabilization of high concentrated protein solutions. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29: 480–492, 2013  相似文献   

17.
Separation in capillary electrophoresis is governed by various factors, including buffer type, buffer concentration, pH, temperature, voltage and micelles. Through proper adjustment of these parameters, nalidixic acid and its two major metabolites, 7-hydroxynalidixic and 7-carboxynalidixic, could be separated by micellar electrokinetic capillary chromatography using an electrophoretic electrolyte consisting of 50 mM borate buffer (pH 9) containing 25 mM sodium dodecyl sulphate and 10% acetonitrile. A linear relationship between concentration and peak area for each compound was obtained in the concentration range 0.15–100 μg ml−1, with a correlation coefficient greater than 0.999 and detection limits in the 0.2–0.7 ng ml−1 range. Intra- and inter-day precision values of about 0.8–1.2% RSD (n=11) and 1.3–2.0% RSD (n=30), respectively, were obtained. The method has been applied to the analysis of nalidixic acid and its two major metabolites in serum and urine with limits of sensitivity lower than 0.8 ng ml−1.  相似文献   

18.
The influence of several parameters, such as temperature, pH, and concentration of buffer and solvent, on the release of β-galactosidase from Kluyveromyces marxianus cells was studied. In optimal conditions (37°C, pH 9.5–10.5) greater than 90% of the intracellular β-galactosidase activity was released into 0.1-0.5 phosphate buffer after 1.5-2.0 h treatment with 1% chloroform. The described method is simple, effective, relatively fast, and selective.  相似文献   

19.
This work aimed to develop a chiral separation method of ketoconazole enantiomers using electrokinetic chromatography. The separation was achieved using heptakis (2, 3, 6‐tri‐O‐methyl)‐β‐cyclodextrin (TMβCD), a commonly used chiral selector (CS), as it is relatively inexpensive and has a low UV absorbance in addition to an anionic surfactant, sodium dodecyl sulfate (SDS). The influence of TMβCD concentration, phosphate buffer concentration, SDS concentration, buffer pH, and applied voltage were investigated. The optimum conditions for chiral separation of ketoconazole was achieved using 10 mM phosphate buffer at pH 2.5 containing 20 mM TMβCD, 5 mM SDS, and 1.0% (v/v) methanol with an applied voltage of 25 kV at 25 °C with a 5‐s injection time (hydrodynamic injection). The four ketoconazole stereoisomers were successfully resolved for the first time within 17 min (total analysis time was 28 min including capillary conditioning). The migration time precision of this method was examined to give repeatability and reproducibility with RSDs ≤5.80% (n =3) and RSDs ≤8.88% (n =9), respectively. Chirality 27:223–227, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
Following several experimental investigations, an improved method of decalcification has been devised. The principle of this decalcification method is to obtain complete decalcification by a mixture of as high pH as possible without diminishing the stainability of the Nissl-granules (with Einarson's progressive staining method by means of gallocyanin). This is accomplished by the help of a buffer solution of equal parts of 8 N formic acid and 1 N sodium formate (pH 2.2). After-treatment consists only in rinsing in flowing water for 24 hours. Dehydration is in alcohol (70%, 96%, 100%); cedar oil; ligroin. Embedding in paraffin follows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号