首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heterogeneity of D2 dopamine receptors in different brain regions.   总被引:1,自引:0,他引:1       下载免费PDF全文
The binding of [3H]spiperone has been examined in membranes derived from different regions of bovine brain. In caudate nucleus, nucleus accumbens, olfactory tubercle and putamen binding is to D2 dopamine and 5HT2 serotonin receptors, whereas in cingulate cortex only serotonin 5HT2 receptor binding can be detected. D2 dopamine receptors were examined in detail in caudate nucleus, olfactory tubercle and putamen using [3H]spiperone binding in the presence of 0.3 microM-mianserin (to block 5HT2 serotonin receptors). No evidence for heterogeneity among D2 dopamine receptors either between brain regions or within a brain region was found from the displacements of [3H]spiperone binding by a range of antagonists, including dibenzazepines and substituted benzamides. Regulation of agonist binding by guanine nucleotides did, however, differ between regions. In caudate nucleus a population of agonist binding sites appeared resistant to guanine nucleotide regulation, whereas this was not the case in olfactory tubercle and putamen.  相似文献   

2.
Partial purification of dopamine D2 receptors using lectin affinity columns   总被引:1,自引:0,他引:1  
Dopamine D2 receptors , detected by [3H]spiperone Dopamine D2 receptors , detected by [3H]spiperone binding, were solubilized from bovine caudate nucleus by cholate/sodium chloride and were found to bind to wheat germ agglutinin immobilized on agarose. Specific elution could be achieved with N-acetylglucosamine whereas other sugars tested were inactive in this regard . The eluted preparation was enriched in solubilized receptors about sevenfold. The pharmaco-logical properties of the preparation were essentially unchanged by the lectin affinity purification procedure. The D2 dopamine receptor is therefore a glycoprotein. binding, were solubilized from bovine caudate nucJeus by cholate/sodium chloride and were found to bind to wheat germ agglutinin immobilized on agarose. Specific elution could be achieved with N-acetylglucosamine whereas other sugars tested were inactive in this regard . The eluted preparation was enriched in solubilized receptors about sevenfold. The pharmacological properties of the preparation were essentially unchanged by the lectin affinity purification procedure. The D2 dopamine receptor is therefore a glycoprotein.  相似文献   

3.
I Creese  D R Burt  S H Snyder 《Life sciences》1975,17(6):933-1001
3H-Dopamine and 3H-haloperidol bind with high affinity and selectivity to synaptic dopamine receptors in membrane preparations of the calf caudate. Binding of both ligands shows marked regional variations with greatest density in caudate, putamen, globus pallidus, nucleus accumbens and olfactory tubercle, areas rich in dopamine nerve terminals. The rank-order of phenothiazines and related agents as well as catecholamines in displacing both dopamine and haloperidol binding closely parallels their pharmacological potencies and affinities for the dopamine-sensitive adenylate cyclase. Dopamine's affinity for specific 3H-dopamine binding sites is 100 times its apparent affinity for the dopamine sensitive adenylate cyclase. Agonists have about 50 times more affinity for dopamine than haloperidol sites, whereas antagonists display about 100 times greater affinity for haloperidol than dopamine sites.  相似文献   

4.
M M Shaffer  T W Moody 《Peptides》1986,7(2):283-288
Receptors for VIP were characterized in the rat CNS. 125I-VIP bound with high affinity to rat brain slices. Binding was time dependent and specific. Pharmacology studies indicated that specific 125I-VIP binding was inhibited with high affinity by VIP and low affinity by secretin and PHI. Using in vitro autoradiographic techniques high grain densities were present in the dentate gyrus, pineal gland, supraoptic and suprachiasmatic nuclei, superficial gray layer of the superior colliculus and the area postrema. Moderate grain densities were present in the olfactory bulb and tubercle, cerebral cortex, nucleus accumbens, caudate putamen, interstitial nucleus of the stria terminalis, paraventricular thalamic nucleus, medial amygdaloid nucleus, subiculum and the medial geniculate nucleus. Grains were absent in the corpus callosum and controls treated with 1 microM unlabeled VIP. The discrete regional distribution of VIP receptors suggest that it may function as an important modulator of neural activity in the CNS.  相似文献   

5.
The in vitro binding properties of the [125I] labeled benzamide (S(-)-N-[(1-ethyl-2-pyrrolidinyl)-methyl]-2-hydroxy-3-iodo-6-methoxy- benzamide, IBZM) were determined in bovine and mouse caudate membrane homogenates and by autoradiography of mouse brain slices. [125I]-IBZM binding is saturable and reversible with a Bmax of 373 +/- 51 fmol/mg protein and a Kd of 3.1 +/- 0.62 nM (mean +/- SD, Scatchard analyses) and 0.56 nM as calculated by association and dissociation time constants. In competition experiments, Ki values for the D-2 antagonists YM-09151-2 and spiperone are 4 orders of magnitude lower than the Ki value for the D-1 antagonist SCH-23390 and S(-)-IBZM is ten-fold more potent than R(+)-IBZM. [125I]-IBZM has a low affinity for serotonin S-2 and for alpha receptors. Therefore, it is a highly selective ligand for dopamine D-2 receptors. Autoradiographic images of brain sections incubated with [125I]-IBZM show the dopamine D-2 receptors of the striatum, nucleus accumbens and olfactory tubercle with a high ratio of specific to nonspecific binding. Thus, S(-)-IBZM, when labeled with [123I], may be useful for in vivo imaging of dopamine D-2 receptors by single photon emission computerized tomography (SPECT).  相似文献   

6.
The putative dopamine D4 receptor protein in rat brain was labelled and quantified autoradiographically using two selective benzamides: [3H]YM-09151-2 which labels D2, D3 and D4 dopamine receptors and [3H]Raclopride which labels D2 and D3. The difference in densities of both ligands at saturable concentrations, show a regional distribution for the putative D4 receptor in the following rank order: hippocampus > caudate putamen > olfactory tubercle = substancia nigra > nucleus accumbens core > cerebral cortex > cerebellum. A calculated value of 0.34 pmol/mg protein was attributable to D4 receptor maximum capacity in caudate putamen and was obtained after subtracting the Bmax of the ligands. Our results show that the distribution of D4 receptor only partially overlaps with the D4 mRNA localization reported earlier and is not only associated to limbic structures but to motor areas as well.  相似文献   

7.
D2 dopamine receptors have been solubilised from bovine caudate nucleus using cholate/sodium chloride in the presence of soyabean phospholipid. Reconstitution of the receptors into soyabean phospholipid vesicles has been achieved by dialysis to remove detergent and salt. The receptors are truly reconstituted as judged by sedimentation, electron microscopy, heat stability and analysis on sucrose density gradients. The ligand-binding properties of the reconstituted receptors resemble those of the solubilised preparation.  相似文献   

8.
The distribution of a dopamine D2 receptor mRNA in rat brain   总被引:4,自引:0,他引:4  
D M Weiner  M R Brann 《FEBS letters》1989,253(1-2):207-213
Based on the recently reported sequence of a dopamine D2 receptor cloned from rat brain, we prepared a series of cDNA probes to determine the distribution of mRNA encoding this receptor. Within the forebrain, D2 receptor mRNA is abundant in the caudate-putamen, accumbens nucleus and olfactory tubercle. Moderate to low levels of mRNA are observed in the medial habenular nucleus, diagonal band, lateral septal nucleus, claustrum, dorsal endopiriform nucleus, and entorhinal cortex. In the mesencephalon, D2 receptor mRNA is abundant within the substantia nigra, pars compacta, and the ventral tegmental area. Comparison of the distribution of the mRNA and ligand binding indicates that both presynaptic and postsynaptic D2 receptors of the nigrostriatal, mesolimbic and mesocortical pathways are derived from the same mRNA.  相似文献   

9.
D2 dopamine-like receptors have been purified from five bovine brain regions (caudate nucleus, putamen, olfactory tubercle, frontal cortex, cerebellum) and the anterior and neurointermediate lobes of the pituitary gland using a combined ligand-affinity and lectin-affinity chromatography procedure. In all the brain regions except cerebellum and in the neurointermediate lobe of the pituitary gland the purified species appeared as a M(r) 95,000 doublet on SDS-PAGE. In the anterior lobe of the pituitary an additional M(r) 142,000-145,000 species was seen. The M(r) 95,000 species had a low affinity for the lectin wheat germ agglutinin (WGA) whereas the M(r) 142,000-145,000 species had a higher affinity for WGA and additionally showed some affinity for concanavalin A. It is concluded that both the M(r) 95,000 and 142,000-145,000 species are D2 dopamine-like receptors and that the differences between the species are mainly at the oligosaccharide level. Some evidence was also obtained for heterogeneity at the protein level which may correspond to the D2(short) and D2(long) isoforms of these receptors.  相似文献   

10.
Abstract: Portions of the cDNA encoding the third intracellular loop (i3 loop) of the long and short isoforms of the rat D2 dopamine receptor were subcloned into the vector pNMHUBpoly and expressed in Escherichia coli as fusion proteins. The fusion proteins were gel-purified and used to immunize rabbits for the production of polyclonal anti-receptor antisera. The anti-fusion protein antisera recognized synthetic peptides corresponding to segments of the i3 loops of D2 dopamine receptors in a solid-phase radioimmunoassay. Antisera were tested in an immunoprecipitation assay using the reversible D2 antagonist [125I]NCQ 298 and digitonin-solubilized extracts of canine and rat caudate. [125I]-NCQ 298 bound reversibly and with high affinity (KD= 0.14 n M ) to receptors in solubilized extracts enriched by chromatography on heparin-agarose. The anti-UBI-D2i3L and anti-UBI-D2i3s antisera were able to immunoprecipitate quantitatively D2 dopamine receptors labeled with [125I]NCQ 298 from solubilized rat caudate. The antibodies were tested for their ability to affect the coupling of D2 dopamine receptors to GTP-binding proteins in digitonin-solubilized rat caudate. Both anti-UBI-D2i3L and anti-UBI-D2i3s antisera were able to inhibit the high-affinity binding of the agonist N -propylnorapomorphine to digitonin-solubilized rat caudate. These findings indicate that the i3 loop of the D2 dopamine receptor is an important determinant for coupling of the G protein.  相似文献   

11.
The distribution of 3H-nomifensine binding sites in the rat brain has been studied by quantitative autoradiography. The binding of 3H-nomifensine to caudate putamen sections was saturable, specific, of a high affinity (Kd = 56 nM) and sodium-dependent. The dopamine uptake inhibitors benztropine, nomifensine, cocaine, bupropion and amfonelic acid were the most potent competitors of 3H-nomifensine binding to striatal sections. The highest levels of (benztropine-displaceable) 3H-nomifensine binding sites were found in the caudate-putamen, the olfactory tubercle and the nucleus accumbens. 6-Hydroxydopamine-induced lesion of the ascending dopaminergic bundle resulted in a marked decrease in the 3H-ligand binding in these areas. Moderately high concentrations of the 3H-ligand were observed in the bed nucleus of the stria terminalis, the anteroventral thalamic nucleus, the cingulate cortex, the lateral septum, the hippocampus, the amygdala, the zona incerta and some hypothalamic nuclei. There were low levels of the binding sites in the habenula, the dorsolateral geniculate body, the substantia nigra, the ventral tegmental area and the periaqueductal gray matter. These autoradiographic data are consistent with the hypothesis that 3H-nomifensine binds primarily to the presynaptic uptake site for dopamine but also labels the norepinephrine uptake site.  相似文献   

12.
Mammalian D1 and D2 dopamine receptors were stably expressed in Drosophila Schneider-2 (S2) cells and screened for their pharmacological properties. Saturable, dose-dependent, high affinity binding of the D1-selective antagonist [3H]SCH-23390 was detected only in membranes from S2 cells induced to express rat dopamine D1 receptors, while saturable, dose-dependent, high affinity binding of the D2-selective antagonist [3H]methylspiperone was detected only in membranes from S2 cells induced to express rat dopamine D2 receptors. No specific binding of either radioligand could be detected in membranes isolated from uninduced or untransfected S2 cells. Both dopamine D1 and D2 receptor subtypes displayed the appropriate stereoselective binding of enantiomers of the nonselective antagonist butaclamol. Each receptor subtype also displayed the appropriate agonist stereoselectivities. The dopamine D1 receptor bound the (+)-enantiomer of the D1-selective agonist SKF38393 with higher affinity than the (-)-enantiomer, while the dopamine D2 receptor bound the (-)-enantiomer of the D2-selective agonist norpropylapomorphine with higher affinity than the (+)-enantiomer. At both receptor subtypes, dopamine binding was best characterized as occurring to a single low affinity site. In addition, the low affinity dopamine binding was also found to be insensitive to GTPgammaS and magnesium ions. Overall, the pharmacological profiles of mammalian dopamine D1 and D2 receptors expressed in Drosophila S2 cells is comparable to those observed for these same receptors when they are expressed in mammalian cell lines. A notable distinction is that there is no evidence for the coupling of insect G proteins to mammalian dopamine receptors. These results suggest that the S2 cell insect G system may provide a convenient source of pharmacologically active mammalian D1 and D2 dopamine receptors free of promiscuous G protein contaminants.  相似文献   

13.
Characterization and Regulation of Insulin Receptors in Rat Brain   总被引:9,自引:7,他引:2  
An in vitro receptor binding assay, using filtration to separate bound from free [125I]insulin, was developed and used to characterize insulin receptors on membranes isolated from specific areas of rat brain. The kinetic and equilibrium binding properties of central receptors were similar to those of hepatic receptors. The binding profiles in all tissues were complex and were consistent with binding in multiple steps or to multiple sites. Similar binding properties were found among receptors in olfactory tubercle/bulb, cerebral cortex, hippocampus, striatum, hypothalamus, and cerebellum. High affinity [125I]insulin binding sites (KD = 3-11 nM) were distributed evenly between membranes isolated from P1 and P2 fractions of these brain areas, with the exception of the olfactory tubercle in which binding to P2 membranes was four-fold greater (Bmax = 150 fmol/mg protein). One difference between insulin receptors in brain and peripheral target tissues, however, was observed. Following exposure to 0.17 microM insulin for 3 h at 37 degrees C, the number of specific [125I]insulin binding sites on adipocytes decreased by 40%, while the number of binding sites on minces of cerebral cortex/olfactory tubercle remained constant. The results suggest that although the binding characteristics of central and peripheral insulin receptors are similar, these receptors do not appear to be regulated in the same manner.  相似文献   

14.
Circadian rhythms were measured in alpha 1-, alpha 2- and beta-adrenergic, acetylcholine muscarinic (ACh), and benzodiazepine (BDZ) receptor binding in small regions of rat brain. Rhythms in alpha 1-receptor binding were measured in olfactory bulb, frontal, cingulate, piriform, parietal, temporal and occipital cortex, hypothalamus, hippocampus, pons-medulla, caudate-putamen and thalamus-septum. No rhythm was found in cerebellum. Rhythms in alpha 2-receptor binding were measured in frontal, parietal and temporal cortex, and pons-medulla. No rhythm was found in cingulate, piriform or occipital cortex, or hypothalamus. Rhythms in binding to beta-receptors were measured in olfactory bulb, piriform, insular, parietal and temporal cortex, hypothalamus and cerebellum. No rhythms were found in frontal, entorhinal, cingulate, or occipital cortex, hippocampus, caudate-putamen, or pons-medulla. Rhythms in ACh receptor binding were measured in olfactory bulb, parietal cortex and caudate-putamen. No rhythms were found in frontal or occipital cortex, nucleus accumbens, hippocampus, thalamus-septum, pons-medulla or cerebellum. Rhythms in BDZ receptor binding were measured in olfactory bulb, olfactory and occipital cortex, olfactory tubercle, nucleus accumbens, amygdala, caudate-putamen, hippocampus and cerebellum. No rhythms were found in parietal cortex, pons-medulla or thalamus-septum. The 24-hr mean binding to receptors varied between 3- and 10-fold, the highest in cortex and the lowest, usually, in cerebellum. The piriform cortex was particularly high in alpha 1- and alpha 2-adrenergic receptors; the nucleus accumbens and caudate, in ACh receptors; and the amygdala, in BDZ receptors. Most adrenergic and ACh receptor rhythms peaked in subjective night (the period when lights were off under L:D conditions), whereas most BDZ receptor rhythms peaked in subjective day (the time lights were on in L:D). Perhaps in the rat, a nocturnal animal, the adrenergic and ACh receptors mediate activity and the functions that accompany it, and the BDZ receptors mediate rest, and with it, sleep.  相似文献   

15.
D2 dopamine receptors have been extracted from bovine brain using the detergent cholate and purified approximately 20,000-fold by affinity chromatography on haloperidol-sepharose and wheat germ agglutinin-agarose columns. The purified preparation contains D2 dopamine receptors as judged by the pharmacological specificity of [3H]spiperone binding to the purified material. The sp. act. of [3H]spiperone binding in the purified preparation is 2.5 nmol/mg protein. The purified preparation shows a major diffuse band at Mr 95,000 upon SDS-polyacrylamide gel electrophoresis and there is evidence for microheterogeneity either at the protein or glycosylation level. Photoaffinity labelling of D2 dopamine receptors also shows a species of Mr 95,000. The D2 dopamine receptor therefore is a glycoprotein of Mr 95,000.  相似文献   

16.
Effect of spontaneous ingestion of ethanol on brain dopamine metabolism   总被引:3,自引:0,他引:3  
The effect of ethanol, either administered by gavage or voluntarily ingested, on brain dopamine (DA) metabolism was studied in alcohol-preferring and alcohol non-preferring rats. In alcohol non-preferring rats ethanol administration (2 g/kg) increased 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) and reduced DA levels in the caudate nucleus and olfactory tubercle but was ineffective in the medial prefrontal cortex. In alcohol-preferring rats ethanol effect was greater than in non-preferring animals and ethanol influenced DA metabolism also in the medial prefrontal cortex. The effect of voluntary ethanol ingestion was studied in alcohol-preferring rats trained to consume their daily fluid intake within 2 hrs. Voluntary ingestion of ethanol (3.1 +/- 0.7 g/kg in 1 hr) increased DA metabolites and reduced DA levels in the caudate nucleus, olfactory tubercle and medial prefrontal cortex. The results suggest that voluntary ethanol ingestion increases the release of DA from nigro-striatal and meso-limbic DA neurons.  相似文献   

17.
Abstract: Solubilization of rat striatal membranes with sodium cholate, followed by reconstitution into phospholipid vesicles, leads to a 6.5-fold increase in the agonist high-affinity binding sites of the D1 dopamine receptor. These high-affinity binding sites display differential sensitivity toward temperature. When reconstituted receptors were preincubated for 1 h at 0–4°C (on ice) or at 22°C (room temperature) followed by radioligand binding assays with dopamine, neither the high-affinity values of the receptor for dopamine nor the percent receptors in the high-affinity state (31–39%) were changed from control reconstituted receptors, which were not subject to any preincubations. At 30°C, there was a partial loss in the number of high-affinity D1 receptors with only 25% of the total receptor population in the high-affinity state; there was no change in the affinity values of the high-affinity binding sites. At 37°C, there was a 40% loss in total number of D1 receptor binding sites. All the high-affinity binding sites were lost and the remaining 60% of binding activity represented the low-affinity binding state of the receptor. These results indicate that the high-affinity binding sites of the reconstituted D1 dopamine receptors are uniquely sensitive to higher temperatures.  相似文献   

18.
SCH-23390 is a high-affinity antagonist selective for D1 dopamine receptors (Ki = 2.5 nM). It does not contain a functional group that can be conveniently coupled to commercially available resins for affinity chromatography or to prepare photolabels for photoaffinity labeling of receptors. To construct an affinity resin for purification of dopamine D1 receptors, an aldehyde analogue of SCH-23390, (+/-)-7-chloro-8-hydroxy-1-(4'-formylphenyl)-3-methyl-2,3,4,5-tetrahydro -1H- 3-benzazepine (ASCH), was synthesized. 8-Methoxy-1-(4'-bromophenyl)-SCH-23390 was lithiated, formylated, and O-demethylated to form the aldehyde. NMR and IR analyses were performed to characterize the product. Assays were performed with the radioligand [125I]SCH-23982 to define the biological activity of the aldehyde. ASCH displaced [125I]SCH-23982 binding from caudate membranes with a Ki value of 7.1 nM. ASCH has been coupled through the aldehyde group on the phenyl ring to diaminodipropylamine-agarose for affinity chromatography. After solubilization of caudate membranes in 1% digitonin, the affinity resin retained binding sites for [125I]SCH-23982 that were eluted with 10 mM SCH-23390. The aldehyde was also covalently coupled to biotin hydrazide for fluorescence labeling of dopamine D1 receptors. The biotin-conjugated aldehyde of SCH-23390 displaced [125I]SCH-23982 binding from caudate membranes with a Ki value of 9.3 nM.  相似文献   

19.
By use of the radioligand [3H]spiroperidol, D2 3,4-dihydroxyphenylethylamine (dopamine) receptor binding characteristics were studied in calf globus pallidus and compared with those of neostriatum. Antagonist competition curves were monophasic and revealed similar affinities for neostriatum and globus pallidus, suggesting a uniform receptor population with one affinity state for antagonists. In both regions, competition curves with the agonist dopamine were biphasic, distinguishing a high- and low-agonist-affinity state. In neostriatum and globus pallidus, respectively, 45% and 19% of [3H]spiroperidol binding was displaced with high affinity and the remainder with low affinity. In neostriatum, the addition of 0.4 mM GTP resulted in a partial conversion from high- to low-affinity state with a remaining high-affinity component of 15%. In globus pallidus, dopamine binding was not altered by GTP. The capability of GTP to modulate agonist binding to D2 receptors appears to be dependent on their neuroanatomical localization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号