首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A temperature-sensitive Escherichia coli mutant, which contains a heat-labile RNase E, fails to produce 5-S rRNA at a non-permissive temperature. It accumulates a number of RNA molecules in the 4-12-S range. One of these molecules, a 9-S RNA, is a precursor to 5-S rRNA [Ghora, B. K. and Apirion, D. (1978) Cell, 15, 1055-1056]. These molecules were purified and processed in a cell-free system. Some of these RNA molecules, after processing, give rise to products the size of transfer RNA, but not to 5-S-rRNA. Further characterization of the processed products of one such precursor molecule shows that it contains tRNA1Leu and tRNA1His. RNase E is necessary but not sufficient for the processing of this molecule to mature tRNAs in vitro. The accumulation of such tRNA precursors in an RNase E mutant cell and the obligatory participation of RNase E in its processing indicate that RNase E functions in the maturation of transfer RNAs as well as of 5-S rRNA.  相似文献   

3.
Summary Small stable RNAs in wild-type Neurospora crassa were investigated by analyzing the cell contents of long term 32Pi labeled cultures in thin slab polyacrylamide gels. Because of the rigid fungal cell wall and the potency of nucleases the degradation of RNA in opening the cells was rather extensive. Some of these degradation problems were circumvented by using a slime strain of N. crassa which lacks a rigid cell wall. Our findings show that N. crassa. like many other eukaryotes, contains a number of small stable RNA molecules. We also found that the ribosomal RNA, the so called 5.8S, migrates slower on polyacrylamide gels than the 6S RNA of E. coli, which contains 184 nucleotides. The relative migration of the molecules was not changed when the samples were denatured prior to electrophoresis. The mobility of the Neurospora rRNA molecule suggested a chain length of 220 nucleotides. Fingerprinting of a T1 ribonuclease digest indicated a chain length of 212 nucleotides. Because of the unusually large size of the so-called 5.8S rRNA we found it more appropriate to refer to this molecule as a 7S rRNA. It seems that the N. crassa 7S rRNA is the largest low molecular weight ribosomal RNA studied thus far.  相似文献   

4.
Analysis of gene structure in the extremely thermophilic archaebacterium, Methanothermus fervidus, has revealed the presence of a cluster of stable RNA-encoding genes arranged 5'-7S RNA-tRNA(Ser)-16S rRNA-tRNA(Ala)-23S rRNA-5S rRNA. The genome of M. fervidus contains two rRNA operons but only one operon has the closely linked 7S RNA-encoding gene. The sequences upstream from the two rRNA operons are identical for 206 bp but diverge at the 3' base of the tRNA(Ser) gene. The secondary structures predicted for the M. fervidus 7S, 16S rRNA, tRNA(Ala) and tRNA(Ser) have been compared with those of functionally homologous molecules from moderately thermophilic and mesophilic archaebacteria. A consensus secondary structure for archaebacterial 7S RNAs has been developed which incorporates bases and structural features also conserved in eukaryotic signal-recognition-particle RNAs and eubacterial 4.5S RNAs.  相似文献   

5.
Small cytoplasmic RNA (scRNA; 271 nucleotides) is an abundant, stable RNA identified in the Gram-positive eubacterium Bacillus subtilis. Several findings suggest an important role of scRNA in protein biosynthesis: it shares structural and biochemical features with the Escherichia coli 4.5S RNA (114 nucleotides), a molecule known to be involved in this process, and it can complement the essential function of 4.5S RNA in vivo. The common apical hairpin motif of scRNA and 4.5S RNA also exists in eukaryotic 7SL RNA, the RNA component of the signal recognition particle. To elucidate the higher-order structure of scRNA, we have combined a phylogenetic approach with a biochemical one. The sequence of scRNA from a thermophilic relative of B. subtilis, Bacillus stearothermophilus, was determined and compared with the B. subtilis scRNA. In addition, the solution structure of B. stearothermophilus scRNA was probed with single- and double-strand-specific nucleases. Both types of analysis support a secondary structure model for scRNA that strongly resembles 4.5S RNA and respective parts of 7SL RNA. The results provide further evidence for the suggestion of a functional relationship between these RNAs.  相似文献   

6.
7.
The community compositions of free-living and particle-associated bacteria in the Chesapeake Bay estuary were analyzed by comparing banding patterns of stable low-molecular-weight RNA (SLMW RNA) which include 5S rRNA and tRNA molecules. By analyzing images of autoradiographs of SLMW RNAs on polyacrylamide gels, band intensities of 5S rRNA were converted to binary format for transmission to a back-propagating neural network (NN). The NN was trained to relate binary input to sample stations, collection times, positions in the water column, and sample types (e.g., particle-associated versus free-living communities). Dendrograms produced by using Euclidean distance and average and Ward's linkage methods on data of three independently trained NNs yielded the following results. (i) Community compositions of Chesapeake Bay water samples varied both seasonally and spatially. (ii) Although there was no difference in the compositions of free-living and particle-associated bacteria in the summer, these community types differed significantly in the winter. (iii) In the summer, most bay samples had a common 121-nucleotide 5S rRNA molecule. Although this band occurred in the top water of midbay samples, it did not occur in particle-associated communities of bottom-water samples. (iv) Regardless of the season, midbay samples had the greatest variety of 5S rRNA sizes. The utility of NNs for interpreting complex banding patterns in electrophoresis gels was demonstrated.  相似文献   

8.
A human glutamate tRNA has been shown to form stable hybrids with 28S ribosomal RNA. This tRNA was purified from HeLa cell cytoplasmic RNA by RNA-RNA solution hybridization followed by the isolation of tRNA-28S rRNA complexes by hybridization-selection with ribosomal DNA or by recovery of the 28S peak from formamide-sucrose gradients. The single hybridizing tRNA species was identified as tRNAGluCUC by sequencing: pU-C-C-C-U-G-G-U-G-m2G-U-C-phi-A-G-U-G-G-D-phi-A-G-G-A-U-U- C-G-G-C-G-C-U-C-U-C-A-C-C-G-C-G-G-C-m5C-m5C-G-G-G-Tm-phi-C-G-A- U-U-C-C-C-G-G-U-C-A-G-G-G-A-A-C-C-AOH. Computer analysis located a nucleotide sequence near the middle of human 28S rRNA which is complementary to 15-26 nucleotides between residues 20 and 50 of this tRNA. An interaction between this tRNA and 28S rRNA suggests that tRNAGluCUC may have functions in the cell in addition to translation.  相似文献   

9.
10.
Immature oocytes from Xenopus laevis contain a 42S ribonucleoprotein particle (RNP) containing 5S RNA, tRNA, a 43 kDa protein, and a 48 kDa protein. A particle containing 5S RNA and the 43 kDa protein (p43-5S) liberated from the 42S particle upon brief treatment with urea can be purified by anion exchange chromatography. The purified p43-5S RNA migrates as a distinct species during electrophoresis on native polyacrylamide gels. Radiolabeled 5S RNA can be incorporated into the p43-5S complex by an RNA exchange reaction. The resulting complexes containing labeled 5S RNA have a mobility on polyacrylamide gels identical to that of purified p43-5S RNPs. RNP complexes containing 5S RNA labeled at either the 5' or 3' end were probed with a variety of nucleases in order to identify residues protected by p43. Nuclease protection assays performed with alpha-sarcin indicate that p43 binds primarily helices I, II, IV, and V of 5S RNA. This is the same general binding site observed for TFIIIA on 5S RNA. Direct comparison of the binding sites of p43 and TFIIIA with T1 and cobra venom nucleases reveals striking differences in the protection patterns of these two proteins.  相似文献   

11.
12.
13.
During early oogenesis in amphibia, most of the 5 S RNA and tRNA is stored in a ribonucleoprotein particle that sediments at 42 S. In Xenopus laevis the 42 S particle contains two major proteins: of Mr 48 000 (P48) and 43 000 (P43). It is shown that heterogeneity in composition of the 42 S particle reflects a changing situation whereby initially, both 5 S RNA and tRNA are complexed with P48 (1 molecule 5 S RNA: 1 molecule P48; 2 or 3 molecules tRNA: 1 molecule P48), but later, tRNA becomes increasingly associated with P43 (in a 1:1 ratio) although 5 S RNA remains complexed with a cleavage product of P48. These changes relate to the eventual utilization of the excess 5 S RNA and tRNA in ribosome assembly and protein synthesis.  相似文献   

14.
During early oogenesis in amphibia, most of the 5 S RNA and tRNA is stored in a ribonucleoprotein particle that sediments at 42 S. In Xenopus laevis the 42 S particle contains two major proteins: of Mr 48 000 (P48) and 43 000 (P43). It is shown that heterogeneity in composition of the 42 S particle reflects a changing situation whereby initially, both 5 S RNA and tRNA are complexed with P48 (1 molecule 5 S RNA: 1 molecule P48; 2 or 3 molecules tRNA: 1 molecule P48), but later, tRNA becomes increasingly associated with P43 (in a 1:1 ratio) although 5 S RNA remains complexed with a cleavage product of P48. These changes relate to the eventual utilization of the excess 5 S RNA and tRNA in ribosome assembly and protein synthesis.  相似文献   

15.
Crude tRNA isolated from rat liver by the method of Rogg et al. (Biochem. Biophys. Acta 195, 13-15 1969) contains N6-dimethyladenosine (m6-2A) and was therefore fractionated in order to identify the m6-2A-containing RNAs. A unique species of RNA was purified which contained all the m62A present in the crude tRNA. Sequence analysis by postlabeling with gamma-32p-ATP and polynucleotide kinase revealed that this RNA represents the 32 nucleotides AAGGUUUC(C)U GUAGGUGm62Am62ACCUGCGGAAGGAUC from position 5 to 36 of the 3' terminus of ribosomal 18S RNA. The 36 nucleotide long sequence from the 3' end of rat liver 18S rRNA exhibits extensive homology with the corresponding sequence of E. coli 16S rRNA and with the 21 nucleotide long 3' terminal sequence so far known from Saccharomyces carlsbergensis 17S rRNA. A heterogeneity in this sequence provides the first evidence on the molecular level for the existence of (at least) two sets of redundant ribosomal 18S RNA genes in the rat.  相似文献   

16.
Low-molecular weight RNA (LMW RNA) analysis using staircase electrophoresis was performed for several species of eukaryotic and prokaryotic microorganisms. According to our results, the LMW RNA profiles of archaea and bacteria contain three zones: 5S RNA, class 1 tRNA and class 2 tRNA. In fungi an additional band is included in the LMW RNA profiles, which correspond to the 5.8S RNA. In archaea and bacteria we found that the 5S rRNA zone is characteristic for each genus and the tRNA profile is characteristic for each species. In eukaryotes the combined 5.8S and 5S rRNA zones are characteristic for each genus and, as in prokaryotes, tRNA profiles are characteristic for each species. Therefore, stable low molecular weight RNA, separated by staircase electrophoresis, can be considered a molecular signature for both prokaryotic and eukaryotic microorganisms. Analysis of the data obtained and construction of the corresponding dendrograms afforded relationships between genera and species; these were essentially the same as those obtained with 16S rRNA sequencing (in prokaryotes) and 18S rRNA sequencing (in eukaryotes).  相似文献   

17.
This paper reports that the D-loop sequence of cellular mammalian ribosomal 5S RNAs is a natural leadzyme that specifically binds and cleaves in trans other RNA molecules in the presence of lead. The D-loops of these 5S rRNAs are similar in sequence to the active site of the leadzyme derived from tRNA(Phe), which cleaves a single bond in cis. We have devised a 12 nt model substrate based on the leadzyme sequence cleaved in trans by a 12 nt RNA molecule containing of the D-loop sequence. The model reaction occurs only at the appropriate concentration of lead and enzyme/substrate stoichiometry. The native 5S rRNA carries the same cleavage activity, although with different optimal lead concentration and stoichiometry. On the other hand, the isolated D-loop does not serve as a substrate when incubated with an RNA molecule with the potential to base pair with it and form the same internal loop (the bubble) present in the leadzyme-substrate complex. We show that the leadzyme cuts C-G, but not G-G or U-G linkages. The 5S rRNA leadzyme appears to have the shortest asymmetric pentanucleotide purine-rich loop flanked by two short double stranded RNAs. The leadzyme activity of native 5S rRNA may be an important aspect of lead toxicity in living cells. Because the leadzyme motif has been found in natural RNA species, its activity can be expressed in vivo even at a very low lead concentrations, of lead leading to the inactivation of other cellular RNAs. This might be one of the ways in which lead poisoning manifests itself at the molecular level. Lead toxicity is based not only on its binding to calcium and zinc binding proteins (such as Zn-fingers) and random hydrolysis of nucleic acids, but also, and most importantly, on the induction of the hydrolytic properties of RNA (RNA catalysis).  相似文献   

18.
Chloroplasts isolated from young spinach leaves incorporate [3H]uridine into RNA species which co-electrophorese with 5-S rRNA and tRNA, but show very little incorporation into 4.5-S rRNA. Chloroplast 4.5-S rRNA is labelled in vivo after a distinct lag period relative to 5-S rRNA and tRNA. The kinetics of labelling in vivo of chloroplast 5-S rRNA are similar to those of the immediate precursors to the 1.05 x 10(6)-Mr and 0.56 x 10(6)-Mr rRNAs, whereas the kinetics of labelling of the 4.5-S rRNAare similar to those of mature 1.05 x 10(6)-Mr and 0.56 x 10(6)-Mr rRNAs. Chloramphenicol inhibits the labelling of chloroplast 4.5-S rRNA in vivo, and concomitantly inhibits the processing of the immediate precursors to the 1.05 x 10(6)-Mr and 0.56 x 10(6)-Mr rRNAs, but has little effect on the appearance of label in chloroplast 5-S rRNA. DNA/RNA hybridization using 125I-labelled RNAs suggests that chloroplast DNA contains a 2--3-fold excess of 4.5-S and 5-S rRNA genes relative to the high-molecular-weight rRNA genes. Competition hybridization experiments show that the immediate precursor to the 1.05 x 10(6)-Mr rRNA effectively competes with 125I-labelled 4.5-S rRNA for hybridization with chloroplast DNA, and is therefore a likely candidate for a common precursor to both the 1.05 x 10(6)-Mr and 4.5-S rRNAs.  相似文献   

19.
Threonyl-tRNA synthetase of rabbit reticulocytes was purified to homogeneity. We have found that this enzyme can interact not only with cognate tRNA(Thr), but also with high-Mr RNAs. tRNA(Thr) removes rRNA from the complexes with threonyl-tRNA synthetase. On the other hand, rRNA is unable to dissociate tRNA(Thr) from the complexes with the enzyme. Despite its dimeric organization, threonyl-tRNA synthetase is unable to form stable ternary complexes with tRNA(Thr) and rRNA. In the extract of rabbit reticulocytes about one-third of the threonyl-tRNA synthetase molecules are in association with cognate tRNA(Thr) and thus are unable to interact with high-Mr RNAs.  相似文献   

20.
我们采用植物叶与热缓冲液、苯酚直接混合(约65℃)匀浆,离心抽提和乙醇沉淀后,得到植物叶总RNA。经聚丙烯酰胺凝胶电泳分离、纯化,即可得到叶绿体4.5S rRNA,此法不仅操作简单,而且得率高。 同时,经过对同一植物的不同组织或不同细胞组分,如根、细胞质、叶绿体和叶绿体核糖体小分子RNA的提取与鉴定,以简便的方法证明了4.5S rRNA是叶绿体核糖体成份,也证明了我们所采用的提取、纯化4.5SrRNA方法的可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号