首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
以解纤维梭菌( Clostridium cellulolyticum)和热纤梭菌( Clostridium thermocellum)为代表的产纤维小体梭菌可以直接完成从木质纤维素原料到乙醇的生物转化,是用于通过整合生物加工技术生产纤维素乙醇的优良候选菌株。然而,这些产纤维小体梭菌的纤维素降解效率及乙醇产量尚不能满足工业化生产的要求,其遗传改造技术的不成熟严重制约了通过定向代谢工程改造提高生产性能的进程。针对这些典型的产纤维小体菌株,各国科学家近年来在基于二类内含子的嗜中温及嗜高温遗传改造平台建立方面取得了较大突破,并通过靶向代谢工程改造,显著提高纤维素乙醇的产量。笔者对这些前期研究工作以及国内外相关研究成果进行系统的总结,并对构建的遗传改造工具的应用前景进行展望。  相似文献   

2.
以解纤维梭菌(Clostridium cellulolyticum)和热纤梭菌(Clostridium thermocellum)为代表的产纤维小体梭菌可以直接完成从木质纤维素原料到乙醇的生物转化,是用于通过整合生物加工技术生产纤维素乙醇的优良候选菌株。然而,这些产纤维小体梭菌的纤维素降解效率及乙醇产量尚不能满足工业化生产的要求,其遗传改造技术的不成熟严重制约了通过定向代谢工程改造提高生产性能的进程。针对这些典型的产纤维小体菌株,各国科学家近年来在基于二类内含子的嗜中温及嗜高温遗传改造平台建立方面取得了较大突破,并通过靶向代谢工程改造,显著提高纤维素乙醇的产量。笔者对这些前期研究工作以及国内外相关研究成果进行系统的总结,并对构建的遗传改造工具的应用前景进行展望。  相似文献   

3.
以获得1组高效降解纤维素的产甲烷菌群为目的,以蔬菜厌氧消化液、糖蜜厌氧消化液和池塘沉积物底泥为菌株来源,55℃条件下,以滤纸为碳源进行继代培养,检测其甲烷含量,最终获得1组有效分解纤维素的产甲烷菌群。该菌群能够有效分解滤纸,相对分解率可达67.3%,培养7 d甲烷累积产量可达46.5%(体积分数),培养第3天羧甲基纤维素酶(CMC)活性最高值为26.3 U/mL。有机酸中乙酸产量最高,7 d累积量为2.7 g/L。基于16S rRNA基因扩增子高通量测序分析结果表明,细菌的多样性高于古菌。细菌菌群主要由Lutispora、好氧芽胞杆菌属(Aeribacillus)、解硫胺素杆菌属(Aneurinibacillus)、共生小杆菌属(Symbiobacterium)、梭菌属(Clostridium)等组成,其中Lutispora为优势菌群,占细菌总丰度的11.04%。古菌菌群主要包括甲烷嗜热杆菌属(Methanothermobacter)、甲烷丝状菌属(Methanothrix)、甲烷杆菌属(Methanobacterium)、甲烷螺菌(Methanospirillum)等,其中甲烷嗜热杆菌属为优势古菌菌群,占古菌总丰度的99.82%。这组高效降解纤维素的产甲烷菌群可通过多种微生物协同作用实现纤维素的降解和甲烷的产生。  相似文献   

4.
木质纤维素的微生物降解   总被引:1,自引:0,他引:1  
木质纤维素广泛存在于自然界中,因结构复杂,其高效降解需要多种微生物的协同互作,由于参与木质纤维素降解的微生物种类繁多,其协同降解机理尚不完全明确。随着微生物分子生物学和组学技术的快速发展,将为微生物协同降解木质纤维素机制的研究提供新的方法和思路。笔者前期研究发现,细菌复合菌系在50℃下表现出强大的木质纤维素降解能力,菌系由可分离培养和暂时不可分离培养细菌组成,但是可分离培养细菌没有降解能力。通过宏基因组和宏转录组研究表明,与木质纤维素降解相关的某些基因表达量发生显著变化,通过组学方法有可能更加深入解释微生物协同降解木质纤维素的微生物学和酶学机理。文中从酶、纯培养菌株和复合菌群三个方面综述了木质纤维素微生物降解研究进展,着重介绍了组学技术在解析复合菌群作用机理方面的现状和应用前景,以期为探索微生物群落协同降解木质纤维素的机理提供借鉴。  相似文献   

5.
摘要:热纤梭菌(Clostridium thermocellum)是高效降解木质纤维素的重要微生物,因其能分泌纤维小体这一超分子酶系复合物而备受关注。它分泌的酶系组分多样,胞外酶组分的表达、分泌及其在纤维小体支架蛋白上的组装是一受到胞外碳源等因素显著影响的动态过程。热纤梭菌究竟如何感知纤维素等不溶性底物的存在并动态调控相应酶组分的分泌,完成具有高效降解能力的超分子酶系复合物的组装成为近几年来相关研究的热点。本文主要从基因组学、转录组学、蛋白质组学及菌体对胞外碳源的感应机制等方面来综述相关研究进展,并对热纤梭菌降解天然复杂生物质的动态过程及其相应机制进行了剖析,并展望其应用前景。  相似文献   

6.
热纤梭菌(Clostridium thermocellum)是高效降解木质纤维素的重要微生物,因其能分泌纤维小体这一超分子酶系复合物而备受关注。它分泌的酶系组分多样,胞外酶组分的表达、分泌及其在纤维小体支架蛋白上的组装是一受到胞外碳源等因素显著影响的动态过程。热纤梭菌究竟如何感知纤维素等不溶性底物的存在并动态调控相应酶组分的分泌,完成具有高效降解能力的超分子酶系复合物的组装成为近几年来相关研究的热点。本文主要从基因组学、转录组学、蛋白质组学及菌体对胞外碳源的感应机制等方面来综述相关研究进展,并对热纤梭菌降解天然复杂生物质的动态过程及其相应机制进行了剖析,并展望其应用前景。  相似文献   

7.
[目的]长足大竹象Cyrtotrachelus buqueti消化道共生菌群参与了竹纤维素的降解.本研究旨在揭示长足大竹象幼虫消化道不同分段共生菌群异质性及木质纤维素的降解能力.[方法]通过对16S rRNA测序对长足大竹象幼虫消化道分段口器(YB)、前肠(YFG)、中肠(YMG)和后肠(YHG)进行菌群组成分析及功能...  相似文献   

8.
【目的】微生物土壤结皮(Microbial soil crusts, MSCs)对于遏制土壤荒漠化、恢复荒漠地区生态环境起着重要作用。MSCs中的微生物, 特别是纤维素降解菌, 起着稳固、修复生态环境的功能。外源纤维素诱导是全面认识MSCs中纤维素降解细菌的多样性及其在MSCs形成和发展中的作用的重要途径。【方法】通过对微生物土壤结皮分别添加小麦秸杆(麦秸)、锯末木屑两类纤维素材料进行诱导, 以PCR-DGGE方法分析细菌群落变化。【结果】外源纤维素, 特别是麦秸的添加会迅速提高MSCs中细菌丰富度及多样性, 将细菌丰富度提高约66.7%, Shannon-Weiner指数提高约15.8%; 相同处理的样品聚类位置较近, 说明纤维素对于MSCs细菌菌群变化起主导作用; 细菌群落结构组成在添加纤维素诱导后发生了变化, 麦秸诱导样品与同时期对照样品差异最大, 但各样品中Firmieutes和Alphaproteobacteria始终为优势类群; 所得DGGE条带序列中有13条与纤维素降解菌序列同源性相近, 他们所代表的细菌很可能具有纤维素降解能力, 其中厌氧性的梭菌属(Clostridium)所占比例最大, 约为46.1%, 其次为芽孢杆菌属(Bacillus), 约占30%; 纤维素降解过程中, 诱导增加了MSCs发育有重要作用的一些类群如Microcoleus vaginatus和一些Alphaproteobacteria类群细菌等的丰度和多样性, 它们中有的可通过分泌多糖物质等增强土壤颗粒黏结、有的可以其固碳或固氮等能力提高土壤营养水平。【结论】为认识外源纤维素诱导MSCs细菌群落结构的变化规律, MSCs中纤维素降解细菌的多样性及纤维素降解细菌对MSCs形成和发展的作用提供了基础, 同时也为恢复荒漠生态系统实践方法提供了理论依据。  相似文献   

9.
高温厌氧条件下纤维素的直接乙醇发酵   总被引:1,自引:0,他引:1  
本文介绍了出分解纤维素的嗜热厌氧菌Clostridium celluloflavus sp.nov.直接发酵纤维素产乙醇的初步研究、发酵于60℃下进仃,其主要产物为乙醇、乙酸、氢气和二氧化碳。文中介绍了间歇发酵的若干特征与影响发酵的因素,1%纤维素发酵至120小时,大约有70%纤维素被分解;乙醇的转化率约为0.36g/g降解纤维素;发酵液中乙醇浓度达到56至61mM。发酵中乙醇与乙酸浓度的比值因发酵时间与其它发酵条件的不同而不同。  相似文献   

10.
大熊猫的主食竹类粗纤维含量很高,而大熊猫自身的消化系统不能降解纤维素。现已从大熊猫的肠道正常菌群中鉴定出涵盖7个菌门的22种菌,相关的研究证明大熊猫的肠道正常菌群能降解纤维素。大熊猫肠道中的假单胞菌产生的漆酶能对竹纤维中的木质素进行氧化,使纤维素得以暴露,梭菌属、淀粉芽胞杆菌等产生的纤维素酶将其降解成大熊猫可利用的糖类。其具体机制有待进一步研究。  相似文献   

11.
In this paper, we report the surface assembly of a functional minicellulosome by using a synthetic yeast consortium. The basic design of the consortium consisted of four different engineered yeast strains capable of either displaying a trifunctional scaffoldin, Scaf-ctf (SC), carrying three divergent cohesin domains from Clostridium thermocellum (t), Clostridium cellulolyticum (c), and Ruminococcus flavefaciens (f), or secreting one of the three corresponding dockerin-tagged cellulases (endoglucanase [AT], exoglucanase [EC/CB], or β-glucosidase [BF]). The secreted cellulases were docked onto the displayed Scaf-ctf in a highly organized manner based on the specific interaction of the three cohesin-dockerin pairs employed, resulting in the assembly of a functional minicellulosome on the yeast surface. By exploiting the modular nature of each population to provide a unique building block for the minicellulosome structure, the overall cellulosome assembly, cellulose hydrolysis, and ethanol production were easily fine-tuned by adjusting the ratio of different populations in the consortium. The optimized consortium consisted of a SC:AT:CB:BF ratio of 7:2:4:2 and produced almost twice the level of ethanol (1.87 g/liter) as a consortium with an equal ratio of the different populations. The final ethanol yield of 0.475 g of ethanol/g of cellulose consumed also corresponded to 93% of the theoretical value. This result confirms the use of a synthetic biology approach for the synergistic saccharification and fermentation of cellulose to ethanol by using a yeast consortium displaying a functional minicellulosome.  相似文献   

12.
Cover Image     
Consolidated bioprocessing (CBP) by using microbial consortium was considered as a promising approach to achieve direct biofuel production from lignocellulose. In this study, the interaction mechanism of microbial consortium consisting of Thermoanaerobacterium thermosaccharolyticum M5 and Clostridium acetobutylicum NJ4 was analyzed, which could achieve efficient butanol production from xylan through CBP. Strain M5 possesses efficient xylan degradation capability, as 19.73 g/L of xylose was accumulated within 50 hr. The efficient xylose utilization capability of partner strain NJ4 could relieve the substrate inhibition to hydrolytic enzymes of xylanase and xylosidase secreted by strain M5. In addition, the earlier solventogenesis of strain NJ4 was observed due to the existence of butyrate generated by strain M5. The mutual interaction of these two strains finally gave 13.28 g/L of butanol from 70 g/L of xylan after process optimization, representing a relatively high butanol production from hemicellulose. Moreover, 7.61 g/L of butanol was generated from untreated corncob via CBP. This successfully constructed microbial consortium exhibits efficient cooperation performance on butanol production from lignocellulose, which could provide a platform for the emerging butanol production from lignocellulose.  相似文献   

13.
Effect of various cultural parameters on cellulose degradation, glucose accumulation and ethanol production byClostridium thermocellum ATCC 27405 were investigated. Optimum pH values for glucose accumulation and ethanol production were determined as 7 and 10, respectively. Highest amount of ethanol (0.92 g/l) was obtained from the culture which contains 10 g urea/l with 34.5% decrease in glucose accumulation. Addition of 100 mM phosphate to the medium increased ethanol production while cellulose degradation and sugar accumulation decreased by 34 and 99%, respectively. Among minerals tested, Mg+2 was found to be the most important element which affects cellulose degradation. When the medium contained no Mg+2, residual cellulose concentration was 4.3 g cellulose/l. When the cultural parameters were optimised, glucose accumulation started at early days of fermentation and glucose concentration was 60% higher than that of the control at the 10th day of fermentation.  相似文献   

14.
The efficient fermentative production of solvents (acetone, n-butanol, and ethanol) from a lignocellulosic feedstock using a single process microorganism has yet to be demonstrated. Herein, we developed a consolidated bioprocessing (CBP) based on a twin-clostridial consortium composed of Clostridium cellulovorans and Clostridium beijerinckii capable of producing cellulosic butanol from alkali-extracted, deshelled corn cobs (AECC). To accomplish this a genetic system was developed for C. cellulovorans and used to knock out the genes encoding acetate kinase (Clocel_1892) and lactate dehydrogenase (Clocel_1533), and to overexpress the gene encoding butyrate kinase (Clocel_3674), thereby pulling carbon flux towards butyrate production. In parallel, to enhance ethanol production, the expression of a putative hydrogenase gene (Clocel_2243) was down-regulated using CRISPR interference (CRISPRi). Simultaneously, genes involved in organic acids reassimilation (ctfAB, cbei_3833/3834) and pentose utilization (xylR, cbei_2385 and xylT, cbei_0109) were engineered in C. beijerinckii to enhance solvent production. The engineered twin-clostridia consortium was shown to decompose 83.2 g/L of AECC and produce 22.1 g/L of solvents (4.25 g/L acetone, 11.5 g/L butanol and 6.37 g/L ethanol). This titer of acetone-butanol-ethanol (ABE) approximates to that achieved from a starchy feedstock. The developed twin-clostridial consortium serves as a promising platform for ABE fermentation from lignocellulose by CBP.  相似文献   

15.
Xu L  Tschirner U 《Bioresource technology》2011,102(21):10065-10071
Saccharification is one of the most critical steps in producing lignocellulose-based bio-ethanol through consolidated bioprocessing (CBP). However, extreme pH and ethanol concentration are commonly considered as potential inhibitors for the application of Clostridium sp. in CBP. The fermentations of several saccharides derived from lignocellulosics were investigated with a co-culture consisting of Clostridium themocellum and Clostridium thermolacticum. Alkali environments proved to be more favorable for ethanol production. Fermentation inhibition was observed at high ethanol concentrations and extreme pH. However, low levels of initial ethanol addition resulted in an unexpected stimulatory impact on the final ethanol productions for all cultures under selected conditions. The co-culture was able to actively ferment glucose, xylose, cellulose and micro-crystallized cellulose (MCC). The ethanol yield observed in the co-culture was higher (up to twofold) than in mono-cultures, especially in MCC fermentation. The highest ethanol yield (as a percentage of the theoretical maximum) observed was 75% (w/w) for MCC and 90% (w/w) for xylose.  相似文献   

16.
复合菌系降解纤维素过程中微生物群落结构的变化   总被引:3,自引:0,他引:3  
为明确高效纤维素降解复合菌系降解过程中微生物群落结构的变化规律及关键的降解功能菌,利用该复合菌系对滤纸和稻秆进行生物处理,通过底物降解、微生物生长量、发酵液pH的变化情况,选择不同降解时期复合菌系提取的总DNA进行细菌16S rRNA基因扩增子高通量测序。通过分解特性试验确定在接种后培养第12、72、168 h分别作为降解初期、高峰期、末期。该复合菌系分别主要由1个门、2个纲、2个目、7个科、11个属组成。随着降解的进行,短芽胞杆菌属Brevibacillus、喜热菌属Caloramator的相对丰度逐渐降低;梭菌属Clostridium、芽胞杆菌属Bacillus、地芽胞杆菌属Geobacillus、柯恩氏菌属Cohnella的相对丰度逐渐升高;解脲芽胞杆菌属Ureibacillus、泰氏菌属Tissierella、刺尾鱼菌属Epulopiscium在降解高峰期时相对丰度最高;各时期类芽胞杆菌属Paenibacillus、瘤胃球菌属Ruminococcus的相对丰度无明显变化。上述11个主要菌属均属于厚壁菌门,具有嗜热、耐热、适应广泛pH、降解纤维素或半纤维素的特性。好氧型细菌是降解初期的主要优势功能菌,到中后期厌氧型细菌逐渐增多,并逐步取代好氧型细菌成为降解纤维素的主要细菌。  相似文献   

17.
Consolidated bioprocessing (CBP), which integrates enzyme production, saccharification and fermentation into a single process, is a promising strategy for effective ethanol production from lignocellulosic materials because of the resulting reduction in utilities, the substrate and other raw materials and simplification of operation. CBP requires a highly engineered microbial strain capable of hydrolyzing biomass with enzymes produced on its own and producing high-titer ethanol. Recently, heterologous production of cellulolytic enzymes has been pursued with yeast hosts, which has realized direct conversion of cellulose to ethanol. Specifically, the development of cell surface engineering, which provides a display of cellulolytic enzymes on the yeast cell surface, facilitates effective biomass hydrolysis concomitantly with ethanol production. On the other hand, the difference in optimum temperature between saccharification and fermentation is a drawback of efficient ethanol production in the simultaneous saccharification and fermentation (SSF). The application of thermotolerant yeast strains engineered to the SSF process would overcome the drawback by performing hydrolysis and fermentation at elevated temperature. In this review, we focus on the recent advances in the application of thermotolerant yeast to CBP and SSF of lignocellulosic material to ethanol. The development of thermotolerant and ethanologenic yeast strains with the ability to hydrolyze lignocellulosic materials is emphasized for high-temperature CBP.  相似文献   

18.
纤维素乙醇的统合生物加工过程(consolidated bioprocessing,CBP)是将(半)纤维素酶生产、纤维素水解和乙醇发酵过程组合,通过一种微生物完成的生物加工过程。 CBP有利于降低生物转化过程的成本,受到研究者的普遍关注。酿酒酵母( Saccharomyces cerevisiae)作为传统的乙醇生产菌株,是极具潜力的CBP底盘细胞。纤维小体是某些厌氧微生物细胞表面由纤维素酶系与支架蛋白组成的大分子复合物,它能高效降解木质纤维,在酿酒酵母表面展示纤维小体已成为构建CBP细胞的研究热点。笔者综述了人造纤维小体在酿酒酵母细胞表面展示组装的研究进展,重点阐述了纤维小体各元件的设计和改造,并针对酿酒酵母分泌途径的改造,提出提高人造纤维小体分泌组装的可能性策略。  相似文献   

19.
Butanol is an important bulk chemical, as well as a promising renewable gasoline substitute, that is commonly produced by solventogenic Clostridia. The main cost of cellulosic butanol fermentation is caused by cellulases that are required to saccharify lignocellulose, since solventogenic Clostridia cannot efficiently secrete cellulases. However, cellulolytic Clostridia can natively degrade lignocellulose and produce ethanol, acetate, butyrate and even butanol. Therefore, cellulolytic Clostridia offer an alternative to develop consolidated bioprocessing (CBP), which combines cellulase production, lignocellulose hydrolysis and co-fermentation of hexose/pentose into butanol in one step. This review focuses on CBP advances for butanol production of cellulolytic Clostridia and various synthetic biotechnologies that drive these advances. Moreover, the efforts to optimize the CBP-enabling cellulolytic Clostridia chassis are also discussed. These include the development of genetic tools, pentose metabolic engineering and the improvement of butanol tolerance. Designer cellulolytic Clostridia or consortium provide a promising approach and resource to accelerate future CBP for butanol production.  相似文献   

20.
ABSTRACT: BACKGROUND: While the ethanol production from biomass by consolidated bioprocess (CBP) is considered to be the most ideal process, simultaneous saccharification and fermentation (SSF) is the most appropriate strategy in practice. In this study, one-pot bioethanol production, including cellulase production, saccharification of cellulose, and ethanol production, was investigated for the conversion of biomass to biofuel by co-culture of two different microorganisms such as a hyper cellulase producer, Acremonium cellulolyticus C-1 and an ethanol producer Saccharomyces cerevisiae. Furthermore, the operational conditions of the one-pot process were evaluated for maximizing ethanol concentration from cellulose in a single reactor. RESULTS: Ethanol production from cellulose was carried out in one-pot bioethanol production process. A. cellulolyticus C-1 and S. cerevisiae were co-cultured in a single reactor. Cellulase producing-medium supplemented with 2.5 g/l of yeast extract was used for productions of both cellulase and ethanol. Cellulase production was achieved by A. cellulolyticus C-1 using Solka-Floc (SF) as a cellulase-inducing substrate. Subsequently, ethanol was produced with addition of both 10%(v/v) of S. cerevisiae inoculum and SF at the culture time of 60 h. Dissolved oxygen levels were adjusted at higher than 20% during cellulase producing phase and at lower than 10% during ethanol producing phase. Cellulase activity remained 8--12 FPU/ml throughout the one-pot process. When 50--300 g SF/l was used in 500 ml Erlenmeyer flask scale, the ethanol concentration and yield based on initial SF were as 8.7--46.3 g/l and 0.15--0.18 (g ethanol/g SF), respectively. In 3-l fermentor with 50--300 g SF/l, the ethanol concentration and yield were 9.5--35.1 g/l with their yields of 0.12--0.19 (g/g) respectively, demonstrating that the one-pot bioethanol production is a reproducible process in a scale-up bioconversion of cellulose to ethanol. CONCLUSION: A. cellulolyticus cells produce cellulase using SF. Subsequently, the produced cellulase saccharifies the SF, and then liberated reducing sugars are converted to ethanol by S. cerevisiae. These reactions were carried out in the one-pot process with two different microorganisms in a single reactor, which does require neither an addition of extraneous cellulase nor any pretreatment of cellulose. Collectively, the one-pot bioethanol production process with two different microorganisms could be an alternative strategy for a practical bioethanol production using biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号