首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The internal phylogeny of ants (Hymenoptera: Formicidae)   总被引:5,自引:0,他引:5  
Abstract. The higher phylogeny of the Formicidae was analysed using 68 characters and 19 taxa: the 14 currently recognized ant subfamilies plus 5 potentially critical infrasubfamilial taxa. The results justified the recognition of 3 additional subfamilies: Aenictogitoninae Ashmead (new status), Apomyrminae Dlussky & Fedoseeva (new status), and Leptanilloidinae Bolton (new subfamily). A second analysis on these better delimited 17 subfamilies resulted in 24 equally most parsimonious trees. All trees showed a basal division of extant Formicidae into two groups, the first containing (Myrmicinae, Pseudomyrmecinae, Nothomyrmeciinae, Myrmeciinae, Formicinae, Dolichoderinae, Aneuretinae) and the second the remaining subfamilies. Clades appearing within these groups included the Cerapachyinae plus 'army ants', the Nothomyrmeciinae plus Myrmeciinae, the 'formicoid' subfamilies (Aneuretinae + Dolichoderinae + Formicinae), and the Old World army ants (Aenictinae + Aenictogitoninae + Doryline), but relationships within the last two groups were not resolved, and the relative positions of the Apomyrminae, Leptanillinae and Ponerinae remained ambiguous. Moreover, a bootstrap analysis produced a consensus tree in which all branches were represented in proportions much lower than 95%. A reconstruction of the ground plan of the Formicidae indicated that the most specialized of all recent ants are the members of the subfamily Dorylinae and the least specialized ones are the monotypic Apomyrminae.  相似文献   

2.
Abstract. The ant subfamily Pseudomyrmecinae comprises three genera of hyperoptic, arboreal ants, widely distributed in tropical and subtropical regions: Pseudomyrmex (∼200 species, New World), Myrcidris (two species, South America) and Tetraponera (∼100 species, Palaeotropics). The phylogenetic relationships among these ants were investigated using DNA sequence data (∼5.2 kb from 18S rDNA, 28S rDNA, wingless, abdominal-A, and long-wavelength rhodopsin genes) and 144 morphological characters, both separately and in combination. Data were gathered from a representative set of forty-nine pseudomyrmecine species, plus eighteen species from various outgroups. There was substantial agreement among the results obtained from different datasets, and from different methods of phylogenetic inference (parsimony, Bayesian inference). The monophyly of the following groups is strongly supported (100% bootstrap support and 1.00 posterior probability in the molecular dataset): Pseudomyrmecinae, Pseudomyrmex, and Pseudomyrmex + Myrcidris. The status of the genus Tetraponera is less clear: the DNA sequence data indicate that the genus is paraphyletic, but morphological features and a unique insertion in the 28S gene support the monophyly of this taxon. Seven of nine Pseudomyrmex species groups, established previously on the basis of morphology alone, are strongly upheld, but monophyly is rejected for the P. pallens group and the P. viduus group. In the latter case, molecular evidence indicates the existence of two independent clades, associated with the ant-plants Triplaris and Tachigali, respectively, whose convergent morphological features had caused them to be placed erroneously in the same species group. The present results confirm an earlier assertion that obligate associations with domatia-bearing plants have arisen at least twelve times in the subfamily. Molecular and morphological data support the hypothesis of a sister-group relationship between Pseudomyrmecinae and Myrmeciinae (84% parsimony bootstrap, combined dataset), which implies a Cretaceous origin of the stem-group pseudomyrmecines in the southern hemisphere. Pseudomyrmecines appear to have arisen in the Palaeotropics and later dispersed from Africa to South America, where they experienced a pronounced burst of diversification.  相似文献   

3.
This study provides the first phylogenetic reconstruction of the ant genus Leptomyrmex Mayr, a prominent endemic component of rain forest and wet sclerophyll forest in Australia, New Guinea and New Caledonia. Five genes are used to reconstruct phylogeny and estimate of ages of diversification in order to test congruence of the history of nuclear and mitochondrial genes: three protein-coding nuclear genes: arginine kinase (argK, 897 bp), long wavelength rhodopsin (LW Rh, 546 bp) and wingless (Wg, 409 bp), as well as the large subunit ribosomal gene 28S (482 bp) and the mitochondrial gene cytochrome oxidase I (COI, 658 bp). Four different partitioning schemes were tested for optimal resolving power; results show that partitioning by gene, translational pattern and codon position were uniformly favoured over less complex partitions. Nuclear markers showed relatively minor sequence divergence and provided strongly supported topology; phylogeny based solely on mtDNA produced somewhat conflicting topology but offered little power to resolve species complexes. Monophyly of the genus Leptomyrmex was recovered, as was the sister-group relationship of 'micro-' and 'macro-'Leptomyrmex species. Divergence dating analyses estimate that Leptomyrmex arose in the Eocene (stem age ~ 44 million years ago (ma)), and that the 'macro-' species diverged from the 'micro-' species in the early Oligocene (~ 31 ma). Diversification of the crown group 'macro-' and 'micro-'Leptomyrmex occurred in the Miocene (~ 15 ma and 7.9 ma, respectively). New Guinean and New Caledonian lineages appear to have diverged from Australian lineages only recently (~ 4.7 ma and 10.3 ma, respectively), and the latter clade is inferred to have reached New Caledonia from Australia via long distance dispersal. These results challenge previous hypotheses of Leptomyrmex classification and assumptions about their historical dispersal, but are in agreement with the current knowledge of the geological history of Melanesia.  相似文献   

4.
5.
Common names for Australian ants (Hymenoptera: Formicidae)   总被引:1,自引:0,他引:1  
Abstract Most insects do not have common names, and this is a significant barrier to public interest in them, and to their study by non-specialists. This holds for even highly familiar insect groups such as ants. Here, I propose common names for all major native Australian ant genera and species-groups, as well as for many of the most abundant and distinctive species. Sixty-two genera, 142 species-groups and 50 species are given names. The naming system closely follows taxonomic structure; typically a genus is given a general common name, under which species-group and species names are nested.  相似文献   

6.
Higher hymenopteran vitellogenin/vitellins have been characterized as containing one large apoprotein. We show that in the ant subfamily Ponerinae, species in the tribes Odontomachini, Platythyrini, and Amblyoponini, also have a vitellin with this simple structure, containing a single apoprotein of 180-190kDa. Species in tribes Ponerini and Ectatommini, however, have vitellins containing multiple subunits. The size and number of the subunits varies, with differences even among species within the same genus. This is the first report of diversity in vitellogenin structure in the higher Hymenoptera. Vitellin and vitellogenin in Harpegnathos saltator (Ponerini) contain two large subunits of about 165kDa and two small subunits of about 45 and 43kDa. N-terminal sequence analysis suggests that provitellogenin is cleaved at two different sites, producing two large and two small subunits differing slightly in size. Diversity of vitellin types in Ponerini and Ectatommini is similar to that found in the more primitive tenthredinoid sawflies (Hymenoptera, Symphyta), and may indicate polyphyly in the Ponerinae. Insect vitellogenins and yolk proteins show considerably more diversity than originally believed, and the possibility of the functional significance of these differences should be considered.  相似文献   

7.
This study investigates the evolutionary history of a hyperdiverse clade, the ant subfamily Myrmicinae (Hymenoptera: Formicidae), based on analyses of a data matrix comprising 251 species and 11 nuclear gene fragments. Under both maximum likelihood and Bayesian methods of inference, we recover a robust phylogeny that reveals six major clades of Myrmicinae, here treated as newly defined tribes and occurring as a pectinate series: Myrmicini, Pogonomyrmecini trib.n. , Stenammini, Solenopsidini, Attini and Crematogastrini. Because we condense the former 25 myrmicine tribes into a new six‐tribe scheme, membership in some tribes is now notably different, especially regarding Attini. We demonstrate that the monotypic genus Ankylomyrma is neither in the Myrmicinae nor even a member of the more inclusive formicoid clade—rather it is a poneroid ant, sister to the genus Tatuidris (Agroecomyrmecinae). Several species‐rich myrmicine genera are shown to be nonmonophyletic, including Pogonomyrmex, Aphaenogaster, Messor, Monomorium, Pheidole, Temnothorax and Tetramorium. We propose a number of generic synonymies to partially alleviate these problems (senior synonym listed first): Pheidole = Anisopheidole syn.n. = Machomyrma syn.n. ; Temnothorax = Chalepoxenus syn.n. = Myrmoxenus syn.n. = Protomognathus syn.n. ; Tetramorium = Rhoptromyrmex syn.n. = Anergates syn.n. = Teleutomyrmex syn.n. The genus Veromessor stat.r. is resurrected for the New World species previously placed in Messor; Syllophopsis stat.r. is resurrected from synonymy under Monomorium to contain the species in the hildebrandti group; Trichomyrmex stat.r. is resurrected from synonymy under Monomorium to contain the species in the scabriceps‐ and destructor‐groups; and the monotypic genus Epelysidris stat.r. is reinstated for Monomorium brocha. Bayesian divergence dating indicates that the crown group Myrmicinae originated about 98.6 Ma (95% highest probability density 87.9–109.6 Ma) but the six major clades are considerably younger, with age estimates ranging from 52.3 to 71.1 Ma. Although these and other suprageneric taxa arose mostly in the middle Eocene or earlier, a number of prominent, species‐rich genera, such as Pheidole, Cephalotes, Strumigenys, Crematogaster and Tetramorium, have estimated crown group origins in the late Eocene or Oligocene. Most myrmicine species diversity resides in the two sister clades, Attini and Crematogastrini, which are estimated to have originated and diversified extensively in the Neotropics and Paleotropics, respectively. The newly circumscribed Myrmicini is Holarctic in distribution, and ancestral range estimation suggests a Nearctic origin. The Pogonomyrmecini and Solenopsidini are reconstructed as being Neotropical in origin, but they have subsequently colonized the Nearctic region (Pogonomyrmecini) and many parts of the Old World as well as the Nearctic region (Solenopsidini), respectively. The Stenammini have flourished primarily in the northern hemisphere, and are most likely of Nearctic origin, but selected lineages have dispersed to the northern Neotropics and the Paleotropics. Thus the evolutionary history of the Myrmicinae has played out on a global stage over the last 100 Ma, with no single region being the principal generator of species diversity. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub: BB6829C4‐DA79‐45FE‐979E‐9749E237590E .  相似文献   

8.
Ant imprints, new and previously known, from Middle Miocene deposits near Kerch (Crimean Peninsula, Russia) are described or redescribed. A new Myrmicinae species, Solenopsis atavinus sp. nov., is described based on a wingless female. A winged female similar to the earlier described Dolichoderus tauricus Dlussky, 1981 is found: due to the excellent preservation of this specimen, the new specimen and the holotype of D. tauricus are redescribed and can be reclassified as Ponerites tauricus (Dlussky, 1981), comb. nov. Oecophylla taurica sp. nov. is described based on a partly preserved imprint of a female thorax with a forewing, the venation of which allows it to be positively identified as a weaver ant. Two other species are transferred from the formal genus Camponotites to Oecophylla based on forewing venation: O. kraussei (Dlussky et Rasnitsyn, 1999), comb. nov. (Early Eocene, United States) and O. macroptera (Dlussky, 1981), comb. nov. (Middle Miocene, Stavropol, Russia). One of the studied forewing imprints is similar in venation to Paraphaenogaster microphthalmus Dlussky, 1981, described from the Middle Miocene of Vishnevaya Balka (Stavropol province, Russia) and so is attributed to this species. Dolichoderus tavridus sp. nov. is described based on a forewing.  相似文献   

9.
Wide ranging surveys of the ant fauna of Iran have enabled us to add a further 30 named species to the country list. A review of almost all the published literature and of photographs of unidentified specimens within the public domain gives a grand total of 248 species, from seven subfamilies and 37 genera. In the majority of instances, our own specimens were compared with type images available from antweb.com. This has led us to propose new or revised status for Cataglyphis turcomanica Crawley 1920, Lepisiota integrisquama (Kuznetsov-Ugamsky, 1929), Lepisiota surchanica (Kuznetsov-Ugamsky, 1929) and Messor obscurior Crawley 1920. We note that the total includes a number of what may be misidentifications and a small number of named species that seem unlikely to occur in Iran.  相似文献   

10.
11.
To elucidate the evolution of one of the most species-rich ant-plant symbiotic systems, the association between Crematogaster (Myrmicinae) and Macaranga (Euphorbiaceae) in South-East Asia, we conducted a phylogenetic analysis of the ant partners. For the phylogenetic analysis partial mitochondrial cytochrome oxidase I and II were sequenced and Maximum Parsimony analysis was performed. The analyzed Crematogaster of the subgenus Decacrema fell into three distinct clades which are also characterized by specific morphological and ecological traits (queen morphology, host-plants, and colony structure). Our results supported the validity of our currently used morphospecies concept for Peninsula Malaysia. However, on a wider geographic range (including North and North-East Borneo) some morphospecies turned out to be species complexes with genetically quite distinct taxa. Our phylogenetic analysis and host association studies do not indicate strict cocladogenesis between the subgenus Decacrema and their Macaranga host-plants because multiple ant taxa occur on quite distinct host-plants belonging to different clades within in the genus Macaranga. These results support the view that host-shifting or host-expansion is common in the ants colonizing Macaranga. Additionally, the considerable geographic substructuring found in the phylogenetic trees of the ants suggests that allopatric speciation has also played a role in the diversification and the current distribution of the Decacrema ants.  相似文献   

12.

Background  

Complete mitochondrial genome sequences have become important tools for the study of genome architecture, phylogeny, and molecular evolution. Despite the rapid increase in available mitogenomes, the taxonomic sampling often poorly reflects phylogenetic diversity and is often also biased to represent deeper (family-level) evolutionary relationships.  相似文献   

13.
The karyotypes of nine Japanese ants in three subfamilies (Ponerinae, Formicinae, and Myrmicinae) were successfully analysed by the improved squash technique. Three ponerine species had 2n=7 and n=4 (Ponera scabra), 2n=22 (Brachyponera sinensis), and 2n=28 and n=14 (Cryptopone sauteri). Four formicine species had 2n=18 and n=9 (Camponotus sp. and C. tokioensis), 2n=26 and n=13 (Camponotus japonicus), and 2n=30 and n=15 (Lasius niger). Two myrmicine species had 2n=18 and n=9 (Leptothorax congruus), and 2n=37, 38, 39, and n=17, 18, 19, 20 (Pheidole nodus). It was found that the variation of chromosome number observed in P. nodus was caused by Robertsonian type polymorphism.  相似文献   

14.
15.
This study examines phylogenetic relationships among six species of the Formica rufa group ants (F. polyctena, F. rufa, F. lugubris, F. paralugubris, F. aquilonia, and F. pratensis). The phylogeny based on a 2051bp fragment of mtDNA including cyt b, tRNASer, and ND1 genes supports the division of the group into three major clusters: one with the species F. polyctena and F. rufa, one with F. aquilonia, F. lugubris, and F. paralugubris, and the third one with F. pratensis. The interspecific divergence estimates (mean 0.98 +/- 0.15% for the main phylogenetic groups) imply that radiation took place during the Pleistocene. Comparison of the divergence estimates among the F. rufa group species with divergence estimates among other closely related species of insects suggests that speciation in the group was relatively fast, and the mitochondrial lineages of F. polyctena and F. rufa have not fully separated. The haplotype tree shows also signs of transfer of mtDNA between species through hybridisation. The distribution of polygyny (multiple queens per nest) along the branches of the tree indicates that the social type characterised by highly polygynous societies and large colonial networks, has originated at least three times. The species F. aquilonia and F. paralugubris that build such large supercolonies, cluster tightly together with very little nucleotide variation, suggesting that this type of social organisation could be a factor promoting speciation in the ants.  相似文献   

16.
1. In any group of organisms, one can almost invariably find some species that are ecologically dominant (i.e. disproportionately more abundant and widespread), whereas others are comparatively less prevalent. Understanding of the causes of variation in ecological dominance has been elusive, particularly given that dominant and subordinate species often lack obvious features that could predict their abundance in nature. 2. In this study, physiological, behavioural, morphological, and phylogenetic information is integrated in an effort to understand the mechanisms underlying ecological dominance in ants using the hyperdiverse ant genus Pheidole (Formicidae: Myrmicinae) as a model system. Field estimates of the relative abundance of 10 Pheidole species were compared with potential correlates, which included behavioural (walking velocity), physiological (tolerance to high and low temperatures and desiccation), and morphological traits (body size and degree of dimorphism in the worker caste). A molecular phylogeny of the tested species was also generated to account for potential confounding effects of phylogenetic non‐independence. 3. Dominant Pheidole species were characterised by higher environmental tolerance with respect to temperature and humidity, as well as faster walking speeds. On the other hand, no morphological correlates of ecological dominance were detected. Interestingly, subordinate species showed no evidence of trade‐off in performance, being both more fragile to environmental challenges and slower in their walking speeds. 4. These results provide important insights into the mechanisms involved in local species coexistence in Pheidole.  相似文献   

17.
18.
The evolution of complex societies with obligate reproductive division of labor represents one of the major transitions in evolution. In such societies, functionally sterile individuals (workers) perform many of fitness‐relevant behaviors including allomaternal ones, without getting any direct fitness benefits. The question of how such worker division of labor has evolved remains controversial. The reproductive groundplan hypothesis (RGPH) offers a powerful proximate explanation for this evolutionary leap. The RGPH argues that the conserved genetic and endocrinological networks regulating fitness‐relevant behavior (e g. foraging and brood care) in their solitary ancestors have become decoupled from actual reproduction in the worker caste and now generate worker behavioral phenotypes. However, the empirical support for this hypothesis remains limited to a handful of species making its general validity uncertain. In this study, we combine data from the literature with targeted sampling of key species and apply phylogenetically controlled comparative analysis to investigate if the key prediction of the RGPH, namely an association between allomaternal behavior and an allomaternal physiological state holds in the largest and most species‐rich clade of social insects, the ants. Our findings clearly support the RPGH as a general framework to understand the evolution of the worker caste and shed light on one of the major transition in evolutionary history.  相似文献   

19.
20.
The present catalogue of the ants (Hymenoptera, Formicidae) of Bulgaria is made on a base of critical reconsideration of literature (covering the period from 1892 till 2009 and part of 2010) as well as on examination of the authors' and several museum's collections. A lot of data were omitted in the previous Bulgarian monograph on ants, lots of new data were recently added and many important additions and alterations were made due to taxonomic revisions of Eurasian Formicidae during the last three decades. Two new species are reported for the country [Temnothorax graecus (Forel, 1911) and Temnothorax cf. korbi (Emery, 1924)].This catalogue contains a list of 163 ant species belonging to 40 genera of 6 subfamilies now known from Bulgaria. Synonyms and information on the previously reported names in relevant publications are given. Known localities of the species are grouped by geographic regions. Maps with concrete localities or regions for each species were prepared. The conservation status of 13 ant species is given as they are included in IUCN Red List of Threatened Species and Bulgarian Biodiversity Act. In comparison with adjacent Balkan regions the ant fauna of Bulgaria is quite rich and its core is composed of South European elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号