首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small scale distribution of insect root herbivores may promote plant species diversity by creating patches of different herbivore pressure. However, determinants of small scale distribution of insect root herbivores, and impact of land use intensity on their small scale distribution are largely unknown. We sampled insect root herbivores and measured vegetation parameters and soil water content along transects in grasslands of different management intensity in three regions in Germany. We calculated community-weighted mean plant traits to test whether the functional plant community composition determines the small scale distribution of insect root herbivores. To analyze spatial patterns in plant species and trait composition and insect root herbivore abundance we computed Mantel correlograms. Insect root herbivores mainly comprised click beetle (Coleoptera, Elateridae) larvae (43%) in the investigated grasslands. Total insect root herbivore numbers were positively related to community-weighted mean traits indicating high plant growth rates and biomass (specific leaf area, reproductive- and vegetative plant height), and negatively related to plant traits indicating poor tissue quality (leaf C/N ratio). Generalist Elaterid larvae, when analyzed independently, were also positively related to high plant growth rates and furthermore to root dry mass, but were not related to tissue quality. Insect root herbivore numbers were not related to plant cover, plant species richness and soil water content. Plant species composition and to a lesser extent plant trait composition displayed spatial autocorrelation, which was not influenced by land use intensity. Insect root herbivore abundance was not spatially autocorrelated. We conclude that in semi-natural grasslands with a high share of generalist insect root herbivores, insect root herbivores affiliate with large, fast growing plants, presumably because of availability of high quantities of food. Affiliation of insect root herbivores with large, fast growing plants may counteract dominance of those species, thus promoting plant diversity.  相似文献   

2.
Dispersal may influence the spatial distribution of species richness through mass or source‐sink effects, but the extent of sink populations at the community level remains largely unknown due to difficulties of identifying such populations. We compared the richness patterns of ferns in 333 plots along six tropical elevational gradients in America, the Mascarenes, and southeast Asia, using sterile populations as an indication of sink populations. First, we tested whether sterile fern records were more common towards the elevational range limits of the individual species, but found this pattern in only one out of ten cases. It is therefore uncertain if sterile records correspond to marginal sink populations. Second, we compared the elevational richness patterns of sterile and fertile species. In several cases, elevational trends for sterile and fertile records were quite similar, but in others they differed distinctly. The percentage of sterile records per plot decreased with elevation among epiphytic ferns along all six transects, whereas terrestrials showed mixed results (decrease, increase, and U‐shaped patterns). The percentage of sterile species records per plot relative to the number of species per plot recovered four significant patterns among the twelve cases analysed: higher percentages at higher species numbers among terrestrial ferns on two transects and lower percentages among epiphytes on two others. Despite the problems with equating sterile records to sink populations, we thus found distinct elevational patterns of sterile records that clearly affected our perception of the overall richness patterns. Ignoring the impact of population dynamics on diversity patterns is thus liable to result in misinterpretations of the diversity patterns.  相似文献   

3.
A mid-altitudinal peak in species richness is commonly observed and the mass effect (or source–sink effect) has been suggested as a possible cause. We test the importance of the mass effect for generating altitudinal patterns of plant species richness at two grain sizes using a simple estimate of sterility/fertility to indicate sinks and sources. To do this we identified species with fertile specimens (fertile species) and species with only sterile specimens (sterile species) in each sampling unit along altitudinal transects and assumed that the number of sterile species indicated the relative number of sink species, correspondingly that the number of fertile species indicated the relative number of source species when looking at the overall pattern of species richness along a transect. To evaluate this approach, we investigated the distribution of sterility and fertility of each species along the altitudinal transects. We found that sterile species are found more often at the edges and fertile species more often in the centre of the species altitudinal ranges than expected by chance. Using a fine grain, sterile species richness had a humped altitudinal pattern on all transects investigated at this scale, whereas using a coarse grain two of the three transects investigated had a humped pattern. At the fine grain, sterile species richness had a more pronounced peak than fertile species richness in two of the three transects investigated supporting the hypothesis of the mass effect, but this pattern did not persist at coarser grain. The observations at the fine grain are in accordance with the idea that the mass effect is important in shaping the mid-altitudinal peak in species richness, whereas the observations from the coarser grain are ambiguous.  相似文献   

4.
Aim To investigate environmental variation and associated assemblage changes of carabid beetles along an urban–rural gradient. Location ‘Quercus–Acer’ (oak–sycamore) woodlands in the city of Birmingham, UK. Methods We collected carabid data using pitfall traps on 12 sites in the city. The traps were run from April–September in 2000, and we collected environmental data on 24 individual variables associated with the individual sites and their landscape context. Changes in carabid assemblages were analysed using repeat measures anova and the environment–species relationships with a Redundancy Analyses (RDA) and Generalized Linear Modelling (GLM). Results We found that: (1) species richness and diversity were lower in the urban and suburban zone and higher in the rural zone; (2) Berger Parker dominance index was higher in the urban and suburban zones; (3) the number of woodland and woodland associated species was significantly higher at the rural end of the gradient; (4) the number of short‐winged (brachypterous) species was highest in the rural zone and decreased towards the urban woodlands, whereas the long‐winged species were more abundant in suburban woodlands; (5) the median weight length (WML) of the assemblage declined along the gradient from the rural to the urban zone, as did the number of large species; and (6) five of the 24 environmental variables showed a significant relationship with variation in the carabid assemblage. At site level the carabid assemblages were related to the level of site disturbance and soil penetrability, whereas site size and amount of woodland and urban land within 5 km of the site were important at a larger landscape scale. Main conclusions The results suggest that urbanization has a deleterious impact on carabid assemblages, causing a reduction in species richness from the rural fringe to the centre of the city. Changes in assemblage structure were related to woodland fragmentation, which led to variations in woodland size, woodland location and site disturbance due to trampling. Large, flightless and specialist woodland species are more susceptible to changes associated with urbanization, presumably due to their longer life spans, lower reproductive rates, more specialized niches and more limited dispersal potential.  相似文献   

5.
The question how animal body size changes along urban–rural gradients has received much attention from carabidologists, who noticed that cities harbour smaller species than natural sites. For Carabidae this pattern is frequently connected with increasing disturbance regimes towards cities, which favour smaller winged species of higher dispersal ability. However, whether changes in body size distributions can be generalised and whether common patterns exist are largely unknown. Here we report on body size distributions of carcass-visiting beetles along an urban–rural gradient in northern Poland. Based on samplings of 58 necrophages and 43 predatory beetle species, mainly of the families Catopidae, Silphidae, and Staphylinidae, we found contrary patterns of necrophages and predatory beetles. Body sizes of necrophages decreased towards the city centre and those of predators remained unchanged. Small necrophages and large predators dominated in abundance in the city centre. Necrophage body sizes appeared to be more regularly spaced in the city centre than expected from a random null model and in comparison to the rural pattern, pointing to increased competition.  相似文献   

6.
1. Earthworms (Annelida: Oligochaeta) were sampled on four occasions (spring, summer, autumn and winter) at 14 sites along two transects from a primary lead/ zinc/cadmium smelting works at Avonmouth, UK.
2. Total abundance and biomass of earthworms decreased with proximity to the smelter. No worms were collected from the two sites closest to the factory (<0·6 km) and catches were significantly lower than controls at a further five sites (<3 km).
3. Seasonal composition of sampled communities differed only for summer with lower numbers of individuals and species collected at all sites. Reduced catches in the summer sample is a response to drought.
4. Species richness was lowest at sites close to the factory. For example, worms such as Aporrectodea caliginosa (Savigny) and Allolobophora chlorotica (Savigny) that were dominant at relatively clean sites further from the smelter are absent from the most contaminated soils.
5. Reduced species richness resulted in lower Shannon–Weiner diversity and higher Berger–Parker dominance. Multivariate cluster analysis for spring, summer and winter indicated that sites could be split into three groups based upon relative species composition. In autumn, two clusters were identified.
6. The absence of sensitive species from sites close to the smelting works supports the inclusion of earthworms as a key group in a terrestrial prediction and classification scheme for quantifying the effects of pollutants on soil biodiversity. However, sampling should be carried out in spring or autumn to obtain an accurate picture of community structure.  相似文献   

7.
The spatial epidemiology of Bluetongue virus (BTV) at the landscape level relates to the fine‐scale distribution and dispersal capacities of its vectors, midges belonging to the genus Culicoides Latreille (Diptera: Ceratopogonidae). Although many previous researches have carried out Culicoides sampling on farms, little is known of the fine‐scale distribution of Culicoides in the landscape immediately surrounding farms. The aim of this study was to gain a better understanding of Culicoides populations at increasing distances from typical dairy farms in north‐west Europe, through the use of eight Onderstepoort‐type black‐light traps positioned along linear transects departing from farms, going through pastures and entering woodlands. A total of 16 902 Culicoides were collected in autumn 2008 and spring 2009. The majority were females, of which more than 97% were recognized as potential vectors. In pastures, we found decreasing numbers of female Culicoides as a function of the distance to the farm. This pattern was modelled by leptokurtic models, with parameters depending on season and species. By contrast, the low number of male Culicoides caught were homogeneously distributed along the transects. When transects entered woodlands, we found a higher abundance of Culicoides than expected considering the distance of the sampling sites to the farm, although this varied according to species.  相似文献   

8.
Abstract. The responses of high latitude ecosystems to global change involve complex interactions among environmental variables, vegetation distribution, carbon dynamics, and water and energy exchange. These responses may have important consequences for the earth system. In this study, we evaluated how vegetation distribution, carbon stocks and turnover, and water and energy exchange are related to environmental variation spanned by the network of the IGBP high latitude transects. While the most notable feature of the high latitude transects is that they generally span temperature gradients from southern to northern latitudes, there are substantial differences in temperature among the transects. Also, along each transect temperature co‐varies with precipitation and photosynthetically active radiation, which are also variable among the transects. Both climate and disturbance interact to influence latitudinal patterns of vegetation and soil carbon storage among the transects, and vegetation distribution appears to interact with climate to determine exchanges of heat and moisture in high latitudes. Despite limitations imposed by the data we assembled, the analyses in this study have taken an important step toward clarifying the complexity of interactions among environmental variables, vegetation distribution, carbon stocks and turnover, and water and energy exchange in high latitude regions. This study reveals the need to conduct coordinated global change studies in high latitudes to further elucidate how interactions among climate, disturbance, and vegetation distribution influence carbon dynamics and water and energy exchange in high latitudes.  相似文献   

9.
In recent years, there has been increasing interest in modelling of species abundance data in addition to presence data. In this study, we assessed the similarities and differences between presence‐absence distributions and abundance distributions along similar environmental gradients, derived, respectively, from presence‐absence and abundance data. Moreover, we examined the possibility of using presence‐absence distribution models to derive abundance distributions. For this purpose, we used Braun‐Blanquet abundance scores for 243 vascular species at 10 996 French forest sites. Species distribution models were used to analyse the link between the patterns of occurrence, low abundance and high abundance for each species with regard to mean annual temperature, June water balance, and soil pH. For each species, differences in the modelled distributions were characterised by the ecological optimum and ecological amplitude. A comparison of the presence‐absence and abundance distributions for all species revealed similar optima and different amplitudes along the three ecological factors. An abundant‐centre distribution was observed in environmental space, with species abundance being greatest at the optimal conditions and lower at less favourable conditions of the species occurrence response. Geographical habitat mapping also shows centred, high‐abundance suitability within the presence habitat of each species. We conclude that species distribution models derived from presence‐absence data provide useful information about the ecological optima of abundance distributions but overestimate the range of habitats suitable for high species abundance. This study demonstrates the utility of presence‐absence data for ecologist and conservation biologist when they are interested in the optimal conditions of high species abundance.  相似文献   

10.
Aim Small mammal species richness and relative abundance vary along elevational gradients, but there are different patterns that exist. This study reports the patterns of distribution and abundance of small mammals along the broader elevational gradient of Mt. Qilian range. Location The study was conducted in the Mt. Qilian range, north‐western China, from June to August 2001. Methods Removal trapping was conducted using a standardized technique at 7 sites ranging between 1600 and 3900 m elevation within three transects. Correlation, regression and graphical analyses were used to evaluate the diversity patterns along this elevational gradient. Results In total, 586 individuals representing 18 nonvolant small mammal species were collected during 20 160 trap nights. Species composition was different among the three transects with 6 (33%) of the species found only within one transect. Elevational distribution and relative abundance of small rodents showed substantial spatial variation, with only 2 species showing nonsignificant capture frequencies across elevations. Despite these variations, some general patterns of elevational distribution emerged: humped‐shape relationships between species diversity and elevation were noted in all three transects with diversity peaks at middle elevations. In addition, relative abundance was negatively correlated with elevation. Conclusions Results indicate that maximum richness and diversity of nonvolant small mammals occurred at mid‐elevations where several types of plants reached their maximum diversity and primary productivity, and where rainfall and humidity reached a maximum. It is demonstrated that the mid‐elevation bulge is a general feature of at least a large portion of the biota on the Mt. Qilian range.  相似文献   

11.
Mirids (Sahlbergella singularis and Distantiella theobroma) are the most important insect pests affecting cocoa production across West Africa. Understanding the population dynamics of mirids is key to their management; however, the current recommended hand‐height assessment method is labour intensive. The objective of the study was to compare recently developed mirid sex pheromone trapping and visual hand‐height assessment methods as monitoring tools on cocoa farms and to consider implications for a decision support system. Ten farms from the Eastern and Ashanti regions of Ghana were used for the study. Mirid numbers and damage were assessed fortnightly on twenty trees per farm, using both methods, from January 2012 to April 2013. The mirid population increased rapidly in June, reached a peak in September and began to decline in October. There was a significant linear relationship between numbers of mirids sampled to hand‐height and mirid damage. High numbers of male mirids were recorded in pheromone traps between January and April 2012 after which there was a gradual decline. There was a significant inverse relationship between numbers of trapped adult mirids and mirids sampled to hand‐height (predominantly nymphs). Higher temperatures and lower relative humidities in the first half of the year were associated with fewer mirids at hand‐height, but larger numbers of adult males were caught in pheromone traps. The study showed that relying solely on one method is not sufficient to provide accurate information on mirid population dynamics and a combination of the two methods is necessary.  相似文献   

12.
Aim To delineate biogeographical patterns in Galapagos shallow‐water reef fauna at regional scales. Location Galapagos Islands. Methods Fishes and macro‐invertebrates were quantitatively censused using underwater visual techniques along more than 500 transects at defined depth strata across the Galapagos archipelago. Data were analysed using multivariate techniques to define regional patterns and identify species typical of different regions. Results Subtidal communities of fishes and macro‐invertebrates on shallow reefs differed consistently in species composition across the Galapagos archipelago, with three major biogeographical groupings: (1) the ‘far‐northern area’ containing the islands of Darwin and Wolf, (2) the ‘central/south‐eastern area’, including the east coast of Isabela, and (3) the ‘western area’, encompassing Fernandina and western Isabela. In addition, the northern islands of Pinta, Marchena and Genovesa form a separate region in the central/south‐eastern area, and Bahia Elizabeth and Canal Bolivar separate from other parts of the western area. The far‐northern bioregion is characterized by high fish species richness overall, including a high proportion of species of Indo‐Pacific origin. However, very few endemic fishes or species with distributions extending south from Ecuador (‘Peruvian’ species) are present, and the bioregion also possesses relatively low species richness of mobile macro‐invertebrate taxa. By contrast, the ‘western’ bioregion possesses disproportionately high numbers of endemic fish taxa, high numbers of cool‐temperate Peruvian fish species, and high invertebrate species richness, but very few species of Indo‐Pacific origin. The Bahia Elizabeth/Canal Bolivar bioregion possesses more endemic species and fewer species with Peruvian affinities than coasts within the western bioregion. The northern bioregion of Pinta, Marchena and Genovesa represents an overlap zone with affinities to both the far‐northern and south‐eastern islands. The south‐eastern bioregion includes species from a variety of different sources, particularly ‘Panamic’ species with distributions extending north to Central America. Main conclusions On the basis of congruent divisions for reef fish and macro‐invertebrate communities, the Galapagos archipelago can be separated into three major biogeographical areas, two of which can be further subdivided into two regions. Each of these five bioregions possesses communities characterized by a distinctive mix of species derived from Indo‐Pacific, Panamic, Peruvian and endemic source areas. The conservation significance of different regions is not reflected in counts of total species richness. The regions with the lowest overall fish species richness possess a temperate rather than tropical climate and highest levels of endemism.  相似文献   

13.
1. One‐way, directional changes in both plant and animal associations are likely to be occurring as a result of changing climate. Current knowledge of long‐term cycles in insect communities is scarce, and therefore it is difficult to assess whether the observed changes in insect communities are the first part of a long‐term trend or parts of normal cycles. 2. In this study multivariate methods were used to describe the trends in ground beetle (Coleoptera: Carabidae) assemblages over an 18‐year (1994–2011) period at two Scottish sites. In order to have a deeper insight into the underlying processes, both environmental factors and the species driving the detected changes were investigated. 3. In four out of the six sample transects, insect community compositions showed trends rather than fluctuating patterns. Hierarchical cluster analysis also revealed a clear separation, after accounting for sampling location and broad habitat, between early and later years of sampling. Decreasing annual maximum temperatures and increasing precipitation were identified as the main environmental drivers. Although increased rainfall was expected to be beneficial for hygrophilous species, in the transects in this study generalist species increased in dominance. 4. The increasing importance of generalists, in the communities studied here, underlines the vulnerability of the specialist species and urges greater effort in their conservation. Assemblage changes along different trajectories at the sites in the present study could only be tracked using multivariate methods; commonly used diversity indices proved to be unsatisfactory. Therefore, the exclusive use of simple diversity indices should be discouraged and multivariate methods should be preferred in environmental assessments and conservation planning.  相似文献   

14.
Roadside plant communities were studied along two roads following an altitudinal gradient in Gran Canaria and Tenerife (Canary Islands). Our aim was to investigate variation in plant species richness, particularly of the alien flora, along a gradient from coastal shrubland to summit vegetation (1950 m a.s.l. in Gran Canaria, 2300 m in Tenerife) in relation to variation in habitat factors (altitude, habitat structure, roadside disturbance, distance to urban nuclei). We compared different species groups that were classified in terms of their biogeographical status, origin and life form. Altitude was the most important factor determining species richness and composition along both roadside transects. Alien plants showed a unimodal distribution pattern along the altitudinal gradient, with less species and lower abundance at low and high altitudes, and highest abundance at intermediate altitude. Alien plant species were also relatively more frequent near urban centres. The number of native and alien species was significantly positively correlated along the altitudinal gradient. Both alien and native, non-endemic species showed differences in their distribution along the altitudinal gradient according to their biogeographical affinities and climatic tolerances. Despite considerable differences in species pools these patterns were consistent among the two islands. Environmental (abiotic) stress is proposed as a primary, altitude-related factor acting as a filter against most alien plants at coastal and high-mountain altitudes. A higher frequency or intensity of disturbance at intermediate altitudes may be a further causal factor promoting alien plants in this zone. Future management efforts to control alien plants along roads should, therefore, concentrate on intermediate altitudinal zones of the higher Canary Islands.  相似文献   

15.
Question: How is the diversity of woody species in a seasonally dry savanna related to plant available water (PAW)? Location: Savannas in central Brazil. Methods: Two‐dimensional soil resistivity profiles to 10‐m depth previously measured along three 10 m × 275 m replicate transects revealed differences in belowground water resources among and within transects: (1) driest/most heterogeneous; (2) wettest/least heterogeneous; and (3) PAW‐intermediate. All woody plants along these transects were identified to species, and height and basal circumference measured. Species diversity was evaluated for the whole transect (total diversity), 100‐m2 plots (alpha‐diversity) and dissimilarity among 100‐m2 plots within transects (beta‐diversity). Correlation analyses were conducted between PAW and vegetation variables at the 100‐m2 scale. Results: The driest/most heterogeneous transect had the lowest total species diversity, while the wettest/least heterogeneous transect showed the lowest beta‐diversity. Floristic variation was correlated with PAW in all transects. In the most heterogeneous transect, species density was positively correlated with PAW in the 0‐400 cm soil layer. Evenness and Simpson's diversity were negatively correlated with PAW in the 700‐1000 cm soil layer. Conclusion: Woody species diversity was related to PAW at a fine spatial scale. Abundant PAW in the top 4 m of soil may favour many species and increase species total diversity. Conversely, abundant PAW at depth may result in lower evenness and total diversity, probably because the few species adapted to obtaining deep soil water can become dominant. Environmental changes altering soil water availability and partitioning in soil layers could affect the diversity of woody plants in this savanna.  相似文献   

16.
Anthropogenic activities in urban ecosystems induce a myriad of environmental changes compared with adjacent rural areas. These environmental changes can be seen as series of abiotic and biotic selection filters affecting the distribution of plant species. What are the attributes of plant species that compose urban communities, compared with rural communities, as related to their ecological affinities (e.g., to temperature, humidity), and reproductive traits (e.g., entomophily, autogamy, floral morphology)? Using a floristic dataset from a citizen science project recording plant species growing spontaneously in the streets, we analyzed the distribution of species according to their ecological requirements and reproductive traits along an urbanization gradient in the Parisian region. We developed an original floral and pollinator typology composed of five floral and four pollinator morphotypes. The proportion of impervious areas, used as a proxy of urbanization, was measured at different spatial scales, to reveal at which spatial scales urbanization is selecting plant traits. We found significant differences in plant communities along the urbanization gradient. As expected with the warmer and drier conditions of urban areas, species with higher affinities to higher temperature, light and nutrient soil content, and lower atmospheric moisture were over‐represented in urban plant communities. Interestingly, all of the significant changes in plant abiotical affinities were the most pronounced at the largest scale of analysis (1,000 m buffer radius), probably because the specific urban conditions are more pronounced when they occur on a large surface. The proportion of autogamous, self‐compatible, and nonentomophilous species was significantly higher in urban plant communities, strongly suggesting a lower abundance or efficiency of the pollinating fauna in urban environments. Last, among insect‐pollinated species, those with relatively long and narrow tubular corollas were disadvantaged in urban areas, possibly resulting from a reduction in pollinator abundance particularly affecting specialized plant–pollinator interactions.  相似文献   

17.
18.
A population survey of insects was conducted at peach orchards in Okayama Prefecture, western Japan, every 2 weeks during May–October in 2011. Pitfall traps were used to sample more than 4000 insects at 10 orchards: 8 orchards where ground vegetation had been managed by mowing and 2 with management by herbicide application. Numbers of insect species (species richness) and numbers of insects captured in pitfall traps (trap catches) were greater after mowing. Details of the effects of mowing on insect communities were examined at four orchards that had been mowed. Results suggest that species richness and trap catches increase up to 5 days after mowing and then return to their original state. Increased species richness and trap catches were mainly attributable to the increase of ants (Formicidae) and carabids (Carabidae). These results suggest that ants and carabids actively seek prey animals that have been killed, injured, or damaged by mowing.  相似文献   

19.
In order to conserve forest plant species under the particularly high constraints that represent urban surroundings, it is necessary to identify the key factors for population persistence. This study examined within‐ and between‐population pollen dispersal using fluorescent dye as pollen analogue, and genetic variation and structure using 15 allozyme loci in Centaurium erythraea, an insect‐pollinated, early‐successional forest biennial herb occurring in a peri‐urban forest (Brussels urban zone, Belgium). Dye dispersal showed an exponential decay distribution, with most dye transfers occurring at short distances (<15 m), and only a few long‐distance events (up to 743 m). Flowers of C. erythraea are mainly visited by Syrphids (Diptera) and small bees, which are usually considered as short‐distance pollen dispersers, and occasionally by bumblebees, which are usually longer‐distance pollen dispersers. Small and large dye source populations differed in dye deposition patterns. The populations showed low genetic diversity, high inbreeding coefficients (FIS) and high genetic differentiation (FST), suggesting restricted gene flow, which can be expected for an early‐successional biennial species with a predominantly selfing breeding system and fluctuating population sizes. The positive relationship between recruitment rate and allelic richness and expected heterozygosity, and the absence of significant correlations between genetic variation and population size suggest seedling recruitment from the seed bank, contributing to maintain genetic diversity. Long‐distance dye dispersal events indicate pollinator movements along urban forest path and road verges. These landscape elements might therefore have a potential conservation value by contributing to connectivity of early‐successional species populations located in patchy open habitats.  相似文献   

20.
Elevation gradients of diversity for rodents and bats in Oaxaca, Mexico   总被引:2,自引:0,他引:2  
1  This study documents patterns of rodent and bat diversity related to abiotic and biotic factors along elevational gradients in the Sierra Mazateca (640–2600 m a.s.l.) and Sierra Mixteca (700–3000 m a.s.l.) in Oaxaca, Mexico.
2  The two transects share similar faunas: 17 and 23 rodent species were captured in the sierras Mazateca and Mixteca, respectively, 14 of which occurred on both transects. Rodent species richness was similar in the wet season and the dry season along both transects. Rodent species richness peaked at 1025–1050 m in tropical semi-deciduous forest on both transects. Endemic species were restricted to high-elevation habitats.
3  Sixteen and 17 bat species were captured in the sierras Mazateca and Mixteca, respectively; 11 occurred on both transects. Bat species richness was higher in the wet season than in the dry season in the Sierra Mazateca. Bat species richness peaked at 1850 m in pine–oak forest in the Sierra Mazateca, and at 750 m and 1050 m in tropical semi-deciduous forest in the Sierra Mixteca, decreasing abruptly at higher elevations on both transects.
4  Patterns of trophic diversity of rodents and bats coincided with those of species richness on each transect. Species richness increased with increasing habitat diversity; increased with increasing rainfall and productivity; increased with increasing resource diversity; and increased in areas with high rates of speciation (rodents only).
5  The need for conservation action in Oaxaca is urgent and proponents should promote establishment of protected areas linking lowland habitats with high species richness to high-elevation habitats harbouring large numbers of endemic forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号