首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The aim of this study was to determine the suitability of water quality in the Roanoke River of North Carolina for supporting shortnose sturgeon Acipenser brevirostrum, an endangered species in the United States. Fathead minnows Pimephales promelas were also evaluated alongside the sturgeon as a comparative species to measure potential differences in fish survival, growth, contaminant accumulation, and histopathology in a 28‐day in situ toxicity test. Captively propagated juvenile shortnose sturgeon (total length 49 ± 8 mm, mean ± SD) and fathead minnows (total length 39 ± 3 mm, mean ± SD) were used in the test and their outcomes were compared to simultaneous measurements of water quality (temperature, dissolved oxygen, pH, conductivity, total ammonia nitrogen, hardness, alkalinity, turbidity) and contaminant chemistry (metals, polycyclic aromatic hydrocarbons, organochlorine pesticides, current use pesticides, polychlorinated biphenyls) in river water and sediment. In the in situ test, there were three non‐riverine control sites and eight riverine test sites with three replicate cages (25 × 15‐cm (OD) clear plexiglass with 200‐μm tear‐resistant Nitex® screen over each end) of 20 shortnose sturgeon per cage at each site. There was a single cage of fathead minnows also deployed at each site alongside the sturgeon cages. Survival of caged shortnose sturgeon among the riverine sites averaged 9% (range 1.7–25%) on day 22 of the 28‐day study, whereas sturgeon survival at the non‐riverine control sites averaged 64% (range 33–98%). In contrast to sturgeon, only one riverine deployed fathead minnow died (average 99.4% survival) over the 28‐day test period and none of the control fathead minnows died. Although chemical analyses revealed the presence of retene (7‐isopropyl‐1‐methylphenanthrene), a pulp and paper mill derived compound with known dioxin‐like toxicity to early life stages of fish, in significant quantities in the water (251–603 ng L?1) and sediment (up to 5000 ng g?1 dry weight) at several river sites, no correlation was detected of adverse water quality conditions or measured contaminant concentrations to the poor survival of sturgeon among riverine test sites. Histopathology analysis determined that the mortality of the river deployed shortnose sturgeon was likely due to liver and kidney lesions from an unknown agent(s). Given the poor survival of shortnose sturgeon (9%) and high survival of fathead minnows (99.4%) at the riverine test sites, our study indicates that conditions in the Roanoke River are incongruous with the needs of juvenile shortnose sturgeon and that fathead minnows, commonly used standard toxicity test organisms, do not adequately predict the sensitivity of shortnose sturgeon. Therefore, additional research is needed to help identify specific limiting factors and management actions for the enhancement and recovery of this imperiled fish species.  相似文献   

2.
The potential of the Asiatic clam, Corbicula fluminea, as a bioindicator of cadmium, copper, and zinc was studied during 28-day exposures in field artificial streams receiving river water on a once-through basis. Copper, at aquatic concentrations of 0.016 and 0.057 mg l-1, showed the greatest degree of tissue uptake and had bioconcentration factors (BCF) of 22 571 and 17 720, respectively. A significant correlation (coefficient = 0.639) was observed between water concentration and tissue accumulation. Cadmium was intermediate relative to BCF (3 770 and 1 752 at aquatic exposures of 0.023 and 0.055 mg l-1, respectively), and had a correlation coefficient of 0.758. Zinc had the lowest potential for concentration (631, 358, and 511 BCF at 0.218, 0.433, and 0.835 mg l-1, respectively) with a correlation coefficient of 0.478. The rate of accumulation in Corbicula reached a maximum after 11 days for cadmium while a steady state condition for copper was not observed in 28 days. Zinc accumulation, like copper, showed a relative increase throughout the 28-day exposure period. Data from this study show that the Asiatic clam may be a reliable indicator of uptake for exposure to selected heavy metals.  相似文献   

3.
Synopsis We examined the feeding behaviors and selectives of two common planktivorous fishes, pumpkinseeds Lepomis gibbosa and fathead minnows Pimephales promelas in the laboratory. Ingestion rates for both pumpkinseeds and fathead minnows feeding on zooplankton increased as a function of fish length. Pumpkinseeds fed on zooplankton strictly as particulate feeders, with preferences increasing as a function of zooplankton body size regardless of taxonomic identity. Preferences were highest for large Daphnia, intermediate for intermediate-sized copepods, and lowest for small Ceriodaphnia. Fathead minnows displayed the ability to use both particulate-feeding and filter-feeding behaviors. Differential preferences tended to reflect both zooplankton size and taxon, being highest for large, slow-swimming Daphnia, intermediate for small Ceriodaphnia, and lowest for faster-swimming copepods. These differences in prey capture behaviors and preferences of the two fishes are reflected in the zooplankton taxonomic composition of small ponds containing each fish type. The crustacean zooplankton assemblages in ponds containing both pumpkinseeds and fathead minnows were dominated by copepods. Cladocerans were rare. In ponds containing pumpkinseeds, but no fathead minnows, cladocerans were abundant, generally accounting for up to 80% of total crustacean zooplankton biomass. These results suggest that the type of planktivore, and not simply the presence or abundance of planktivores in a system, can determine zooplankton community structure.  相似文献   

4.
Simulated acid rain at pH 3.3, 4.3 and 5.3 has been applied by overheadspraying to reconstructed soil profiles and young Sitka spruce (Piceasitchensis) trees in pots to assess the effect of rainfall acidityonthe fate and recycling efficiency of Mn from 54Mn-labelled Sitkaspruce litter. The concentration of 54Mn in throughfall wassignificantly increased by acidification of the rain, but 54Mnactivity in drainage water remained low and was not significantly affected. Thefact that only < 1.5% of 54Mn was lost in drainage water suggeststhat forest ecosystems efficiently retain Mn, at least in the short term. Thebulk of 54Mn (approximately 60 to 70%) was retained in the litterlayer. Compared with rain at pH 4.3, rain at pH 3.3 acidified L/F and H/Ahorizon soils. The amount of 54Mn found in the different soilhorizons was only influenced significantly by rainfall acidity in the E horizonsoil, however, where 54Mn activity was increased by the most acidtreatment. The activity of 54Mn in Sitka spruce needles did notdiffer significantly with treatments.  相似文献   

5.
This study provides information on the mechanism(s) of Cu and Ni ion biosorption by C. vulgaris, distinguishing adsorption from intracellular accumulation under various conditions. Surface adsorption was found to contribute maximally (>70%) to total Cu/Ni ion accumulation by the test alga (total accumulation efficiencies were 60 and 53 g metal ion mg protein–1, respectively for Cu and Ni). Maximum intracellular uptake was reported at a pH range of 6.5–7.5, whereas adsorption reached its maximum at pH 3.5 for Cu, and pH 3.5 and 6.5 in the case of Ni. 35 °C was found to be the best temperature for maximum adsorption, whereas intracellular uptake was highest at 25 °C. Though exponentially grown C. vulgaris registered maximum metal ion uptake, adsorption maxima reached the highest values in the declining phase of the culture. Heat-killed and air-dried C. vulgaris accumulated Cu and Ni at about 80% of the values for viable samples, whereas formaldehyde-treated and immobilized biomasses depicted better accumulating potential than the control cells. Na, K, Mn and Zn caused competitive inhibition, whereas for Ca a mixed-type inhibition was evident. Thus, the present study suggests that the general concept that cations inhibit metal ion accumulation by competing with them for the same binding sites on the cell surface is not absolutely valid. As these results also demonstrate that a large amount of the bound metal (>70%) is in the adsorbed fraction, it is advantageous in the sense that it could be recovered by a suitable desorbing agent, especially in case of precious metals and the biomass could be exploited for repeated use in reactors.  相似文献   

6.
Fathead minnows (Pimephales promelas) exposed to 2.5 ppb cadmium in an industrially contaminated lake accumulated whole body burdens of 3.19 ppm Cd in 12 hours, while minnows exposed to 48 ppb Cd in a continuous flow laboratory system did not reach comparable levels until the eighth day of exposure. Significant whole body accumulation of Cd (approximately 9 ppm) peaked within 17–20 days of exposure in the laboratory.  相似文献   

7.
Synopsis Behavior of largemouth bass, Micropterus salmoides, and northern pike, Esox lucius, foraging on fathead minnows, Pimephales promelas, or bluegills, Lepomis macrochirus, was quantified in pools with 50% cover (half the pool had artificial stems at a density of 1000 stems m−2). Both predators spent most of their time in the vegetation. Largemouth bass searched for bluegills and ambushed minnows, whereas the relatively immobile northern pike ambushed all prey. Minnows were closer to predators and were captured more frequently than bluegills. Even when minnows dispersed, they moved continually and eventually wandered within striking distance of a predator. Bluegills dispersed in the cover with predators. Bass captured the few bluegills that strayed into the open and pike captured those that approached too closely in the cover. The ability of predators to capture prey while residing in habitats containing patches of dense cover may explain their residence in areas often considered to be poor ones for foraging. The unit is sponsored jointly by the United States Fish and Wildlife Service, Ohio Department of NaturalResources, The Ohio State University, and the Wildlife Management Institute  相似文献   

8.
Fish spawning is often used as an integrated measure of reproductive toxicity, and an indicator of aquatic ecosystem health in the context of forecasting potential population-level effects considered important for ecological risk assessment. Consequently, there is a need for flexible, widely-applicable, biologically-based models that can predict changes in fecundity in response to chemical exposures, based on readily measured biochemical endpoints, such as plasma vitellogenin (VTG) concentrations, as input parameters. Herein we describe a MATLAB® version of an oocyte growth dynamics model for fathead minnows (Pimephales promelas) with a graphical user interface based upon a previously published model developed with MCSim software and evaluated with data from fathead minnows exposed to an androgenic chemical, 17β-trenbolone. We extended the evaluation of our new model to include six chemicals that inhibit enzymes involved in steroid biosynthesis: fadrozole, ketoconazole, propiconazole, prochloraz, fenarimol, and trilostane. In addition, for unexposed fathead minnows from group spawning design studies, and those exposed to the six chemicals, we evaluated whether the model is capable of predicting the average number of eggs per spawn and the average number of spawns per female, which was not evaluated previously. The new model is significantly improved in terms of ease of use, platform independence, and utility for providing output in a format that can be used as input into a population dynamics model. Model-predicted minimum and maximum cumulative fecundity over time encompassed the observed data for fadrozole and most propiconazole, prochloraz, fenarimol and trilostane treatments, but did not consistently replicate results from ketoconazole treatments. For average fecundity (eggs•female-1•day-1), eggs per spawn, and the number of spawns per female, the range of model-predicted values generally encompassed the experimentally observed values. Overall, we found that the model predicts reproduction metrics robustly and its predictions capture the variability in the experimentally observed data.  相似文献   

9.
In this study we test whether brook sticklebacks (Culaea inconstans) can acquire predator recognition through releaser-induced recognition learning, i.e. simultaneous exposure to aversive ('releasing') stimuli and neutral stimuli causing learned aversion to the neutral stimuli. We exposed wild-caught pike-naive brook sticklebacks (collected from a creek containing fathead minnows, Pimephales promelas, but not pike, Esox lucius) to chemical stimuli from pike that were mixed with brook stickleback skin extract, fathead minnow skin extract, or a control of distilled water. In subsequent tests 2 d later, when only pike stimuli were presented, sticklebacks conditioned with stickleback skin extract and fathead minnow skin extract exhibited antipredator behaviour (i.e. increased schooling and movement toward the substrate), while those conditioned with distilled water did not. Sticklebacks conditioned with stickleback skin extract responded to pike with a more intense response, in terms of movement toward the substrate, than those conditioned with fathead minnow skin extract, suggesting that conspecific skin extract may be a stronger stimulus than heterospecific skin extract for learning recognition of predators. To our knowledge this is the first study to demonstrate that an acanthopterygian fish can acquire predator recognition through the pairing of conspecific alarm pheromone with the cue of a predator. Furthermore, our results are the first to demonstrate that fish can acquire predator recognition through the pairing of a heterospecific alarm pheromone with the cue of a predator. These results suggest that brook sticklebacks will benefit by being in close proximity to fathead minnows. Acquired predator recognition has long-term consequences in mediating predator-prey interactions.  相似文献   

10.
Biofilms are a major source of human pathogenic Legionella pneumophila in aquatic systems. In this study, we investigated the capacity of L. pneumophila to colonize floating biofilms and the impact of Acanthamoeba castellanii on the replication of biofilm-associated Legionella. Biofilms were grown in Petri dishes and consisted of Aeromonas hydrophila, Escherichia coli, Flavobacterium breve, and Pseudomonas aeruginosa. Six hours following inoculation, Legionella were detected in floating biofilms in mean concentrations of 1.4 × 104 cells/cm2 (real-time polymerase chain reaction) and 8.3 × 102 CFU/cm2 (culture). Two-way analysis of variance tests and fluorescent in situ hybridization clearly proved that increased biofilm-associated L. pneumophila concentrations were the result of intracellular replication in A. castellanii. Forty-eight hours after the introduction of A. castellanii in the Petri dishes, 90 ± 0.8% of the amoebae (infection rate) were completely filled with highly metabolic active L. pneumophila (mean infection intensity).  相似文献   

11.
Understanding the effects of chemical toxicants on energetic processes is an important aspect of ecotoxicology. However, the influence of toxicant concentration and time of exposure on metabolism in aquatic organisms is still poorly understood. The purpose of this investigation was to determine the influence of increasing levels of three stressors (Cu, Cd, percent salinity) and exposure time (24 h and 96 h) on the metabolic rate of fathead minnows (Pimephales promelas). In all 24-h exposures, there existed a threshold concentration, above which metabolic rate decreased significantly compared to the control and lower concentrations. In contrast, the metabolic rate of fish exposed for 96 h increased significantly in all concentrations compared to fish from the control. We suggest fathead minnows exhibit a consistent pattern of metabolic response to stressors, regardless of the physiological mechanisms involved, and that this response differs as a function of time of exposure.  相似文献   

12.
Synopsis We compared survival, growth, and swimming performance of two size classes of age-0 largemouth bass, Micropterus salmoides, in the spring after being fed diets of bluegill, Lepomis macrochirus, fathead minnows, Pimephales promelas, or invertebrate prey during the winter. Regardless of prey assemblage, survival was uniformly high and independent of size. Length, wet- and dry-mass, and condition was also similar among treatments for both size classes. However, variation in individual performance differed, with the lowest variability in growth occurring among small age-0 largemouth bass in the invertebrate only treatment. Absolute and length corrected swimming speeds of largemouth bass were highest for invertebrate prey assemblages, intermediate for fathead minnow prey, and lowest for bluegill prey. The patterns in growth and spring swimming performance likely reflect the varied nutritive quality of different prey, the ability of largemouth bass to capture different prey, and competition with the piscine prey.  相似文献   

13.
The Nile catfish, Clarias lazera was found to concentrate radioactive cesium-134 and cobalt-6o from the aquatic environment. For cesium-134 the rate of uptake increased by increase of exposure time, while for cobalt-6o maximum uptake occurred after one day of exposure. The corresponding concentration factors at maximum uptake levels were 0.37 and 0.36 for cesium and cobalt respectively.The internal distribution of these radionuclides in the different tissues and organs of the fish due to uptake from the aquatic environment followed the decreasing order:For 134Cs: muscle, bone, gills, stomach, kidneys, intestine and liver.For 60Co: bone, muscle, gills, intestine, kidneys, stomach and liver.The internal distribution due to ingestion of these radionuclides followed nearly the same order as was found in case of uptake from the aquatic environment.  相似文献   

14.
We conducted a factorial experiment, in outdoor mesocosms, on the effects of zebra mussels and water column mixing (i.e., turbulence) on the diet, growth, and survival of larval fathead minnows (Pimephales promelas). Significant (P<0.05) larval mortality occurred by the end of the experiment with the highest mortality (90%) occurring in the presence of both turbulence and zebra mussels, whereas mortality was 37% in treatment with turbulence and 17% and 18% in the zebra mussels treatment, and the control, respectively. The size of individual fish was significantly different among treatments at the end of the experiment and was inversely related to survival. Levels of trophic resources (i.e., phyto and zooplankton) varied among treatments and were treatment specific. Turbulent mixing facilitated removal of phytoplankton by zebra mussels by making the entire water column of the tanks available to these benthic filter feeders. Early in the experiment (Day = 0 to 14) the physical process of turbulent mixing likely caused a reduction in standing stocks of zooplankton. The interactive effect of turbulence and mussels reduced copepod and rotifer stocks, through physical processes and through filtration by zebra mussels, relative to the turbulence treatment. The reductions in the number of total zooplankton in the turbulent mixing mesocosms and the further reduction of rotifer and copepod in the turbulence and mussels treatment coincided with a period of increased reliance of larval fathead minnows on these prey. Estimates of consumption from bioenergetics modeling and measured prey standing stocks indicated caloric resources of suitable prey in turbulence treatments during the early weeks of the experiment were insufficient to prevent starvation. Early mortality in the turbulence and mussels treatment likely released surviving fish from intense intraspecific competition and resulted in higher individual growth rates. A combination of high abundance of zebra mussels in an environment with a well-mixed water column can have significant effects on larval fish survival and growth.  相似文献   

15.
This study evaluates the applicability and sensitivity of fish population dynamics modeling in assessing the potential effects of individual chemicals on population sustainability and recovery. Fish reproductive health is an increasingly important issue for ecological risk assessment following international concern over endocrine disruption. Life-history data from natural brook trout and fathead minnow populations were combined with effects data from laboratory-based studies, mainly concerning species other than brook trout and fathead minnows, to assess the likely impact of nonylphenol (NP) and methoxychlor (MXC) on brook trout (Salvelinus fontinalis) and fathead minnow (Pimephales promelas) population size. A delay differential equation (DDE) model with a 1-day timestep was used to predict the population dynamics of the brook trout and fathead minnows. The model predicts that NP, could enhance populations by up to 17% at a concentration of 30?µg l?1 based on the results of reduction in survival and increased fecundity from life-cycle toxicity tests, however attempting to allow for growth reduction and its effect on fecundity results in a prediction of a 28% reduction in population numbers. For fathead minnows the DDE model predicts that the same concentration of NP could cause a population reduction of 21%. The differences in these predictions are related to these two species having different life history strategies, which are considered in the parameterization of the model. Post-application concentrations of MXC may peak around 300?µg l?1 and then decline rapidly with time. Predictions show that such applications could cause a reduction of up to 30% in brook trout populations if the application occurs at the peak of the spawning season on successive years but that the effect would be less than 1% if the spawning season is avoided. Effects on the fathead minnow population size are predicted to be smaller (<4%) even if application occurs during the spawning period. Risk based statistics generated by the population dynamics models, such as interval decline risk or quasiextinction risk and predicted time to recovery complement traditional effects parameters such as LC50 and LOEC and may ultimately prove to be more useful in risk assessment.  相似文献   

16.
A wide diversity of aquatic organisms release chemical alarm cues upon encountering or being attacked by a predator. These alarm cues can be used by nearby individuals to assess local predation risk. Receivers warned by chemical alarm cues gain a survival benefit when encountering predators. Animals that are in the same prey guild (i.e. that co‐occur and share the same predators) may learn to recognize each others’ chemical alarm cues. This ability may confer an adaptive advantage if the prey animals are vulnerable to the same predators. However, if the prey grow to different sizes and as a consequence are no longer vulnerable to the same suite of predators, then there should no longer be an advantage for the prey to respond to each others’ alarm cues. In this study, we exposed small and large fathead minnows (Pimephales promelas) to cues from syntopic injured damselfly larvae (Enallagma boreale), cues from injured mealworm larvae (Tenebrio molitor) and to distilled water. Small minnows exhibited antipredatory behaviour and increased shelter use in response to injured damselfly cues but not to the controls of injured mealworm or distilled water. On the contrary, large minnows exhibited no significant change in shelter use in response to any of the injured cues. These data demonstrate that fathead minnows exhibit an antipredator response to damselfly alarm cues, but only when minnows are small and members of the same prey guild as damselfly larvae. These results demonstrate the considerable flexibility in the responses to heterospecific alarm cues.  相似文献   

17.
Interactions between Bacillus thuringiensis subsp. israelensis and fathead minnows, Pimephales promelas, were studied in laboratory exposures to two commercial formulations, Vectobac-G and Mosquito Attack. Mortality among fatheads exposed to 2.0 × 106 to 6.5 × 106 CFU/ml with both formulations was attributed to severe dissolved oxygen depletion due to formulation ingredients rather than to direct toxicity from the parasporal crystal. No adverse effects were observed at 6.4 × 105 CFU/ml and below. Fathead minnows rapidly accumulated high numbers of spores with 1 h of exposure to 2.2 × 105 CFU of Mosquito Attack per ml, producing whole-body counts of 4.0 × 106 CFU per fish. Comparison of counts on gastrointestinal tract samples and whole-body samples and high numbers of spores in feces indicated that ingestion was the major route of exposure. B. thuringiensis subsp. israelensis spore counts decreased rapidly after transfer of fish to clean water, with a drop of over 3 orders of magnitude in 1 day. Spores were rarely detected in fish after 8 days but were detectable in feces for over 2 weeks. These findings suggest that fish could influence the dissemination of B. thuringiensis subsp. israelensis, and possibly other microbial agents, in the aquatic environment.  相似文献   

18.
Three micro algae, Ankistrodesmus convolutus, Scenedesmus incrassatulus and Chlorella vulgaris, at three concentrations, were tested as diets for Moina macrocopa. Their effect on reproduction, fecundity, growth and survival was evaluated. All three algae satisfied the nutritional requirements of M. macrocopa, despite their difference in size. The best concentration, expressed in dry weight, was 5 mg l–1 for all three. Time to first reproduction was 4 days with all diets. Average time between clutches was 33 hours, and maximum number of clutches was 12; the highest average number of offspring per brood was 27. The largest broods were the fourth to sixth, depending on the diet. Ephippium hatching depends on temperature, taking only 24 hours at 30 °C and 48 hours at 27 °C. This species could be an important test organism in aquatic bioassays, and a live food in aquaculture.  相似文献   

19.
SUMMARY 1. Research has shown that fish influence the structure and processes of aquatic ecosystems, but replicated studies at the ecosystem level are rare as are those involving wetlands. Some wetlands of the Prairie Pothole Region (PPR) of North America support fish communities dominated by fathead minnows ( Pimephales promelas ) while others are fishless, providing an opportunity to assess the influence of these fish on wetland ecosystems. Additionally, many wetlands have previously been drained and subsequently restored, but the success of these efforts is poorly known and restoration may be impeded by the presence of fish.
2. We assessed the effects of fathead minnows and drainage by studying 20 semipermanent, prairie wetlands in Minnesota from 1996 to 1999. We used a 2 × 2 factorial design to examine the effects of presence and absence of minnows and drainage history (restored/never drained) on the abundance of aquatic invertebrates and amphibians, as well as on the concentrations of chlorophyll a , total phosphorus, total nitrogen and turbidity in the water column.
3. Results showed that fathead minnows are an important determinant of many biotic and abiotic characteristics of wetlands in the eastern PPR. Wetlands with fathead minnows had fewer aquatic insects, large- and small-bodied cladocerans, calanoid copepods, ostracods and larval tiger salamanders, as well as a higher abundance of corixids and greater turbidity and chlorophyll a . A higher concentration of phosphorus in restored basins was the only consistent effect of past management.
4. Fathead minnows usually dominate fish communities in eastern PPR wetlands where fish are present, and can have several strong ecosystem effects. While abiotic variables are important determinants of ecosystem structure in prairie wetlands, they can be strongly influenced by biotic factors.  相似文献   

20.
Evidence for the presumed linkage between the enigmatic rodlet cells of fish and exposure to helminths is anecdotal and indirect. We evaluated the proliferation and development of rodlet cells in the optic lobes of fathead minnows exposed to cercariae of Ornithodiplostomum ptychocheilus. Mean rodlet cell densities (ca. 10/mm2) in the optic lobes were similar between unexposed controls and minnows with 1- and 2-week old infections. Rodlet cell densities increased at 4 weeks p.i., reaching maxima (ca. 200/mm2) at 6 weeks p.i., followed by a decline at 9 weeks. This temporal pattern of proliferation and maturation paralleled the development of metacercariae within the optic lobes. Unencysted metacercariae develop rapidly within tissues of the optic lobes for approximately 4 weeks after penetration by cercariae, then shift to the adjacent meninges to encyst. The former stage is associated with tissue damage, the latter with massive inflammation of the meninges. Thus, peak densities and maturation of rodlet cells correspond to the period when inflammation of the meninges caused by the large metacercarial cysts is at a maximum. Our results support recent contentions that rodlet cells comprise part of the host inflammatory defence response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号