首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A number of 4-hydroxybenzylphenyl ethers and their acetates were synthesized as models for hardwood lignin and used as substrates in acid hydrolysis and enzymatic oxidation reactions. Under hydrolytic conditions, the acetates underwent ether cleavage at a slower rate than the free phenols. Evidence for carbonium ion intermediates is presented. Cleavage of the ether substrates by peroxidase—peroxide oxidation was much faster than by acid hydrolysis for all substrates except the acetates which did not react. Subsequent oxidation of the component parts of the ether substrates was selective: the syringyl moieties were oxidized in preference to the guaiacyl moieties. Electron spin resonance studies of the oxidation reaction showed that removal of the phenolic hydrogen atom was the first step, followed by quinone—methide formation. A mechanism is proposed to account for the oxidative degradation of the lignin models.  相似文献   

2.
Dialkyl, alkyl acyl, and diacyl glycerols were resolved as trimethylsilyl ethers and as acetates by gas-liquid chromatography on a nonpolar stationary phase (OV-1). The two types of derivatives proved suitable for quantitative gas chromatographic analysis.  相似文献   

3.
Reaction of l-ascorbic acid with o-phenylenediamine and arylhydrazines afforded 3-(1-arylhydrazono-l-threo-2,3,4-trihydroxybutyl)-2-quinoxalinones (1–6). Whereas compounds 1–6 reacted with alkali to give 1-aryl-3-(l-threo-glycerol-1-yl)-flavazoles, the corresponding acetates (7) underwent deacetylation and rearrangement to 3-[1-aryl-5-(hydroxymethyl)pyrazol-3-yl]-2-quinoxalinones (20–24). Compounds 20–24 were also prepared from 1–5 by treatment with hot hydroxylamine hydrochloride. The action of boiling acetic anhydride on 1–5 or 7 afforded colorless products identified as the pyrazole acetates (15–19), which could also be obtained by the acetylation of compounds 20–24. Deacetylation of 15 gave 20. Oxidation of 20 with potassium permanganate gave the 5-carboxylic acid 26. The i.r., n.m.r., and mass spectra of some of these compounds are discussed.  相似文献   

4.
Metabolic responses of mammalian cells toward declining oxygen concentration are generally thought to occur when oxygen limits mitochondrial ATP production. However, at oxygen concentrations markedly above those limiting to mitochondria, several mammalian cell types display reduced rates of oxygen consumption without energy stress or compensatory increases in glycolytic ATP production. We used mammalian Jurkat T cells as a model system to identify mechanisms responsible for these changes in metabolic rate. Oxygen consumption was 31% greater at high oxygen (150–200 μM) compared to low oxygen (5–10 μM). Hydrogen peroxide was implicated in the response as catalase prevented the increase in oxygen consumption normally associated with high oxygen. Cell-derived hydrogen peroxide, predominately from the mitochondria, was elevated with high oxygen. Oxygen consumption related to intracellular calcium turnover was shown, through EDTA chelation and dantrolene antagonism of the ryanodine receptor, to account for 70% of the response. Oligomycin inhibition of oxygen consumption indicated that mitochondrial proton leak was also sensitive to changes in oxygen concentration. Our results point toward a mechanism in which changes in oxygen concentration influence the rate of hydrogen peroxide production by mitochondria, which, in turn, alters cellular ATP use associated with intracellular calcium turnover and energy wastage through mitochondrial proton leak.  相似文献   

5.
The fatty acyl (lipid) p-nitrophenyl esters p-nitrophenyl caprylate, p-nitrophenyl laurate and p-nitrophenyl palmitate that are incorporated at a few mol % into mixed micelles with Triton X-100 are substrates for bovine milk lipoprotein lipase. When the concentration of components of the mixed micelles is approximately equal to or greater than the critical micelle concentration, time courses for lipoprotein lipase-catalyzed hydrolysis of the esters are described by the integrated form of the Michaelis-Menten equation. Least square fitting to the integrated equation therefore allows calculation of the interfacial kinetic parameters Km and Vmax from single runs. The computational methodology used to determine the interfacial kinetic parameters is described in this paper and is used to determine the intrinsic substrate fatty acyl specificity of lipoprotein lipase catalysis, which is reflected in the magnitude of kcat/Km and kcat. The results for interfacial lipoprotein lipase catalysis, along with previously determined kinetic parameters for the water-soluble esters p-nitrophenyl acetate and p-nitrophenyl butyrate, indicate that lipoprotein lipase has highest specificity for the substrates that have fatty acyl chains of intermediate length (i.e. p-nitrophenyl butyrate and p-nitrophenyl caprylate). The fatty acid products do not cause product inhibition during lipoprotein lipase-catalyzed hydrolysis of lipid p-nitrophenyl esters that are contained in Triton X-100 micelles. The effects of the nucleophiles hydroxylamine, hydrazine, and ethylenediamine on Km and Vmax for lipoprotein lipase catalyzed hydrolysis of p-nitrophenyl laurate are consistent with trapping of a lauryl-lipoprotein lipase intermediate. This mechanism is confirmed by analysis of the product lauryl hydroxamate when hydroxylamine is the nucleophile. Hence, lipoprotein lipase-catalyzed hydrolysis of lipid p-nitrophenyl esters that are contained in Triton X-100 micelles occurs via an interfacial acyl-lipoprotein lipase mechanism that is rate-limited by hydrolysis of the acyl-enzyme intermediate.  相似文献   

6.
We investigated lipase-catalyzed hydrolysis in water and dioxane—water with a simple colorimetric method. We screened 24 lipases for the ability to hydrolyze p-nitrophenyl esters as chromogenic substrates. Their hydrolytic activities were varied by adding dioxane. Most of the lipases showed high activity in hydrolysis in water, but some showed activity in 50% dioxane—water several tens times higher than those in water. Moreover, several lipases with hydrolytic abilities in 50% dioxane—water also catalyzed the transesterification of p-nitrophenol using fatty acid vinyl esters. We found it possible that a useful lipase for transesterification can be selected by measuring the hydrolysis activity of p-nitrophenyl ester in 50% dioxane—water.  相似文献   

7.
1. A method is described for the quantitative isolation of bile acids from cellular material. Homogenates of rat liver are freeze-dried and extracted exhaustively with 95% (v/v) ethanol containing 0·1% (v/v) of aq. ammonia (sp.gr. 0·88) and purified by anion-exchange chromatography on Amberlyst A-26. 2. The extracted bile acid conjugates are subjected to either of two hydrolytic procedures, one involving chemical and the other enzymic agents. A unique feature in this study is the introduction of an enzyme, a clostridial peptide-bond hydrolase, for the rapid cleavage of bile acid conjugates, replacing the classical drastic chemical hydrolysis with strong alkali. 3. After hydrolysis, free bile acids are methylated and converted into their trifluoroacetates for final determination by gas–liquid chromatography on a triple component column, FS-1265–SE30–NGS. 4. For the purpose of identification of peaks, bile acid methyl esters are converted into their trimethylsilyl ethers by allowing the methyl esters to react with a new and potent silyl donor, bis(trimethylsilyl)acetamide. 5. The technique affords us a means of studying the metabolism of bile acids at the cellular and subcellular levels in tissues.  相似文献   

8.
Industrial eucalypt (E. globulus L.) kraft pulp was treated with two commercial xylanase preparations Ecopulp® TX-200A and Pulpzyme® HC (endo-1,4-β-xylanase activity; EC 3.2.1.8) and bleached by totally chlorine-free (TCF) three-stage hydrogen peroxide bleaching sequence, without oxygen pre-delignification. The effect of enzymatic stage on pulp properties and bleachability has been studied and compared with reference (control) pulps, processed without enzyme addition. The similar mode of enzymatic action was noted for both xylanase preparations. Final brightness of 86% ISO was achieved after complete bleaching. Direct bleaching effect caused pulp brightening (by 1.2–1.5% ISO) and delignification (by 7–10%) immediately after the enzymatic stage. The maximal bleach boosting was shown after the first peroxide stage and then diminished, despite the progressive increase in delignification over the control. The loss in efficiency of xylanase treatment by the end of peroxide bleaching was associated with specific behavior of xylan-derived chromophores, i.e., hexenuronic acids.  相似文献   

9.
All-E-(3R,6′R)-3-hydroxy-3′,4′-didehydro-β,γ-carotene (anhydrolutein I) and all-E-(3R,6′R)-3-hydroxy-2′,3′-didehydro-β,ε-carotene (2′,3′-anhydrolutein II) have been isolated and characterized from extracts of human plasma using semipreparative high-performance liquid chromatography (HPLC) on a C18 reversed-phase column. The identification of anhydroluteins was accomplished by comparison of the UV-Vis absorption and mass spectral data as well as HPLC-UV-Vis-mass spectrometry (MS) spiking experiments using fully characterized synthetic compounds. Partial synthesis of anhydroluteins from the reaction of lutein with 2% H2SO4 in acetone, in addition to anhydrolutein I (54%) and 2′,3′-anhydrolutein II (19%), also gave (3′R)-3′-hydroxy-3,4-dehydro-β-carotene (3′,4′-anhydrolutein III, 19%). While anhydrolutein I has been shown to be usually accompanied by minute quantities of 2′,3′-anhydrolutein II (ca. 7–10%) in human plasma, 3′,4′-anhydrolutein III has not been detected. The presence of anhydrolutein I and II in human plasma is postulated to be due to acid catalyzed dehydration of the dietary lutein as it passes through the stomach. These anhydroluteins have also been prepared by conversion of lutein diacetate to the corresponding anhydrolutein acetates followed by alkaline hydrolysis. However, under identical acidic conditions, loss of acetic acid from lutein diacetate proceeded at a much slower rate than dehydration of lutein. The structures of the synthetic anhydroluteins, including their absolute configuration at C(3) and C(6′) have been unambiguously established by 1H NMR and in part by 13C NMR, and circular dichroism.  相似文献   

10.
Electron-impact mass spectrometric procedures for locating the position of double bonds and cyclopropane rings in long-chain fatty acids are reviewed. Since unsaturation is not located directly by mass spectrometry, the properties of suitable derivatives are summarized. Epoxides are readily prepared from double bonds and on opening of the ring with various reagents useful derivatives are obtained, the most promising to date being hydroxymethoxy esters whose trimethylsilyl ethers give good mass spectra. Trimethylsilyl ethers of vicinal diols, prepared by direct hydroxylation, are recommended for the analysis of polyunsaturated fatty acid esters using combined gas chromatography-mass spectrometry. Oxymercuration-demercuration techniques are very convenient and one particular procedure can specifically locate unsaturation up to five carbons distant from the carboxyl group. An alternative approach enables the location of double bonds and cyclopropane rings in fatty acids by direct mass spectrometry of pyrrolidides. Cyclopropane rings can be positively located in fatty acid esters by mass spectrometry of isomeric ketones or methoxy derivatives prepared by chromium trioxide oxidation on poron trifluoride-catalysed methoxylation, respectively. A variety of other procedures are also considered and some guidelines are given for choosing a method to suit a particular unsaturated acid.  相似文献   

11.
Sakaki K  Itoh N 《Biotechnology letters》2003,25(19):1591-1595
Racemic 2-hydroxy octanoic acid methyl ester was optically resolved by lipase-catalyzed hydrolysis in a biphasic membrane reactor using hydrophilic/hydrophobic capillary membranes. In a buffer/hexane biphasic membrane reactor using hydrophilic ultrafiltration membranes, (S)-2-hydroxy octanoic acid was recovered from the aqueous phase at 59–67% yield and 0.9–0.92 enantiomeric excess (ee), and the ester of (R)-isomer was recovered from the organic phase at 73–75% yield and 0.92–0.99 ee.  相似文献   

12.
Chlorogenic acid (5-caffeoylquinic acid or 5-CQA) is an hydrophilic phenolic compound with antioxidant properties. Because of its high polarity, its antioxidant properties may be altered when formulated in oil based food or cosmetic preparations. Therefore, there is an interest in trying to enhance its hydrophobicity by grafting of an aliphatic chain. Such lipophilization reactions can be generally achieved through enzymatic catalysis. Our study consisted in synthesizing fatty cholorogenate esters in a two steps reaction. Firstly, 5-CQA was chemically esterified by methanol using an Amberlite IR120 H resin to obtain methyl chlorogenate that is more soluble in the fatty alcohols than 5-CQA. Secondly, this chlorogenate intermediate was transesterified with fatty alcohols of various chain lengths (C4, C8, C12, or C16) in the presence of Candida antarctica B lipase. Under optimal reaction conditions (aw = 0.05; 5% (w/w) of biocatalyst), the transesterification rates were until two-fold higher than in the direct lipase-catalyzed esterification of chlorogenic acid by the same alcohols. The two-step reaction overall yield was between 61 and 93% depending on the alcohol chain length, whereas it was 40–60% for the direct esterification with the same alcohols.  相似文献   

13.
Eight hemicellulosic fractions were obtained by sequential treatment of dewaxed barley straw with 0.1 M NaOH at 45 °C for 3 h, 0.25, 0.5, 1.0, 1.5, 2.0, and 3.0% H2O2 at 45 °C for 3 h at pH 11.5, and 10% KOH–1% Na2B4O7·10H2O at 28 °C for 15 h under continuous agitation. The yields of the fractions were 8.0, 3.1, 3.3, 3.3, 2.2, 2.0, 2.0, and 9.9%, respectively, of the initial amount of barley straw, corresponding to the dissolution of 21.6, 8.4, 8.9, 8.9, 5.9, 5.4, 5.4, and 26.7% of the original hemicelluloses. Meanwhile, the successive treatment also solubilized 29.1, 15.8, 14.6, 10.8, 4.5, 3.2, 2.7, and 3.7% of the original lignin, respectively. This sequential extraction together resulted in dissolution of 91.1% of the original hemicelluloses and 84.8% of the original lignin. The 0.1 M NaOH-soluble hemicellulosic fraction contained mainly xylose, glucose, and arabinose, 44.2, 15.7, and 15.2%, respectively, while the 10% KOH–1% Na2B4O7·10H2O-soluble fraction predominated in xylose, 75.0%. The six alkaline peroxide-soluble fractions were composed of 50.3–54.4% xylose, 14.7–16.9% arabinose, 6.8–10.7% glucose, 6.8–8.5% glucuronic acid or 4-O-methyl- -glucuronic acid, 0.4–1.5% mannose, and 0.3–1.2% rhamnose. All the hemicellulosic fractions contained substantial amounts of glucuronoarabinoxylans and noticeable quantities of β-glucans. In comparison, the six hemicellulosic fractions, isolated with alkaline peroxide, had much higher molecular weights (56,890–63,810 g mol−1) than those of the two hemicellulosic preparations (28,000–29,080 g mol−1), isolated with alkali in the absence of hydrogen peroxide. The thermal stability of the hemicelluloses increased with an increment of their molar mass.  相似文献   

14.
A new ganglioside, containing an alkali-labile linkage, was extracted from mouse brain and purified. It represents 3.6% of total lipid-bound sialic acid in the tissue and was obtained in pure form with a yield of about 35%. It contains sphingosine, glucose, galactose, N-acetylgalactosamine and sialic acid in the molar ratio 1:1:2:1:4 and, upon exhaustive sialidase treatment gives the monosialoganglioside GM1. Partial acid hydrolysis, methylation analysis, gas-liquid chromatography-mass spectrometry and chromium trioxide oxidation studies showed its basic neutral glycosphingolipid core to be ganglio-N-tetraose-ceramide. Three of the four sialic acid residues are N-acetylneuraminic acid and one, as shown by gas-liquid chromatography-mass spectrometry, is 9-O-acetyl,N-acetylneuraminic acid, which contains the alkali labile linkage. 9-O-acetyl,N-acetylneuraminic acid is -ketosidically linked to position 8 of the N-acetylneuraminic acid residue bound to position 3 of the internal galactose. The other two N-acetylneuraminic acid residues form a disialosyl residue linked to position 3 of external galactose. The complete structure of the studied ganglioside is as follows: NeuAc2–8NeuAc2–3Galβ1–3GalNAcβ1–4(9-O-Ac-NeuAca2–8NeuAc2-1′-N-acylsphingosine, and it can be considered as a derivative of the tetrasialoganglioside GQ1b.  相似文献   

15.
W. Kaiser 《BBA》1976,440(3):476-482
Low concentrations of hydrogen peroxide strongly inhibit CO2 fixation of isolated intact chloroplasts (50% inhibition at 10−5 M hydrogen peroxide). Addition of catalase to a suspension of intact chloroplasts stimulates CO2 fixation 2–6 fold, indicating that this process is partially inhibited by endogenous hydrogen peroxide formed in a Mehler reaction.

The rate of CO2 fixation is strongly increased by addition of Calvin cycle intermediates if the catalase activity of the preparation is low. However, at high catalase activity addition of Calvin cycle intermediates remains without effect. Obviously the hydrogen peroxide formed at low catalase activity leads to a loss of Calvin cycle substrates which reduces the rate of CO2 fixation.

3-Phosphoglycerate-dependent O2-evolution is not influenced by hydrogen peroxide at a concentration (5 · 10−4 M) which inhibits CO2 fixation almost completely. Therefore the inhibition site of hydrogen peroxide cannot be at the step of 3-phosphoglycerate reduction. Dark CO2 fixation of lysed chloroplasts in a hypotonic medium is not or only slightly inhibited by hydrogen peroxide (2.5 · 10−4 M), if ribulose-1,5-diphosphate, ribose 5-phosphate or xylulose 5-phosphate were added as substrates. However, there is a strong inhibition of CO2 fixation by hydrogen peroxide, if fructose 6-phosphate together with triose phosphate are used as substrates. This indicates that hydrogen peroxide interrupts the Calvin cycle at the transketolase step, leading to a reduced supply of the CO2-acceptor ribulose 1,5-diphosphate.  相似文献   


16.
Racemic secondary alcohols with an N-protected oxyamino function in the β-position were prepared by a base-catalyzed epoxide ring opening with N-hydroxyphthalimide or acetone oxime. The enantiomers were separated with a good selectivity by a lipase-catalyzed acetylation of the racemates with vinyl acetate. The protecting group of the aminooxy alcohol was split off by a hydrochloric acid hydrolysis to yield the hydrochloride of one of the enantiomeric forms of the title compounds.  相似文献   

17.
Group VIA calcium-independent phospholipase A2 (iPLA2) has been shown to play a major role in regulating basal phospholipid deacylation reactions in certain cell types. More recently, roles for this enzyme have also been suggested in the destruction of membrane phospholipid during apoptosis and after oxidant injury. Proposed iPLA2 roles have rested heavily on the use of bromoenol lactone as an iPLA2-specific inhibitor, but this compound actually inhibits other enzymes and lipid pathways unrelated to PLA2, which makes it difficult to define the contribution of iPLA2 to specific functions. In previous work, we pioneered the use of antisense technology to decrease cellular iPLA2 activity as an alternative approach to study iPLA2 functions. In the present study, we followed the opposite strategy and prepared U937 cells that exhibited enhanced iPLA activity by stably expressing a plasmid containing iPLA2 cDNA. Compared with control cells, the iPLA2 -overexpressing U937 cells showed elevated responses to hydrogen peroxide with regard to both arachidonic acid mobilization and incorporation of the fatty acid into phospholipids, thus providing additional evidence for the key role that iPLA2 plays in these events. Long-term exposure of the cells to hydrogen peroxide resulted in cell death by apoptosis, and this process was accelerated in the iPLA2-overexpressing cells. Increased phospholipid hydrolysis and fatty acid release also occurred in these cells. Unexpectedly, however, abrogation of U937 cell iPLA2 activity by either methyl arachidonyl fluorophosphonate or an antisense oligonucleotide did not delay or decrease the extent of apoptosis induced by hydrogen peroxide. These results indicate that, although iPLA2-mediated phospholipid hydrolysis occurs during apoptosis, iPLA2 may actually be dispensable for the apoptotic process to occur. Thus, beyond a mere destructive role, iPLA2 may play other roles during apoptosis.  相似文献   

18.
Quantitative estimates of free fatty acids in total lipid extracts of plasma were obtained by glc on nonpolar columns following trimethylsilylation. The presence of other lipid esters in the reaction mixture had no effect upon the yield of the trimethylsilyl (TMS) esters or upon their resolution on the glc column. Routine quantitations by gas-liquid chromatography (glc) were obtained on 2 ft × 1/8 in. o.d. stainless steel columns packed with 3% OV-1 on 100–120 mesh Gas Chrom Q by means of temperature programming in the range 175–350°C with tridecanoin as internal standard. High resolution glc of the TMS esters of fatty acids was done on a 6 ft × 1/8 in. o.d. glass column packed with 1% SE-30 on Gas Chrom Q. In both instances the fatty acids were resolved on the basis of carbon number and by the presence or absence of double bonds. On gas chromatography/mass spectrometry (GC/MS), TMS esters of fatty acids were shown to yield proportionally greater amounts of high mass fragments, including the parent ions, than their methyl or ethyl esters, which has special advantages for the detection and characterization of polyunsaturated fatty acids.  相似文献   

19.
Lipase (triacylglycerol acylhydrolase) is a unique enzyme which can catalyze various types of reactions such as hydrolysis, esterification, alcoholysis etc. In particular, hydrolysis of vegetable oil with lipase as a catalyst is widely studied. Free lipase, lipase immobilized on suitable support, lipase encapsulated in a reverse micelle and lipase immobilized on a suitable membrane to be used in membrane reactor are the most common ways of employing lipase in oil hydrolysis. Castor oil is a unique vegetable oil as it contains high amounts (90%) of a hydroxy monounsaturated fatty acid named ricinoleic acid. This industrially important acid can be obtained by hydrolysis of castor oil. Different conventional hydrolysis processes have certain disadvantages which can be avoided by a lipase-catalyzed process. The degree of hydrolysis varies widely for different lipases depending on the operating range of process variables such as temperature, pH and enzyme loading. Immobilization of lipase on a suitable support can enhance hydrolysis by suppressing thermal inactivation and estolide formation. The presence of metal ions also affects lipase-catalyzed hydrolysis of castor oil. Even a particular ion has different effects on the activity of different lipases. Hydrophobic organic solvents perform better than hydrophilic solvents during the reaction. Sonication considerably increases hydrolysis in case of lipolase. The effects of additives on the same lipase vary with their types. Nonionic surfactants enhance hydrolysis whereas cationic and anionic surfactants decrease it. A single variable optimization method is used to obtain optimum conditions. In order to eliminate its disadvantages, a statistical optimization method is used in recent studies. Statistical optimization shows that interactions between any two of the following pH, enzyme concentration and buffer concentration become significant in presence of a nonionic surfactant named Span 80.  相似文献   

20.
1. A gas–liquid-chromatographic procedure is described which permits separation and identification on the same chromatogram of a wide range of substances occurring in urine or tissue extracts. The method uses hydrogen flame ionization, which detects organic compounds whether free or conjugated with no requirement for specific reactive groups. 2. For chromatography, carboxyl groups are quantitatively converted into methyl esters or trimethylsilyl esters. Phenolic, alcoholic and potential enolic groups are converted into trimethylsilyl ethers. Separations are carried out on a 6ft. column of either 10% F-60 (a polysiloxane) or 1% F-60, temperature programming at 2°/min. being used over such part of the temperature range 30°–260° as is required. Propionyl derivatives of hydroxy compounds can also be used, but only on a non-quantitative basis. Derivatives and columns have been selected for optimum range of usefulness when large numbers of samples are examined by using automated gas chromatography. 3. The method is applicable to: fatty acids above butyric acid; di- and tri-carboxylic acids; hydroxy acids and keto acids; polyhydroxy and alicyclic compounds such as glycerol, inositol, quinic acid, shikimic acid, ascorbic acid and sugar alcohols; aromatic hydroxy and acidic compounds, both benzenoid and indolic; sesquiterpenes; steroids; glycine conjugates; mercapturic acids; glucuronides. It is not satisfactory for sulphate conjugates, iminazoles or polypeptides. 4. Methylene units provide an accurate and reproducible parameter for characterizing peak position. Methylene unit values are reported for a large variety of substances occurring in, or related to those occurring in, urine and tissue extracts. 5. The nature of derivatives was confirmed by combining gas chromatography with mass spectrometry. Combined gas chromatography–mass spectrometry gives a diagnostic tool of great power in the evaluation of metabolic patterns, and various uses are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号