首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Mouse mammary epithelial cells (NMuMG cells) deposit at their basal surfaces an extracellular heparan sulfate-rich proteoglycan that binds to type I collagen. The binding of the purified proteoglycan to collagen was studied by (i) a solid phase assay, (ii) a suspension assay using preformed collagen fibrils, and (iii) a collagen fibril affinity column. The binding interaction occurs at physiological pH and ionic strength and can be inhibited only by salt concentrations that greatly exceed those found physiologically. Binding requires the intact proteoglycan since the protein-free glycosaminoglycan chains will not bind under the conditions of these assays. However, binding is mediated through the heparan sulfate chains as it can be inhibited by block-sulfated polysaccharides, including heparin. Binding requires native collagen structure which may be optimal when the collagen is in a fibrillar configuration. Binding sites on collagen fibrils are saturable, high affinity (Kd approximately 10(-10) M), and selective for heparin-like glycosaminoglycans. Because a culture substratum of type I collagen fibrils causes NMuMG cells to accumulate heparan sulfate proteoglycan into a basal lamina-like layer, binding of heparan sulfate proteoglycans to type I collagen may lead to the formation of a basal lamina and may link the basal lamina to the connective tissue matrix, an association found in basement membranes.  相似文献   

2.
The proteoglycan (PG) on the surface of NMuMG mouse mammary epithelial cells consists of at least two functional domains, a membrane- intercalated domain which anchors the PG to the plasma membrane, and a trypsin-releasable ectodomain which bears both heparan and chondroitin sulfate chains. The ectodomain binds cells to collagen types I, III, and V, but not IV, and has been proposed to be a matrix receptor. Because heparin binds to the adhesive glycoproteins fibronectin, an interstitial matrix component, and laminin, a basal lamina component, we asked whether the cell surface PG also binds these molecules. Cells harvested with either trypsin or EDTA bound to fibronectin; binding of trypsin-released cells was inhibited by the peptide GRGDS but not by heparin, whereas binding of EDTA-released cells was inhibited only by a combination of GRDS and heparin, suggesting two distinct cell binding mechanisms. In the presence of GRGDS, the EDTA-released cells bound to fibronectin via the cell surface PG. Binding via the cell surface PG was to the COOH-terminal heparin binding domain of fibronectin. In contrast with the binding to fibronectin, EDTA-released cells did not bind to laminin under identical assay conditions. Liposomes containing the isolated intact cell surface PG mimic the binding of whole cells. These results indicate that the mammary epithelial cells have at least two distinct cell surface receptors for fibronectin: a trypsin- resistant molecule that binds cells to the sequence RGD and a trypsin- labile, heparan sulfate-rich PG that binds cells to the COOH-terminal heparin binding domain. Because the cell surface PG binds cells to the interstitial collagens (types I, III, and V) and to fibronectin, but not to basal lamina collagen (type IV) or laminin, we conclude that the cell surface PG is a receptor on epithelial cells specific for interstitial matrix components.  相似文献   

3.
The cell surface proteoglycan fraction isolated by mild trypsin treatment of NMuMG mouse mammary epithelial cells contains largely heparan sulfate, but also 15-24% chondroitin sulfate glycosaminoglycans. We conclude that this fraction contains a unique hybrid proteoglycan bearing both heparan sulfate and chondroitin sulfate glycosaminoglycans because (i) the proteoglycan behaves as a single species by sizing, ion exchange and collagen affinity chromatography, and by isopycnic centrifugation, even in the presence of 8 M urea or 4 M guanidine hydrochloride, (ii) the behavior of the chondroitin sulfate in these separation techniques is affected by heparan sulfate-specific probes and vice versa, and (iii) proteoglycan core protein bearing both heparan sulfate and chondroitin sulfate is recognized by a single monoclonal antibody. Removal of both types of glycosaminoglycan reduces the proteoglycan to a core protein of approximately 53 kDa. The proteoglycan fraction is heterogeneous in size, largely due to a variable number and/or length of the glycosaminoglycan chains. We estimate that one or two chondroitin sulfate chains (modal Mr of 17,000) exist on the proteoglycan for every four heparan sulfate chains (modal Mr of 36,000). Synthesis of these chains is reportedly initiated on an identical trisaccharide that links the chains to the same amino acid residues on the core protein. Therefore, some regulatory information, perhaps residing in the amino acid sequence of the core protein, must determine the type of chain synthesized at any given linkage site. Post-translational addition of these glycosaminoglycans to the protein may provide information affecting its ultimate localization. It is likely that the protein is directed to specific sites on the cell surface because of the ability of the glycosaminoglycans to recognize and bind extracellular components.  相似文献   

4.
《The Journal of cell biology》1987,105(6):3087-3096
The cell surface proteoglycan on normal murine mammary gland (NMuMG) epithelial cells consists of a lipophilic domain, presumably intercalated into the plasma membrane, and an ectodomain that binds via its glycosaminoglycan chains to matrix components, is released intact by proteases and is detected by monoclonal antibody 281-2. The antibody 281-2 also detects a proteoglycan in the culture medium conditioned by NMuMG cells. This immunoactive proteoglycan was purified to homogeneity using DEAE-cellulose chromatography, isopycnic centrifugation, and 281- 2 affinity chromatography. Comparison of the immunoreactive medium proteoglycan with the trypsin-released ectodomain revealed that these proteoglycans are indistinguishable by several criteria as both: (a) contain heparan sulfate and chondroitin sulfate chains; and (b) are similar in hydrodynamic size and buoyant density; (c) have the same size core protein (Mr approximately 53 kD); (d) are nonlipophilic as studied by liposomal intercalation and transfer to silicone-treated paper. Kinetic studies of the release of proteoglycan from the surface of suspended NMuMG cells are interpreted to indicate that the immunoreactive medium proteoglycan is derived directly from the cell surface proteoglycan. Suspension of the cells both augments the release and inhibits the replacement of cell surface proteoglycan. These results indicate that the cell surface proteoglycan of NMuMG cells can be shed by cleavage of its matrix-binding ectodomain from its membrane- associated domain, providing a mechanism by which the epithelial cells can loosen their proteoglycan-mediated attachment to the matrix.  相似文献   

5.
Cultured mouse mammary (NMuMG) cells produce heparan sulfate-rich proteoglycans that are found at the cell surface, in the culture medium, and beneath the monolayer. The cell surface proteoglycan consists of a lipophilic membrane-associated domain and an extracellular domain, or ectodomain, that contains both heparan and chondroitin sulfate chains. During culture, the cells release into the medium a soluble proteoglycan that is indistinguishable from the ectodomain released from the cells by trypsin treatment. This medium ectodomain was isolated, purified, and used as an antigen to prepare an affinity-purified serum antibody from rabbits. The antibody recognizes polypeptide determinants on the core protein of the ectodomain of the cell surface proteoglycan. The reactivity of this antibody was compared with that of a serum antibody (BM-1) directed against the low density basement membrane proteoglycan of the Englebarth-Holm-Swarm tumor (Hassell, J. R., W. C. Leyshon, S. R. Ledbetter, B. Tyree, S. Suzuki, M. Kato, K. Kimata, and H. Kleinman. 1985. J. Biol. Chem. 250:8098-8105). The BM-1 antibody recognized a large, low density heparan sulfate-rich proteoglycan in the cells and in the basal extracellular materials beneath the monolayer where it accumulated in patchy deposits. The affinity-purified anti-ectodomain antibody recognized the cell surface proteoglycan on the cells, where it is seen on apical cell surfaces in subconfluent cultures and in fine filamentous arrays at the basal cell surface in confluent cultures, but detected no proteoglycan in the basal extracellular materials beneath the monolayer. The amino acid composition of the purified medium ectodomain was substantially different from that reported for the basement membrane proteoglycan. Thus, NMuMG cells produce at least two heparan sulfate-rich proteoglycans that contain distinct core proteins, a cell surface proteoglycan, and a basement membrane proteoglycan. In newborn mouse skin, these proteoglycans localize to distinct sites; the basement membrane proteoglycan is seen solely at the dermal-epidermal boundary and the cell surface proteoglycan is seen solely at the surfaces of keratinocytes in the basal, spinous, and granular cell layers. These results suggest that although heparan sulfate-rich proteoglycans may have similar glycosaminoglycan chains, they are sorted by the epithelial cells to different sites on the basis of differences in their core proteins.  相似文献   

6.
Purified NMuMG mouse mammary epithelial cell surface proteoglycan (PG), a membrane-intercalated core protein bearing both heparan sulfate and chondroitin sulfate glycosaminoglycan (GAG) chains, binds to a thrombospondin (TSP) affinity column and is eluted by a salt gradient. Double immunofluorescence microscopy demonstrates extensive co-localization of bound exogenous TSP and cells bearing exposed cell surface PG at their apical surface. The binding, as assayed by both methods, is heparitinase-sensitive, but not chondroitinase-sensitive. Alkali-released heparan sulfate chains bind to a TSP affinity column, similarly to native PG, whereas the chrondroitin sulfate chains do not. Core protein does not bind to TSP. These results indicate that NMuMG cells bind TSP via their surface PG and that the binding is mediated by the heparan sulfate chains.  相似文献   

7.
Transforming growth factor beta (TGF-beta) is a polypeptide growth factor that affects the accumulation of extracellular matrix by many cell types. We have examined the ability of mouse mammary epithelial (NMuMG) cells to respond to TGF-beta and assessed the effect of the growth factor on the expression of their cell surface heparan sulfate/chondroitin sulfate hybrid proteoglycan. NMuMG cells respond maximally to 3 ng/ml TGF-beta and the response is consistent with occupancy of the type III receptor. However, cells that are polarized, as shown by sequestration of the cell surface PG at their basolateral surfaces, must have the growth factor supplied to that site for maximal response. Immunological quantification of proteoglycan core protein on treated cells suggests that the cells have an unchanging number of this proteoglycan at their cell surface. Nonetheless, metabolic labeling with radiosulfate shows a approximately 2.5-fold increase in 35SO4-glycosaminoglycans in this proteoglycan fraction, defined either by its lipophilic, antigenic, or cell surface properties. Kinetic studies indicate that the enhanced radiolabeling is due to augmented synthesis, rather than slower degradation. Analysis of the glycosaminoglycan composition of the proteoglycan shows an increased amount of chondroitin sulfate, suggesting that the increased labeling per cell may be attributed to an augmented synthesis of chondroitin sulfate glycosaminoglycan on the core protein that also bears heparan sulfate, thus altering the proportions of these two glycosaminoglycans on this hybrid proteoglycan. We conclude that TGF-beta may affect NMuMG cell behavior by altering the structure and thus the activity of this proteoglycan.  相似文献   

8.
Mouse mammary epithelial cells, of the normal murine mammary gland (NMuMG) cell line, bear a heparan sulfate-rich proteoglycan (HSPG) on their surfaces. A hybridoma (281-2) secreting a monoclonal antibody that recognizes this HSPG was produced by fusion of SP-2/0 myeloma cells with spleen cells from rats immunized with NMuMG cells. The 281-2 monoclonal antibody is directed against the core protein of the cell surface HSPG, as demonstrated by (a) recognition of the isolated proteoglycan but not its glycosaminoglycan chains, (b) co-localization of 281-2-specific antigen and radioactive cell surface HSPG on gradient polyacrylamide gel electrophoresis and on isopycnic centrifugation, and (c) abolition of immunofluorescent staining of the NMuMG cell surface by the intact, but not the protease-digested ectodomain of the cell surface HSPG. The antibody is specific for cell surface HSPG and does not recognize the HSPG that accumulates extracellularly beneath the basal cell surface. Therefore, the 281-2 antibody may be used to isolate the cell surface HSPG and to explore its distribution in tissues.  相似文献   

9.
Kininogens, the high molecular weight precursor of vasoactive kinins, bind to a wide variety of cells in a specific, reversible, and saturable manner. The cell docking sites have been mapped to domains D3 and D5(H) of kininogens; however, the corresponding cellular acceptor sites are not fully established. To characterize the major cell binding sites for kininogens exposed by the endothelial cell line EA.hy926, we digested intact cells with trypsin and other proteases and found a time- and concentration-dependent loss of (125)I-labeled high molecular weight kininogen (H-kininogen) binding capacity (up to 82%), indicating that proteins are crucially involved in kininogen cell attachment. Cell surface digestion with heparinases similarly reduced kininogen binding capacity (up to 78%), and the combined action of heparinases and trypsin almost eliminated kininogen binding (up to 85%), suggesting that proteoglycans of the heparan sulfate type are intimately involved. Consistently, inhibitors such as p-nitrophenyl-beta-d-xylopyranoside and chlorate interfering with heparan sulfate proteoglycan biosynthesis reduced the total number of kininogen binding sites in a time- and concentration-dependent manner (up to 67%). In vitro binding studies demonstrated that biotinylated H-kininogen binds to heparan sulfate glycosaminoglycans via domains D3 and D5(H) and that the presence of Zn(2+) promotes this association. Cloning and over-expression of the major endothelial heparan sulfate-type proteoglycans syndecan-1, syndecan-2, syndecan-4, and glypican in HEK293t cells significantly increased total heparan sulfate at the cell surface and thus the number of kininogen binding sites (up to 3. 3-fold). This gain in kininogen binding capacity was completely abolished by treating transfected cells with heparinases. We conclude that heparan sulfate proteoglycans on the surface of endothelial cells provide a platform for the local accumulation of kininogens on the vascular lining. This accumulation may allow the circumscribed release of short-lived kinins from their precursor molecules in close proximity to their sites of action.  相似文献   

10.
Heparan sulfate glycosaminoglycan, isolated from the cell surface of nonadhering murine myeloma cells (P3X63-Ag8653), does not bind to plasma fibronectin, but binds partially to collagen type I, as assayed by affinity chromatography with proteins immobilized on cyanogen bromide-activated Sepharose 4B. Identical results were obtained when myeloma heparan sulfate was cochromatographed, on the same fibronectin and collagen columns, with cell surface heparan sulfates collagen columns, with cell surface heparan sulfates from adhering Swiss mouse 3T3 and SV3T3 cells. These latter heparan sulfates do, however, bind to both fibronectin and collagen, as reported earlier (Stamatoglou, S.C., and J.M. Keller, 1981, Biochim. Biophys. Acta., 719:90-97). Cell adhesion assays established that hydrated collagen substrata can support myeloma cell attachment, but fibronectin cannot. Saturation of the heparan sulfate binding sites on the collagen substrata with heparan sulfate or heparin, prior to cell inoculation, abolished the ability to support cell adhesion, whereas chondroitin 4 sulfate, chondroitin 6 sulfate, and hyaluronic acid had no effect.  相似文献   

11.
Biology of cell surface heparan sulfate proteoglycans   总被引:3,自引:0,他引:3  
The central question in cell biology is how cells detect, interact and respond to extracellular matrix. The cell surface molecules, which mediate this recognition, consist of a lipophilic membrane domain and an ectodomain binding matrix materials. One group of this kind of molecules is the cell surface heparan sulfate proteoglycans (HSPG). This review summarizes recent information obtained on the cell surface PG of mouse mammary epithelial cells. The glycosaminoglycan containing ectodomain of this PG binds with high affinity Type I, III and V collagen fibrils and the C-terminal heparin binding domain of fibronectin. The PG is mobile on the cell surface, but can be immobilised by ligand binding. At the same time the PG associates with cytoskeleton and links the epithelial cytoskeleton to extracellular matrix. Thus the PG can mediate the changes in the matrix into changes in cellular behaviour, often seen during the regulation of cell shape, proliferation and differentiation. The cell surface PG is also released from the cell surface by cleaving the matrix-binding ectodomain from the membrane domain. Because of the binding properties of the ectodomain, this shedding may provide a means by which epithelial cells loosen their association with the matrix and with other cells, e.g., during normal epithelial development and the invasion of carcinomas.  相似文献   

12.
Proteoglycan accumulation by thioglycollate-elicited mouse peritoneal macrophages and a panel of murine monocyte-macrophage cell lines has been examined to determine whether these cells express plasma membrane-anchored heparan sulfate proteoglycans. Initially, cells were screened for heparan sulfate and chondroitin sulfate glycosaminoglycans after metabolic labeling with radiosulfate. Chondroitin sulfate is secreted to a variable extent by every cell type examined. In contrast, heparan sulfate is all but absent from immature pre-monocytes and is associated predominantly with the cell layer of mature macrophage-like cells. In the P388D1 cell line, the cell-associated chondroitin sulfate is largely present as a plasma membrane-anchored proteoglycan containing a 55 kD core protein moiety, which appears to be unique. In contrast, the cell-associated heparan sulfate is composed of a proteoglycan fraction and protein-free glycosaminoglycan chains, which accumulate intracellularly. A fraction of the heparan sulfate proteoglycan contains a lipophilic domain and can be released from cells following mild treatment with trypsin, suggesting that it is anchored in the plasma membrane. Isolation of this proteoglycan indicates that it is likely syndecan-4: it is expressed as a heparan sulfate proteoglycan at the cell surface, it is cleaved from the plasma membrane by low concentrations of trypsin, and it consists of a single 37 kD core protein moiety that co-migrates with syndecan-4 isolated from NMuMG mouse mammary epithelial cells. Northern analysis reveals that a panel of macrophage-like cell lines accumulate similar amounts of syndecan-4 mRNA, demonstrating that this proteoglycan is expressed by a variety of mature macrophage-like cells. Syndecan-1 mRNA is present only in a subset of these cells, suggesting that the expression of this heparan sulfate proteoglycan may be more highly regulated by these cells. © 1993 Wiley-Liss, Inc.  相似文献   

13.
Differentiating B lymphocytes undergo changes in cell-cell and cell-matrix adhesion that control their movement through a series of distinct microenvironments. The integral membrane proteoglycan, syndecan, is a candidate for mediating B lymphocyte-matrix interactions because it is expressed on B lymphocytes only at times when they associate with matrix, and because syndecan is known to behave as a matrix receptor on simple epithelia. However, syndecan from B lymphocytes is significantly smaller in molecular mass than syndecan from simple epithelia (85 vs 160 kDa) suggesting that syndecan may have distinct functions on these two cell types. Our study was undertaken to determine if syndecan mediates adhesion of B lineage cells to extracellular matrix. The murine myeloma cell line MPC-11 was used because syndecan is the only major heparan sulfate proteoglycan detected on these cells and because they express a form of syndecan almost identical to that found on normal B lymphocytes. Cell binding assays demonstrate that syndecan binds MPC-11 cells to type I collagen. Binding is inhibited by heparin, by pretreatment of cells with heparitinase or by growth of cells before the assay in chlorate, an inhibitor of sulfation. Solid phase assays show that syndecan purified from MPC-11 cells binds to type I collagen but not type IV collagen, laminin, or fibronectin. The interaction of MPC-11-derived syndecan with type I collagen is of relatively high affinity (Kd app = 143 nM) as measured by affinity coelectrophoresis. However, the 160-kDa form of syndecan isolated from epithelial cells has a greater than fourfold higher affinity for type I collagen (Kd app = 31 nM) than does the MPC-11 syndecan, suggesting that different molecular forms of syndecan have distinct ligand binding properties. These results demonstrate that syndecan can mediate B lymphocyte interactions with matrix and suggest that changes in syndecan expression during B cell differentiation are a mechanism for controlling B cell localization within specific microenvironments.  相似文献   

14.
Metastatic ovarian carcinoma metastasizes by intra-peritoneal, non-hematogenous dissemination. The adhesion of the ovarian carcinoma cells to extracellular matrix components, such as types I and III collagen and cellular fibronectin, is essential for intra-peritoneal dissemination. The purpose of this study was to determine whether cell surface proteoglycans (a class of matrix receptors) are produced by ovarian carcinoma cells, and whether these proteoglycans have a role in the adhesion of ovarian carcinoma cells to types I and III collagen and fibronectin. Proteoglycans were metabolically labeled for biochemical studies. Both phosphatidylinositol-anchored and integral membrane-type cell surface proteoglycans were found to be present on the SK-OV-3 and NIH:OVCAR-3 cell lines. Three proteoglycan populations of differing hydrodynamic size were detected in both SK-OV-3 and NIH:OVCAR-3 cells. Digestions with heparitinase and chondroitinase ABC showed that cell surface proteoglycans of SK-OV-3 cells had higher proportion of chondroitin sulfate proteoglycans (75:25 of chondroitin sulfate:heparan sulfate ratio), while NIH:OVCAR-3 cells had higher proportion of heparan sulfate proteoglycans (10:90 of chondroitin sulfate:heparan sulfate ratio). RT-PCR indicated the synthesis of a unique assortment of syndecans, glypicans, and CD44 by the two cell lines. In adhesion assays performed on matrix-coated titer plates both cell lines adhered to types I and III collagen and cellular fibronectin, and cell adhesion was inhibited by preincubation of the matrix with heparin, heparan sulfate, chondroitin sulfate, dermatan sulfate, or chondroitin glycosaminoglycans. Treatment of the cells with heparitinase, chondroitinase ABC, or methylumbelliferyl xyloside also interfered with adhesion confirming the role of both heparan sulfate and chondroitin sulfate cell surface proteoglycans as matrix receptors on ovarian carcinoma cells.  相似文献   

15.
The type III transforming growth factor-beta (TGF-beta) receptor is a cell surface chondroitin/heparan sulfate proteoglycan that binds various forms of TGF-beta with high affinity and specificity. Here, we have used a genetic approach to determine the requirement for glycosaminoglycan (GAG) chains for normal TGF-beta receptor expression and the role that the receptor proteoglycan core and GAG chains play in TGF-beta binding. Chinese hamster ovary (CHO) cells defective in GAG synthesis express on their surface 110-130-kDa type III receptor proteoglycan cores that can bind normal levels of TGF-beta compared to wild type CHO cells. The affinity of the receptor core for TGF-beta 1 and TGF-beta 2 in CHO cell mutants is similar to that of the TGF-beta receptor proteoglycan forms present in wild type CHO cells or in CHO cell mutants that have been allowed to bypass their metabolic defect and express the wild type proteoglycan phenotype. The binding properties of TGF-beta receptor types I and II in CHO cells and the growth-inhibitory response of CHO cell mutants to TGF-beta are not impaired by the absence of GAG chains in the type III receptor. These results show that the GAG chains are dispensable for type III receptor expression on the cell surface, binding of TGF-beta to the receptor core, and growth inhibitory response of the cells to TGF-beta. The evidence also suggests that the type III receptor may act as a multifunctional proteoglycan able to bind TGF-beta via the receptor core while performing another as yet unidentified function(s) via the GAG chains.  相似文献   

16.
The fate of exogenous glycosaminoglycans in cultures of strongly (RMS 0) and weakly (RMS 8) metastatic rat rhabdomyosarcoma cells was studied. The time course and concentration dependence of binding and internalization of the radiolabeled sulfated glycosaminoglycans were determined. Weakly metastatic cells took up heparin, heparan and dermatan sulfates into their pericellular compartment at a higher rate than the strongly metastatic RMS 0 cells. The RMS 8 cells exhibited about two times more binding sites for these iduronic acid containing glycosaminoglycans, and internalized higher amounts of them than the RMS 0 cells. The uptake of the chondroitin sulfate into the peri- and intracellular compartments of both cell types was about 5-15% of that of the other glycosaminoglycans studied. The specificity of displacement of the pericellular heparin and dermatan sulfate by the unlabeled glycosaminoglycans indicates the involvement of specific structural features of the polysaccharide chains in the interactions of glycosaminoglycans with the surface of rhabdomyosarcoma cells, beside ionic forces due to the polyanionic character of the glycosaminoglycans. Heparin and heparan sulfate degradation products, mainly large oligosaccharides, were recovered from the surface of RMS 0 cells but were absent on the surface of the RMS 8 cells. About 30% of the internalized heparin and heparan sulfate was present in the partially degraded form in both cell types. Oligosaccharides derived from glycosaminoglycans were not released into the medium. The decrease in the amount of iduronic acid containing glycosaminoglycans internalized by the highly invasive cells seems to be correlated with an increased cell-associated degradation and with an apparent loss of glycosaminoglycan binding sites on the cell surface.  相似文献   

17.
[125I]Thrombospondin (TSP) binds to porcine endothelial cells in a specific, saturable and time-dependent fashion and is endocytosed by a receptor-mediated process. The N-terminal heparin-binding domain is necessary for the interaction with the cell surface. Binding and uptake is inhibited by heparin and to a much smaller extent by other vascular glycosaminoglycans. Chemical modification of lysine and arginine residues of TSP, but not treatment of the molecule with neuraminidase, resulted in a pronounced loss of binding at the cell surface. Treatment of cells with heparitinase but not with chondroitin ABC lyase caused inhibition of binding and uptake of TSP. Inhibition of sulfation of proteoglycans on the cell surface by chlorate leads to a dose and time-dependent inhibition of binding and degradation of TSP. In the presence of chlorate, newly synthesized TSP is not incorporated into the cell matrix but mainly released into the culture medium, whereas localization and incorporation of newly synthesized fibronectin is not altered. A cell surface proteoheparan sulfate was identified as TSP binding macromolecule by affinity chromatography. The data emphasize the role of heparan sulfate proteoglycan as a receptor-like molecule for the specific interaction with thrombospondin.  相似文献   

18.
Chondroadherin, a leucine-rich repeat family member, contains a very C-terminal sequence CKFPTKRSKKAGRH359, now shown to bind to heparin with a KD of 13 μm. This observation led us to investigate whether chondroadherin interacts via this C-terminal heparin-binding domain with glycosaminoglycan chains of proteoglycans at the cell surface. Cells were shown to bind this heparin-binding peptide in FACS analysis, and the interaction was shown to be with glycosaminoglycans because it was abolished when sulfation was inhibited by chlorate treatment of the cells. In separate experiments, heparin and heparan sulfate inhibited the peptide interaction in a dose-dependent manner. Using a human chondrosarcoma and a murine osteoblast cell line, heparan sulfate proteoglycans were identified as the cell surface receptors involved in the binding. Different binding syndecans were identified in the two different cell lines, indicating that the same protein core of a proteoglycan may have structural and functional differences in the attached heparan sulfate chains. Upon binding to coated peptide, cells spread, demonstrating engagement of the cytoskeleton, but no focal adhesion complex was formed. The number of cells adhering via their β1 integrin receptor to collagen type II or chondroadherin was profoundly and rapidly enhanced by the addition of the heparin-binding peptide. The peptide added to the cells caused ERK phosphorylation, showing that it triggered intracellular signaling. The results show that heparan sulfate chains differ between various members of the proteoglycan families on a given cell, but also differ between the same proteoglycan on different cells with a potential for differential regulation of cellular activities.  相似文献   

19.
Interactions of basement membrane components   总被引:23,自引:0,他引:23  
The binding of laminin, type IV collagen, and heparan sulfate proteoglycan to each other was assessed. Laminin binds preferentially to native type IV (basement membrane) collagen over other collagens. A fragment of laminin (Mr 600 000) containing the three short chains (Mr 200 000) but lacking the long chain (Mr 400 000) showed the same affinity for type IV collagen as the intact protein. The heparan sulfate proteoglycan binds well to laminin and to type IV collagen. These studies show that laminin, type IV collagen and heparan sulfate proteoglycan interact with each other. Such interactions in situ may determine the structure of basement membranes.  相似文献   

20.
Wang Z  Götte M  Bernfield M  Reizes O 《Biochemistry》2005,44(37):12355-12361
Syndecan-1 is a developmentally regulated cell surface heparan sulfate proteoglycan (HSPG). It functions as a coreceptor for a variety of soluble and insoluble ligands and is implicated in several biological processes, including differentiation, cell migration, morphogenesis, and recently feeding behavior. The extracellular domain of syndecan-1 is proteolytically cleaved at a juxtamembrane site by tissue inhibitor of metalloprotease-3 (TIMP-3)-sensitive metalloproteinases in response to a variety of physiological stimulators and stress in a process known as shedding. Shedding converts syndecan-1 from a membrane-bound coreceptor into a soluble effector capable of binding the same ligands. We found that replacing syndecan-1 juxtamembrane amino acid residues A243-S-Q-S-L247 with human CD4 amino acid residues can completely block PMA-induced syndecan-1 ectodomain shedding. Furthermore, using liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS), we identified the proteolytic cleavage site of syndecan-1 as amino acids A243 and S244, generated by constitutive and PMA-induced shedding from murine NMuMG cells. Finally, we show that basal cleavage of syndecan-1 utilizes the same in vivo site as the in vitro site. Indeed, as predicted, transgenic mice expressing the syndecan-1/CD4 cDNA do not shed the syndecan-1 ectodomain in vivo. These results suggest that the same cleavage site is utilized for basal syndecan-1 ectodomain shedding both in vitro from NMuMG and CHO cells and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号