共查询到20条相似文献,搜索用时 0 毫秒
1.
Heparan sulfate proteoglycans from mouse mammary epithelial cells. A putative membrane proteoglycan associates quantitatively with lipid vesicles 总被引:25,自引:0,他引:25
Mouse mammary epithelial (NMuMG) cells produce both cellular and extracellular heparan sulfate-rich proteoglycans. A cellular proteoglycan, but no extracellular proteoglycans, associates quantitatively and vectorially with lipid vesicles, as assessed by column chromatography and centrifugation. This lipophilic cellular proteoglycan is extracted as an aggregate when cells are treated with 4 M guanidine HCl, but is extracted as a single component in the presence of detergent, suggesting that it aggregates with cellular lipid. An association with lipid is confirmed by intercalation of the proteoglycan into the bilayer of lipid vesicles. Formation of lipid vesicles in the presence of the proteoglycan causes the proteoglycan to have the chromatographic and sedimentation behavior of the vesicles while destruction of the vesicles with detergent nullifies this effect. The proteoglycan is intercalated nullifies this effect. The proteoglycan is intercalated into the vesicles with its glycosaminoglycan-containing domain exposed to the exterior since mild trypsin treatment quantitatively removes this portion of the proteoglycan from the vesicle. After cleavage from the vesicle, the released proteoglycan chromatographs with an apparent molecular size similar to that of the whole proteoglycan, but no longer aggregates with lipid. Thus, trypsin removes a lipophilic domain which is responsible for its interaction with lipid and presumably anchors the proteoglycan in cellular membranes. 相似文献
2.
Heparan sulfate proteoglycans from mouse mammary epithelial cells. Basal extracellular proteoglycan binds specifically to native type I collagen fibrils 总被引:16,自引:0,他引:16
Mouse mammary epithelial cells (NMuMG cells) deposit at their basal surfaces an extracellular heparan sulfate-rich proteoglycan that binds to type I collagen. The binding of the purified proteoglycan to collagen was studied by (i) a solid phase assay, (ii) a suspension assay using preformed collagen fibrils, and (iii) a collagen fibril affinity column. The binding interaction occurs at physiological pH and ionic strength and can be inhibited only by salt concentrations that greatly exceed those found physiologically. Binding requires the intact proteoglycan since the protein-free glycosaminoglycan chains will not bind under the conditions of these assays. However, binding is mediated through the heparan sulfate chains as it can be inhibited by block-sulfated polysaccharides, including heparin. Binding requires native collagen structure which may be optimal when the collagen is in a fibrillar configuration. Binding sites on collagen fibrils are saturable, high affinity (Kd approximately 10(-10) M), and selective for heparin-like glycosaminoglycans. Because a culture substratum of type I collagen fibrils causes NMuMG cells to accumulate heparan sulfate proteoglycan into a basal lamina-like layer, binding of heparan sulfate proteoglycans to type I collagen may lead to the formation of a basal lamina and may link the basal lamina to the connective tissue matrix, an association found in basement membranes. 相似文献
3.
Heparan sulfate proteoglycans from mouse mammary epithelial cells: localization on the cell surface with a monoclonal antibody 总被引:15,自引:13,他引:15
下载免费PDF全文

Mouse mammary epithelial cells, of the normal murine mammary gland (NMuMG) cell line, bear a heparan sulfate-rich proteoglycan (HSPG) on their surfaces. A hybridoma (281-2) secreting a monoclonal antibody that recognizes this HSPG was produced by fusion of SP-2/0 myeloma cells with spleen cells from rats immunized with NMuMG cells. The 281-2 monoclonal antibody is directed against the core protein of the cell surface HSPG, as demonstrated by (a) recognition of the isolated proteoglycan but not its glycosaminoglycan chains, (b) co-localization of 281-2-specific antigen and radioactive cell surface HSPG on gradient polyacrylamide gel electrophoresis and on isopycnic centrifugation, and (c) abolition of immunofluorescent staining of the NMuMG cell surface by the intact, but not the protease-digested ectodomain of the cell surface HSPG. The antibody is specific for cell surface HSPG and does not recognize the HSPG that accumulates extracellularly beneath the basal cell surface. Therefore, the 281-2 antibody may be used to isolate the cell surface HSPG and to explore its distribution in tissues. 相似文献
4.
Heparan sulfate-chondroitin sulfate hybrid proteoglycan of the cell surface and basement membrane of mouse mammary epithelial cells 总被引:13,自引:0,他引:13
Chondroitin sulfate represents approximately 15% of the 35SO4-labeled glycosaminoglycans carried by the proteoglycans of the cell surface and of the basolateral secretions of normal mouse mammary epithelial cells in culture. Evidence is provided that these chondroitin sulfate-carrying proteoglycans are hybrid proteoglycans, carrying both chondroitin sulfate and heparan sulfate chains. Complete N-desulfation but limited O-desulfation, by treatment with dimethyl sulfoxide, of the proteoglycans decreased the anionic charge of the chondroitin sulfate-carrying proteoglycans to a greater extent than it decreased the charge of their constituent chondroitin sulfate chains. Partial depolymerization of the heparan sulfate residues of the proteoglycans with nitrous acid or with heparin lyase also reduced the effective molecular radius of the chondroitin sulfate-carrying proteoglycans. The effect of heparin lyase on the chondroitin sulfate-carrying proteoglycans was prevented by treating the proteoglycan fractions with dimethyl sulfoxide, while the effect of nitrous acid on the dimethyl sulfoxide-treated proteoglycans was prevented by acetylation. This occurrence of heparan sulfate-chondroitin sulfate hybrid proteoglycans suggests that the substitution of core proteins by heparan sulfate or chondroitin sulfate chains may not solely be determined by the specific routing of these proteins through distinct chondroitin sulfate and heparan sulfate synthesizing mechanisms. Moreover, regional and temporal changes in pericellular glycosaminoglycan compositions might be due to variable postsynthetic modification of a single gene product. 相似文献
5.
The cell surface proteoglycan from mouse mammary epithelial cells bears chondroitin sulfate and heparan sulfate glycosaminoglycans 总被引:25,自引:0,他引:25
A Rapraeger M Jalkanen E Endo J Koda M Bernfield 《The Journal of biological chemistry》1985,260(20):11046-11052
The cell surface proteoglycan fraction isolated by mild trypsin treatment of NMuMG mouse mammary epithelial cells contains largely heparan sulfate, but also 15-24% chondroitin sulfate glycosaminoglycans. We conclude that this fraction contains a unique hybrid proteoglycan bearing both heparan sulfate and chondroitin sulfate glycosaminoglycans because (i) the proteoglycan behaves as a single species by sizing, ion exchange and collagen affinity chromatography, and by isopycnic centrifugation, even in the presence of 8 M urea or 4 M guanidine hydrochloride, (ii) the behavior of the chondroitin sulfate in these separation techniques is affected by heparan sulfate-specific probes and vice versa, and (iii) proteoglycan core protein bearing both heparan sulfate and chondroitin sulfate is recognized by a single monoclonal antibody. Removal of both types of glycosaminoglycan reduces the proteoglycan to a core protein of approximately 53 kDa. The proteoglycan fraction is heterogeneous in size, largely due to a variable number and/or length of the glycosaminoglycan chains. We estimate that one or two chondroitin sulfate chains (modal Mr of 17,000) exist on the proteoglycan for every four heparan sulfate chains (modal Mr of 36,000). Synthesis of these chains is reportedly initiated on an identical trisaccharide that links the chains to the same amino acid residues on the core protein. Therefore, some regulatory information, perhaps residing in the amino acid sequence of the core protein, must determine the type of chain synthesized at any given linkage site. Post-translational addition of these glycosaminoglycans to the protein may provide information affecting its ultimate localization. It is likely that the protein is directed to specific sites on the cell surface because of the ability of the glycosaminoglycans to recognize and bind extracellular components. 相似文献
6.
《Matrix biology》2014
How various macromolecules are exchanged between cells and how they gain entry into recipient cells are fundamental questions in cell biology with important implications e.g. non-viral drug delivery, infectious disease, metabolic disorders, and cancer. The role of heparan sulfate proteoglycan (HSPG) as a cell-surface receptor of diverse macromolecular cargo has recently been manifested. Exosomes, cell penetrating peptides, polycation–nucleic acid complexes, viruses, lipoproteins, growth factors and morphogens among other ligands enter cells through HSPG-mediated endocytosis. Key questions that partially have been unraveled over recent years include the respective roles of HSPG core protein and HS chain structure specificity for macromolecular cargo endocytosis, the down-stream intracellular signaling events involved in HSPG-dependent membrane invagination and vesicle formation, and the biological significance of the HSPG transport pathway. Here, we discuss the intriguing role of HSPGs as a major entry pathway of macromolecules in mammalian cells with emphasis on recent in vitro and in vivo data that provide compelling evidence of HSPG as an autonomous endocytosis receptor. 相似文献
7.
Heparan sulfate proteoglycan synthesis and metabolism by mouse uterine epithelial cells cultured in vitro 总被引:3,自引:0,他引:3
J P Tang J Julian S R Glasser D D Carson 《The Journal of biological chemistry》1987,262(26):12832-12842
Characterization and metabolism of heparan sulfate glycosaminoglycans and proteoglycans (HSPGs) synthesized by primary cultures of mouse uterine epithelial cells are reported. HSPGs were detected in both the medium and in the cell-associated fraction, whereas glycosaminoglycans containing little or no protein (free glycosaminoglycans) were found primarily in the cell-associated fraction. The cell-associated HSPGs were relatively large (Kav = 0.1 on Superose 12), had a buoyant density in cesium chloride gradients of 1.45-1.55 g/ml, and contained heparan sulfate chains that fell into two size classes, exhibiting Kav values on Superose 12 of 0.2-0.5 and 0.7-0.8, respectively. The free glycosaminoglycan chains displayed a Kav on Superose 12 of 0.6-0.7. The secreted HSPGs were smaller (median Kav on Superose 12 of 0.28) than the cell-associated HSPGs. More than 90% of the cell-associated HSPGs contained hydrophobic portions, as evidenced by their ability to bind to octyl-Sepharose. In contrast, only 10-15% of the secreted HSPGs bound to octyl-Sepharose. HSPGs were detected at both apical and basal cell surfaces/extracellular matrices by indirect immunofluorescence in vitro and in utero and by accessibility to external proteases in vitro. It was estimated that 60-70% of the total cell-associated HSPGs were exposed at the cell surface. The HSPGs released from the cell surface by proteases were slightly smaller than the intact HSPGs and lacked the hydrophobic properties of the latter. These observations suggested that the cell surface HSPGs contain a small, hydrophobic domain that functions in the attachment of HSPGs to cells. The free glycosaminoglycans appeared to be primarily intracellular and were not secreted. The cell-associated HSPGs turned over rapidly (t1/2 = 1.5 h) and appeared to be the precursors to the free glycosaminoglycans. Metabolic turnover of the free glycosaminoglycan pool was a relatively slow process (t1/2 = 10-12 h).(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
8.
Cell surface proteoglycan associates with the cytoskeleton at the basolateral cell surface of mouse mammary epithelial cells 总被引:3,自引:17,他引:3
下载免费PDF全文

《The Journal of cell biology》1986,103(6):2683-2696
The cell surface proteoglycan on normal murine mammary gland mouse mammary epithelial cells consists of an ectodomain bearing heparan and chondroitin sulfate chains and a lipophilic domain that is presumed to be intercalated into the plasma membrane. Because the ectodomain binds to matrix components produced by stromal cells with specificity and high affinity, we have proposed that the cell surface proteoglycan is a matrix receptor that binds epithelial cells to their underlying basement membrane. We now show that the proteoglycan surrounds cells grown in subconfluent or newly confluent monolayers, but becomes restricted to the basolateral surface of cells that have been confluent for a week or more; Triton X-100 extraction distinguishes three fractions of cell surface proteoglycan: a fraction released by detergent and presumed to be free in the membrane, a fraction bound via a salt-labile linkage, and a nonextractable fraction; the latter two fractions co-localize with actin filament bundles at the basal cell surface; and when proteoglycans at the apical cell surface are cross- linked by antibodies, they initially assimilate into detergent- resistant, immobile clusters that are subsequently aggregated by the cytoskeleton. These findings suggest that the proteoglycan, initially present on the entire surface and free in the plane of the membrane, becomes sequestered at the basolateral cell surface and bound to the actin-rich cytoskeleton as the cells become polarized in vitro. Binding of matrix components may cross-link proteoglycans at the basal cell surface and cause them to associate with the actin cytoskeleton, providing a mechanism by which the cell surface proteoglycan acts as a matrix receptor to stabilize the morphology of epithelial sheets. 相似文献
9.
Belting M 《Trends in biochemical sciences》2003,28(3):145-151
The plasma membrane defines the border of living cells and provides a barrier to extracellular components. Advances in molecular biology have resulted in the development of novel therapeutic strategies (e.g. gene therapy and cellular protein delivery) which rely on the entry of charged macromolecules into the intracellular compartment. Recent reports demonstrate an intriguing role for heparan sulfate proteoglycans in cellular internalization of viruses, basic peptides and polycation-nucleic-acid complexes and the possibility that they have important implications for gene transfer and protein delivery to mammalian cells. This review focuses on heparan sulfate proteoglycan as a plasma membrane carrier. 相似文献
10.
Cell surface proteoglycan of mammary epithelial cells. Protease releases a heparan sulfate-rich ectodomain from a putative membrane-anchored domain 总被引:29,自引:0,他引:29
Heparan sulfate-rich proteoglycan is present on the surface of NMuMG mouse mammary epithelial cells. All of this cell surface fraction is lipophilic, assessed by intercalation into lipid vesicles, and requires proteolytic cleavage to be released from the cell surface. No proteoglycan is competitively displaced by heparin. The cell surface lipophilic proteoglycan constitutes 52-55% of the total cellular proteoglycan while the remaining proteoglycan is apparently intracellular, comprising a nonlipophilic fraction (35%) and a small (10-13%) lipophilic fraction. Trypsin or chymotrypsin cleaves a labile site between the region of the cell surface proteoglycan bearing the glycosaminoglycan chains and the cell-associated portion of the core protein, producing a proteoglycan that is nonlipophilic, has an increased bouyant density, and is smaller than the parent molecule. We refer to this proteoglycan as the ectodomain of the cell surface proteoglycan. The correlation between its cell surface location and lipophilic properties suggests that a hydrophobic domain of its core protein may anchor this proteoglycan in the plasma membrane. In vivo, the proteoglycan may be cleaved from this putative anchor, generating nonlipophilic proteoglycan present as a matrix component, or it may remain a membrane component, anchoring the cell directly to the extracellular matrix. 相似文献
11.
Cell surface heparan sulfate proteoglycans. 总被引:28,自引:0,他引:28
12.
Cell-surface heparan sulfate and heparan-sulfate/chondroitin-sulfate hybrid proteoglycans of mouse mammary epithelial cells 总被引:2,自引:0,他引:2
The hydrophobic cell-surface proteoglycans of mouse mammary epithelial cells were purified by gel filtration, ion-exchange chromatography, and liposome incorporation. The size of the proteoglycans appeared to be directly proportional to the size of their heparan-sulfate chains, larger proteoglycans yielding larger chains. The chondroitin sulfate chains, in contrast, showed no size heterogeneity. Digestion of 125I-labeled proteoglycans with heparitin-sulfate lyase and chondroitin ABC lyase yielded core proteins of approximately 93 kDa, approximately 85 kDa and approximately 38 kDa. Comparison with single enzyme digestions identified the 93-kDa and 85-kDa cores as components of hybrid proteoglycans that carried both heparan-sulfate and chondroitin-sulfate chains. Immunoblotting indicated that the 93-kDa and 85-kDa cores shared the epitope defined by monoclonal antibody 281-2. The 38-kDa core, in contrast, carried only heparan-sulfate chains and lacked the 281-2 epitope. Preparations enriched in heparan sulfate or in heparan-sulfate/chondroitin-sulfate hybrid proteoglycans were obtained by N-desulfation and ion-exchange chromatography. Hybrid proteoglycans accounting for the bulk of the chondroitin-sulfate and nearly half of the heparan-sulfate residues of the proteoglycans showed a similar polydispersity of heparan-sulfate chain sizes as found in proteoglycans that carried only, or predominantly, heparan-sulfate chains. These hybrids contained heparan-sulfate and chondroitin-sulfate chains in similar molar amounts. Analysis of 125I-labeled proteoglycans suggested that typical hybrid proteoglycans were composed of a 85-kDa core protein that carries a single chondroitin-sulfate chain and a single heparan-sulfate chain of variable length. A minority of hybrids seemed characterized by the variant, but possibly structurally related, 93-kDa core protein. The other half of the hydrophobic proteoglycans were composed of the 38-kDa core and carried only heparan-sulfate chains. The significance of the co-existence of hybrid and heparan-sulfate proteoglycans at the cell surface and possible relationships between the proteoglycans need to be further clarified. 相似文献
13.
V Lories J J Cassiman H Van den Berghe G David 《The Journal of biological chemistry》1992,267(2):1116-1122
Treating the liposome-intercalatable heparan sulfate proteoglycans from human lung fibroblasts and mammary epithelial cells with heparitinase and chondroitinase ABC revealed different core protein patterns in the two cell types. Lung fibroblasts expressed heparan sulfate proteoglycans with core proteins of approximately 35, 48/90 (fibroglycan), 64 (glypican), and 125 kDa and traces of a hybrid proteoglycan which carried both heparan sulfate and chondroitin sulfate chains. The mammary epithelial cells, in contrast, expressed large amounts of a hybrid proteoglycan and heparan sulfate proteoglycans with core proteins of approximately 35 and 64 kDa, but the fibroglycan and 125-kDa cores were not detectable in these cells. Phosphatidylinositol-specific phospholipase C and monoclonal antibody (mAb) S1 identified the 64-kDa core proteins as glypican, whereas mAb 2E9, which also reacted with proteoglycan from mouse mammary epithelial cells, tentatively identified the hybrid proteoglycans as syndecan. The expression of syndecan in lung fibroblasts was confirmed by amplifying syndecan cDNA sequences from fibroblastic mRNA extracts and demonstrating the cross-reactivity of the encoded recombinant core protein with mAb 2E9. Northern blots failed to detect a message for fibroglycan in the mammary epithelial cells and in several other epithelial cell lines tested, while confirming the expression of both glypican and syndecan in these cells. Confluent fibroblasts expressed higher levels of syndecan mRNA than exponentially growing fibroblasts, but these levels remained lower than observed in epithelial cells. These data formally identify one of the cell surface proteoglycans of human lung fibroblasts as syndecan and indicate that the expression of the cell surface proteoglycans varies in different cell types and under different culture conditions. 相似文献
14.
Heparan sulfate proteoglycans are ligands for receptor protein tyrosine phosphatase sigma 总被引:5,自引:0,他引:5
下载免费PDF全文

RPTPsigma is a cell adhesion molecule-like receptor protein tyrosine phosphatase involved in nervous system development. Its avian orthologue, known as cPTPsigma or CRYPalpha, promotes intraretinal axon growth and controls the morphology of growth cones. The molecular mechanisms underlying the functions of cPTPsigma are still to be determined, since neither its physiological ligand(s) nor its substrates have been described. Nevertheless, a major class of ligand(s) is present in the retinal basal lamina and glial endfeet, the potent native growth substrate for retinal axons. We demonstrate here that cPTPsigma is a heparin-binding protein and that its basal lamina ligands include the heparan sulfate proteoglycans (HSPGs) agrin and collagen XVIII. These molecules interact with high affinity with cPTPsigma in vitro, and this binding is totally dependent upon their heparan sulfate chains. Using molecular modelling and site-directed mutagenesis, a binding site for heparin and heparan sulfate was identified in the first immunoglobulin-like domain of cPTPsigma. HSPGs are therefore a novel class of heterotypic ligand for cPTPsigma, suggesting that cPTPsigma signaling in axons and growth cones is directly responsive to matrix-associated cues. 相似文献
15.
Transformed mouse mammary epithelial cells synthesize undersulfated basement membrane proteoglycan 总被引:8,自引:0,他引:8
Proteoglycans deposited in the basal lamina of [14C] glucosamine-labeled normal and [3H]glucosamine-labeled transformed mouse mammary epithelial cells grown on type I-collagen gels, were extracted in 4 M guanidinium chloride and cofractionated over Sepharose CL 4B. The heparan sulfate chains carried by these proteoglycans were isolated by treatment with alkaline borohydride, protease K, chondroitinase ABC, and cetylpyridinium chloride precipitation. Heparan sulfate isolated from transformed cell cultures consistently eluted from DEAE-cellulose at lower salt concentrations and was of smaller apparent Mr when chromatographed over Sepharose CL 6B, than heparan sulfate of normal cell cultures. Experiments using doubly labeled cultures ([3H]glucosamine and [35S]sulfate) demonstrated an approximately 30% reduction in the sulfate/hexosamine ratio in heparan sulfate derived from transformed cultures. Both N- and O-sulfate were decreased. The decreased Mr and decreased sulfation of heparan sulfate upon transformation appear sufficient to explain the altered heparan sulfate/chondroitin sulfate ratios previously observed in these cells. These changes may have implications for the molecular interactions in which these proteoglycans are normally engaged during basal lamina assembly, and cause the poor basal lamina formation displayed by these transformed cells. 相似文献
16.
Heparan sulfate proteoglycans are essential for FGF receptor signaling during Drosophila embryonic development. 总被引:4,自引:0,他引:4
The Drosophila sugarless and sulfateless genes encode enzymes required for the biosynthesis of heparan sulfate glycosaminoglycans. Biochemical studies have shown that heparan sulfate glycosaminoglycans are involved in signaling by fibroblast growth factor receptors, but evidence for such a requirement in an intact organism has not been available. We now demonstrate that sugarless and sulfateless mutant embryos have phenotypes similar to those lacking the functions of two Drosophila fibroblast growth factor receptors, Heartless and Breathless. Moreover, both Heartless- and Breathless-dependent MAPK activation is significantly reduced in embryos which fail to synthesize heparan sulfate glycosaminoglycans. Consistent with an involvement of Sulfateless and Sugarless in fibroblast growth factor receptor signaling, a constitutively activated form of Heartless partially rescues sugarless and sulfateless mutants, and dosage-sensitive interactions occur between heartless and the heparan sulfate glycosaminoglycan biosynthetic enzyme genes. We also find that overexpression of Branchless, the Breathless ligand, can partially overcome the requirement of Sugarless and Sulfateless for Breathless activity. These results provide the first genetic evidence that heparan sulfate glycosaminoglycans are essential for fibroblast growth factor receptor signaling in a well defined developmental context, and support a model in which heparan sulfate glycosaminoglycans facilitate fibroblast growth factor ligand and/or ligand-receptor oligomerization. 相似文献
17.
Mouse mammary epithelial cells produce basement membrane and cell surface heparan sulfate proteoglycans containing distinct core proteins 总被引:4,自引:3,他引:4
下载免费PDF全文

Cultured mouse mammary (NMuMG) cells produce heparan sulfate-rich proteoglycans that are found at the cell surface, in the culture medium, and beneath the monolayer. The cell surface proteoglycan consists of a lipophilic membrane-associated domain and an extracellular domain, or ectodomain, that contains both heparan and chondroitin sulfate chains. During culture, the cells release into the medium a soluble proteoglycan that is indistinguishable from the ectodomain released from the cells by trypsin treatment. This medium ectodomain was isolated, purified, and used as an antigen to prepare an affinity-purified serum antibody from rabbits. The antibody recognizes polypeptide determinants on the core protein of the ectodomain of the cell surface proteoglycan. The reactivity of this antibody was compared with that of a serum antibody (BM-1) directed against the low density basement membrane proteoglycan of the Englebarth-Holm-Swarm tumor (Hassell, J. R., W. C. Leyshon, S. R. Ledbetter, B. Tyree, S. Suzuki, M. Kato, K. Kimata, and H. Kleinman. 1985. J. Biol. Chem. 250:8098-8105). The BM-1 antibody recognized a large, low density heparan sulfate-rich proteoglycan in the cells and in the basal extracellular materials beneath the monolayer where it accumulated in patchy deposits. The affinity-purified anti-ectodomain antibody recognized the cell surface proteoglycan on the cells, where it is seen on apical cell surfaces in subconfluent cultures and in fine filamentous arrays at the basal cell surface in confluent cultures, but detected no proteoglycan in the basal extracellular materials beneath the monolayer. The amino acid composition of the purified medium ectodomain was substantially different from that reported for the basement membrane proteoglycan. Thus, NMuMG cells produce at least two heparan sulfate-rich proteoglycans that contain distinct core proteins, a cell surface proteoglycan, and a basement membrane proteoglycan. In newborn mouse skin, these proteoglycans localize to distinct sites; the basement membrane proteoglycan is seen solely at the dermal-epidermal boundary and the cell surface proteoglycan is seen solely at the surfaces of keratinocytes in the basal, spinous, and granular cell layers. These results suggest that although heparan sulfate-rich proteoglycans may have similar glycosaminoglycan chains, they are sorted by the epithelial cells to different sites on the basis of differences in their core proteins. 相似文献
18.
Heparan sulfate proteoglycan is present in basement membrane as a double-tracked structure 总被引:1,自引:0,他引:1
Basement membranes contain 4.5-nm wide sets of two parallel lines, along which short prongs called "spikes" occur at regular intervals. The nature of this structure, referred to as "double tracks," was investigated in Lowicryl sections of mouse kidney and rat Reichert's membrane immunolabeled for basement membrane components using secondary antibodies conjugated to 5-nm gold particles. When the mouse glomerular basement membrane and rat Reichert's membrane were exposed to antibodies directed to the core protein of heparan sulfate proteoglycan, 95% or more of the gold particles were over double tracks, whereas after exposure of Reichert's membrane to antisera against laminin, collagen IV, or entactin, labeling of the double tracks remained at the random level. When heparan sulfate proteoglycan was incubated in Tris buffer, pH 7.4, at 35 degrees C for 1 hr, a precipitate resulted which, on electron microscopic examination, was found to consist of 5- to 6-nm wide sets of two parallel lines along which densities were observed. Immunolabeling confirmed the presence of the proteoglycan's core protein in the sets. Since double tracks were closely similar to this structure and were labeled with the same antibodies, they were likely to be also composed of heparan sulfate proteoglycan. 相似文献
19.
HeLa cells, labeled with Na235SO4, release into the culture medium 35SO4 bound to plasma membrane vesicles next to 35SO4-glycoproteins and free 35SO4. Plasma membrane vesicles, experimentally produced by treatment with formaldehyde, contain 35SO4 and their surface can be stained with high iron diamine. Scanning of chromatograms of the trypsinate from labeled cells demonstrates radioactivity on the spot of heparan sulfate. It is concluded that HeLa cells synthesize heparan sulfate, which is incorporated at the plasma membrane and released by shedding of small vesicles. 相似文献
20.
Heparan sulfate proteoglycans as key regulators of the mesenchymal niche of hematopoietic stem cells
The complex microenvironment that surrounds hematopoietic stem cells (HSCs) in the bone marrow niche involves different coordinated signaling pathways. The stem cells establish permanent interactions with distinct cell types such as mesenchymal stromal cells, osteoblasts, osteoclasts or endothelial cells and with secreted regulators such as growth factors, cytokines, chemokines and their receptors. These interactions are mediated through adhesion to extracellular matrix compounds also. All these signaling pathways are important for stem cell fates such as self-renewal, proliferation or differentiation, homing and mobilization, as well as for remodeling of the niche. Among these complex molecular cues, this review focuses on heparan sulfate (HS) structures and functions and on the role of enzymes involved in their biosynthesis and turnover. HS associated to core protein, constitute the superfamily of heparan sulfate proteoglycans (HSPGs) present on the cell surface and in the extracellular matrix of all tissues. The key regulatory effects of major medullar HSPGs are described, focusing on their roles in the interactions between hematopoietic stem cells and their endosteal niche, and on their ability to interact with Heparin Binding Proteins (HBPs). Finally, according to the relevance of HS moieties effects on this complex medullar niche, we describe recent data that identify HS mimetics or sulfated HS signatures as new glycanic tools and targets, respectively, for hematopoietic and mesenchymal stem cell based therapeutic applications. 相似文献