首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Homologous and nonhomologous recombination in monkey cells.   总被引:52,自引:23,他引:29       下载免费PDF全文
Though recombinational events are important for the proper functioning of most cells, little is known about the frequency and mechanisms of recombination in mammalian cells. We have used simian virus 40 (SV40)-pBR322 hybrid plasmids constructed in vitro as substrates to detect and quantitate intramolecular homologous and nonhomologous recombination events in cultured monkey cells. Excision of wild-type or defective SV40 DNAs by recombination from these plasmids was scored by the viral plaque assay, in either the absence or the presence of DNA from a temperature-sensitive helper virus. Several independent products of homologous and nonhomologous recombination have been isolated and characterized at the DNA sequence level. We find that neither DNA replication of the recombination substrate nor SV40 large T antigen is essential for either homologous or nonhomologous recombination involving viral or pBR322 sequences.  相似文献   

2.
We have used DNA-mediated gene transfer to study homologous recombination in cultured mammalian cells. A family of plasmids with insertion and deletion mutations in the coding region of the herpes simplex type 1 thymidine kinase (tk) gene served as substrates for DNA-mediated gene transfer into mouse Ltk- cells by the calcium phosphate technique. Intermolecular recombination events were scored by the number of colonies in hypoxanthine-aminopterin-thymidine selective medium. We used supercoiled plasmids containing tk gene fragments to demonstrate that an overlap of 62 base pairs (bp) of homologous DNA was sufficient for intermolecular recombination. Addition of 598 bp of flanking homology separated from the region of recombination by a double-strand gap, deletion, or insertion of heterologous DNA increased the frequency of recombination by 300-, 20-, or 40-fold, respectively. Linearizing one of the mutant plasmids in a pair before cotransfer by cutting in the area of homology flanking a deletion of 104 bp or an insertion of less than 24 bp increased the frequency of recombination relative to that with uncut plasmids. However, cutting an insertion mutant of greater than or equal to 24 bp in the same manner did not increase the frequency. We show how our data are consistent with models that postulate at least two phases in the recombination process: homologous pairing and heteroduplex formation.  相似文献   

3.
Intermolecular homologous recombination in plants.   总被引:16,自引:6,他引:10       下载免费PDF全文
To study DNA topological requirements for homologous recombination in plants, we have constructed pairs of plasmids that contain nonoverlapping deletions in the neomycin phosphotransferase gene [APH(3')II], which, when intact, confers kanamycin resistance to plant cells. Protoplasts isolated from Nicotiana tabacum were cotransformed with complementary pairs of plasmids containing these truncated gene constructs. Homologous recombination or gene conversion within the homologous sequences (6 to 405 base pairs) of the protein-coding region of the truncated genes led to the restoration of the functional APH(3')II gene, rendering these cells resistant to kanamycin. Circular plasmid DNAs recombined very inefficiently, independent of the length of the homologous region. A double-strand break in one molecule only slightly increased the recombination frequency. The most favorable substrates for recombination were linear molecules. In this case, the recombination frequency was positively correlated with the length of the homologous regions. The recombination frequency of plasmids linearized at sites proximal to the deletion-homology junction was significantly higher than when linearization was distal to the homologous region. Vector homology within cotransformed plasmid sequences also increased the recombination frequency.  相似文献   

4.
Using an assay for recombination that measures deletion of a beta-galactosidase gene positioned between two directly repeated 350-bp sequences in plasmids transiently maintained in COS cells, we have found that replication from a simian virus 40 origin produces a high frequency of nonhomologous recombination. In contrast, plasmids replicating from a herpesvirus origin (oris) in COS cells superinfected with herpes simplex virus type 1 (HSV-1) show high levels of homologous recombination between the repeats and an enhanced recombinogenicity of the HSV-1 a sequence that is not seen during simian virus 40 replication. When the same assay was used to study recombination between 120- to 150-bp repeats in uninfected Vero cells, the level of recombination was extremely low or undetectable (< 0.03%), consistent with the fact that these repeats are smaller than the minimal efficient processing sequence for homologous recombination in mammalian cells. Recombination between these short repeats was easily measurable (0.5 to 0.8%) following HSV-1 infection, suggesting that there is an alteration of the recombination machinery. The frequency of recombination between repeats of the Uc-DR1 region, previously identified as the only segment of the HSV-1 a sequence indispensable for enhanced a-sequence recombination, was not significantly higher than that measured for other short sequences.  相似文献   

5.
Fu X  Wang H  Zhang X 《Journal of virology》2002,76(12):5866-5874
Homologous recombination is a prominent feature of herpes simplex virus (HSV) type 1 DNA replication. This has been demonstrated and traditionally studied in experimental settings where repeated sequences are present or are being introduced into a single molecule for subsequent genome isomerization. In the present study, we have designed a pair of unique HSV amplicon plasmids to examine in detail intermolecular homologous recombination (IM-HR) between these amplicon plasmids during HSV-mediated DNA replication. Our data show that IM-HR occurred at a very high frequency: up to 60% of the amplicon concatemers retrieved from virion particles underwent intermolecular homologous recombination. Such a high frequency of IM-HR required that both plasmids be replicated by HSV-mediated replication, as IM-HR events were not detected when either one or both plasmids were replicated by simian virus 40-mediated DNA replication, even with the presence of HSV infection. In addition, the majority of the homologous recombination events resulted in sequence replacement or targeted gene repair, while the minority resulted in sequence insertion. These findings imply that frequent intermolecular homologous recombination may contribute directly to HSV genome isomerization. In addition, HSV-mediated amplicon replication may be an attractive model for studying intermolecular homologous recombination mechanisms in general in a mammalian system. In this regard, the knowledge obtained from such a study may facilitate the development of better strategies for targeted gene correction for gene therapy purposes.  相似文献   

6.
M. A. Shammas  S. J. Xia    RJS. Reis 《Genetics》1997,146(4):1417-1428
Intrachromosomal homologous recombination, manifest as reversion of a 14-kbp duplication in the hypoxanthine phosphoribosyl transferase (HPRT) gene, is elevated in human cells either stably transformed or transiently transfected by the SV40 (simian virus 40) large T antigen gene. Following introduction of wild-type SV40, or any of several T-antigen point mutations in a constant SV40 background, we observed a strong correlation between the stimulation of chromosomal recombination and induction of host-cell DNA synthesis. Moreover, inhibitors of DNA replication (aphidicolin and hydroxyurea) suppress SV40-induced homologous recombination to the extent that they suppress DNA synthesis. Stable integration of plasmids encoding T antigen also augments homologous recombination, which is suppressed by aphidicolin. We infer that the mechanism by which T antigen stimulates homologous recombination in human fibroblasts involves DNA replicative synthesis.  相似文献   

7.
Cultured animal cells rearrange foreign DNA very efficiently by homologous recombination. The individual steps that constitute the mechanism(s) of homologous recombination in transfected DNA are as yet undefined. In this study, we examined the topological requirements by using the genome of simian virus 40 (SV40) as a probe. By assaying homologous recombination between defective SV40 genomes after transfection into CV1 monkey cells, we showed that linear molecules are preferred substrates for homologous exchanges, exchanges are distributed around the SV40 genome, and the frequency of exchange is not diminished significantly by the presence of short stretches of non-SV40 DNA at the ends. These observations are considered in relation to current models of homologous recombination in mammalian cells, and a new model is proposed. The function of somatic cell recombination is discussed.  相似文献   

8.
The Z-DNA motif polydeoxythymidylic-guanylic [d(TG)].polydeoxyadenylic-cytidylic acid [d(AC)], present throughout eucaryotic genomes, is capable of readily forming left-handed Z-DNA in vitro and has been shown to promote homologous recombination. The effects of simian virus 40 T-antigen-dependent substrate replication upon the stimulation of recombination conferred by the Z-DNA motif d(TG)30 were analyzed. Presence of d(TG)30 adjacent to a T-antigen-binding site I can stimulate homologous recombination between nonreplicating plasmids, providing that T antigen is absent, in both simian CV-1 cells and human EJ cells (W. P. Wahls, L. J. Wallace, and P. D. Moore, Mol. Cell. Biol. 10:785-793). It has also been shown elsewhere that the presence of d(TG)n not adjacent to the T-antigen-binding site can stimulate homologous recombination in simian virus 40 molecules replicating in the presence of T antigen (P. Bullock, J. Miller, and M. Botchan, Mol. Cell. Biol. 6:3948-3953, 1986). However, it is demonstrated here that d(TG)30 nine base pairs distant from a T-antigen-binding site bound with T antigen does not stimulate recombination between either replicating or nonreplicating substrates in somatic cells. The bound T antigen either prevents the d(TG)30 sequence from acquiring a recombinogenic configuration (such as left-handed Z-DNA), or it prevents the interaction of recombinase proteins with the sequence by stearic hindrance.  相似文献   

9.
We have analyzed cellular DNA sequences at the viral genome integration site in a human fibroblast cell line VA13 immortalized by simian virus 40 (SV40). The computer analysis of the junctional cellular DNA sequences did not show any homology to the DNA sequences previously reported. This suggests that immortalization by SV40 was not induced by the destruction of any known oncogene or anti-oncogene at the integration site. We did not find the precise substantial sequence homology at the junctional site between the cellular DNA and SV40 DNA, indicating that the recombination mechanism involved does not require precise sequence homology and therefore, SV40 genome was probably not integrated by homologous recombination. Short direct and inverted repeats of 5 to 29 nucleotides were found in the junctional cellular and SV40 DNA. Cellular DNA abutting SV40 DNA was found by the Northern blot analysis to be expressed in diploid human fibroblasts and SV40-transformed cells. The nature of this RNA is now under study.  相似文献   

10.
H Puchta  B Hohn 《Nucleic acids research》1991,19(10):2693-2700
An assay to monitor homologous recombination in plant cells has been established by cotransfecting Nicotiana plumbaginifolia protoplasts with different topological forms of plasmids of various deletion mutants of a non-selectable marker gene, the beta-glucuronidase (GUS) gene. Transient GUS enzyme activities were measured by a sensitive assay. In the nuclear DNA of the cotransfected protoplasts the recombined complete GUS gene could be detected by a specially modified PCR analysis. In comparison to the standard assay, which monitors homologous recombination by integration of a selectable marker, the described assay avoids position effects of gene expression, is fast, easy to handle and large numbers of samples can be processed simultaneously. We were able to demonstrate a positive correlation between the length of overlapping homology (up to 1200 base pairs) of the transfected supercoiled circular or linearized plasmids and the respective GUS activities. We found a significant drop in the recombination rates when the overlap of both substrates was reduced to 456 basepairs or less. The requirement for such a long stretch of homology for efficient recombination might ensure the stability of the rather repetitive plant genome.  相似文献   

11.
Sequencing studies have shown that in somatic cells alternating runs of purines and pyrimidines are frequently associated with recombination crossover points. To test whether such sequences actually promote recombination, we have examined the effects of poly[d(pGpT).d(pApC)] and poly[d(pCpG).d(pCpG)] repeats on a homologous recombination event. The parental molecule used in this study, pSVLD, is capable of generating wild-type simian virus 40 DNA via recombination across two 751-base-pair regions of homology and has been described previously (Miller et al., Proc. Natl. Acad. Sci. USA 81:7534-7538, 1984). Single inserts of either a poly[d(pGpT).d(pApC)] repeat or a poly[d(pCpG).d(pCpG)] repeat were positioned adjacent to one region of homology in such a way that the recombination product, wild-type simian virus 40 DNA, could be formed only by recombination within the homologies and not by recombination across the alternating purine-pyrimidine repeats. We have found that upon transfection of test DNAs into simian cells, a poly[d(pCpG).d(pCpG)] repeat enhanced homologous recombination 10- to 15-fold, whereas a poly[d(pGpT).d(pApC)] repeat had less effect. These results are discussed in terms of the features of these repeats that might be responsible for promoting homologous recombination.  相似文献   

12.
RmI, a chimeric DNA molecule containing polyomavirus (Py) and mouse sequences, generates unit-length Py DNA via intramolecular recombination between two directly repeated viral sequences of 182 base pairs (S repeats). To analyze the contribution of the S repeats in this process, we produced mutants of RmI carrying deletions in either one or both S repeats and tested them for their ability to recombine in mouse 3T6 cells. Mutant DNAs were found to yield unit-length Py DNA as long as they carried a minimal internal homology of 40 to 50 base pairs. Unlike RmI itself, however, the mutants also gave rise to nonhomologous recombination products. These results suggest that when the generation of homologous products is hampered by a limiting homology, nonhomologous products may arise instead of homologous ones. Therefore, the initial step(s) in the mechanisms yielding the two kinds of products could be identical.  相似文献   

13.
How damaged is the biologically active subpopulation of transfected DNA?   总被引:40,自引:20,他引:20       下载免费PDF全文
Relatively little is known about the damage suffered by transfected DNA molecules during their journey from outside the cell into the nucleus. To follow selectively the minor subpopulation that completes this journey, we devised a genetic approach using simian virus 40 DNA transfected with DEAE-dextran. We investigated this active subpopulation in three ways: (i) by assaying reciprocal pairs of mutant linear dimers which differed only in the arrangement of two mutant genomes; (ii) by assaying a series of wild-type oligomers which ranged from 1.1 to 2.0 simian virus 40 genomes in length; and (iii) by assaying linear monomers of simian virus 40 which were cleaved within a nonessential region to leave either sticky, blunt, or mismatched ends. We conclude from these studies that transfected DNA molecules in the active subpopulation are moderately damaged by fragmentation and modification of ends. As a whole, the active subpopulation suffers about one break per 5 to 15 kilobases, and about 15 to 20% of the molecules have one or both ends modified. Our analysis of fragmentation is consistent with the random introduction of double-strand breaks, whose cause and exact nature are unknown. Our analysis of end modification indicated that the most prevalent form of damage involved deletion or addition of less than 25 base pairs. In addition we demonstrated directly that the efficiencies of joining sticky, blunt, or mismatched ends are identical, verifying the apparent ability of cells to join nearly any two DNA ends and suggesting that the efficiency of joining approaches 100%. The design of these experiments ensured that the detected damage preceded viral replication and thus should be common to all DNAs transfected with DEAE-dextran and not specific for viral DNA. These measurements of damage within transfected DNA have important consequences for studies of homologous and nonhomologous recombination in somatic cells as is discussed.  相似文献   

14.
DNA damage-induced multiple recombination was studied by cotransforming yeast cells with pairs of nonreplicating plasmids carrying different genetic markers. Reaction of one of the plasmids with the interstrand crosslinking agent, psoralen, stimulated cellular transformation by the undamaged plasmid. The cotransformants carried copies of both plasmids cointegrated in tandem arrays at chromosomal sites homologous to either the damaged or the undamaged DNA. Plasmid linearization, by restriction endonuclease digestion, was also found to stimulate the cointegration of unmodified plasmids. Disruption of the RAD1 gene reduced the psoralen damage-induced cotransformation of intact plasmid, but had no effect on the stimulation by double strand breaks. Placement of the double strand breaks within yeast genes produced cointegration only at sequences homologous to the damaged plasmids, while digestion within vector sequences produced integration at chromosomal sites homologous to either the damaged or the undamaged plasmid molecules. These observations suggest a model for multiple recombination events in which an initial exchange occurs between the damaged DNA and homologous sequences on an undamaged molecule. Linked sequences on the undamaged molecule up to 870 base pairs distant from the break site participate in subsequent exchanges with other intact DNA molecules. These events result in recombinants produced by reciprocal exchange between three or more DNA molecules.  相似文献   

15.
Transfected DNA is frequently broken and rejoined in mammalian cells by recombination processes that depend on minimal nucleotide sequence homology. Although measurements of breakage and joining account reasonably well for the frequent formation of deletions during transfection, they are inadequate to explain the high frequency of deletion formation by simian virus 40 (SV40) genomes that are slightly larger than the packaging limit of the capsid. To investigate this anomaly, we constructed and transfected into CV-1 cells a series of modified SV40 genomes containing 136, 284, 460, and 656 extra base pairs in the intron of the gene encoding T antigen. These experiments indicate that the effective packaging limit of an SV40 capsid lies between 284 and 460 extra base pairs. Further analysis of these transfections suggests that molecules just above the effective packaging limit may be encapsidated and transmitted between cells at low efficiency, thereby allowing multiple rounds of replication and multiple opportunities to generate and package genomes that contain deletions. The junctional sequences in several such deletions were determined; they were similar to the junctions in deletions that were formed before replication began, suggesting that the enzymatic machinery responsible for both types of deletion may be similar.  相似文献   

16.
We describe an infectious-center in situ plaque hybridization procedure which quantitates simian virus 40 (SV40) nonhomologous recombination in terms of the number of recombinant-producing cells in the DNA transfected cell population. Using this assay to measure the efficiency of recombination with SV40 DNA in permissive monkey BSC-1 cells, we found that: (i) over a range of DNA concentrations, polyomavirus DNA (which is partially homologous to SV40 DNA) cannot be distinguished from nonhomologous phi X174 RF1 DNA with respect to its ability to recombine with SV40 DNA; (ii) at defined DNA concentrations, polyomavirus and phi X174 RF1 DNA compete with each other for recombination with SV40 DNA; (iii) virtually all segments of the phi X174 genome recombine, apparently at random, with SV40 DNA; (iv) the frequency of recombinant-producing cells, among the successfully transfected (virion-producing) cells, depends upon the input SV40 DNA concentration in the transfection solution; and (v) replication-defective SV40 mutant DNAs compete with wild-type SV40 DNA for recombination with phi X174 RF1 DNA. From these observations, we conclude that the efficiency of recombination with SV40, in the system under study, is unaffected by nucleotide sequence homology and that a limiting stage in the recombination pathway occurs before SV40 DNA replication. Comparison of the dependency of recombination on initial SV40 DNA concentration with the dependency on initial phi X174 RF1 DNA concentration indicates that SV40 DNA sequences are a controlling factor in the nonhomologous recombination pathway.  相似文献   

17.
18.
Sequence homology is expected to influence recombination. To further understand mechanisms of recombination and the impact of reduced homology, we examined recombination during transformation between plasmid-borne DNA flanking a double-strand break (DSB) or gap and its chromosomal homolog. Previous reports have concentrated on spontaneous recombination or initiation by undefined lesions. Sequence divergence of approximately 16% reduced transformation frequencies by at least 10-fold. Gene conversion patterns associated with double-strand gap repair of episomal plasmids or with plasmid integration were analyzed by restriction endonuclease mapping and DNA sequencing. For episomal plasmids carrying homeologous DNA, at least one input end was always preserved beyond 10 bp, whereas for plasmids carrying homologous DNA, both input ends were converted beyond 80 bp in 60% of the transformants. The system allowed the recovery of transformants carrying mixtures of recombinant molecules that might arise if heteroduplex DNA--a presumed recombination intermediate--escapes mismatch repair. Gene conversion involving homologous DNAs frequently involved DNA mismatch repair, directed to a broken strand. A mutation in the PMS1 mismatch repair gene significantly increased the fraction of transformants carrying a mixture of plasmids for homologous DNAs, indicating that PMS1 can participate in DSB-initiated recombination. Since nearly all transformants involving homeologous DNAs carried a single recombinant plasmid in both Pms+ and Pms- strains, stable heteroduplex DNA appears less likely than for homologous DNAs. Regardless of homology, gene conversion does not appear to occur by nucleolytic expansion of a DSB to a gap prior to recombination. The results with homeologous DNAs are consistent with a recombinational repair model that we propose does not require the formation of stable heteroduplex DNA but instead involves other homology-dependent interactions that allow recombination-dependent DNA synthesis.  相似文献   

19.
Summary We have produced nonviable deletion mutants of polyoma virus in order to study homologous recombination after DNA transfection into mouse cells. The frequency of recombination was determined by the formation of infectious virus. It was dependent on the amount of DNA transfected and the size of the region of homology between the mutations. Recombination frequencies were highest when both mutated genomes were transfected in closed circular form rather than after linearization of one or both of the recombination partners. The system described may be useful for a more detailed analysis of physiological and genetic conditions influencing the frequency of homologous recombination in mouse cells as well as to study enzymes involved and intermediates produced in this process.  相似文献   

20.
Gene recombination in X-ray-sensitive hamster cells.   总被引:6,自引:0,他引:6       下载免费PDF全文
Recombination was measured in Chinese hamster ovary (CHO-K1) cells and in the X-ray-sensitive mutants xrs1 and xrs7, which show a defect in DNA double-strand break repair. To assay recombination, pairs of derivatives of the plasmid pSV2gpt were constructed with nonoverlapping deletions in the gpt gene region and cotransferred into the different cell types. Recombination efficiencies, measured as the transformation frequency with a pair of deletion plasmids relative to that with the complete pSV2gpt plasmid, were about 6% in both CHO-K1 and the xrs mutants for plasmids linearized at a site outside the gpt gene. However, these efficiencies were substantially enhanced by the introduction of a double-strand break into the homologous region of the gpt gene in one of a pair of deletion plasmids before cotransfer. This enhancement was apparently only about half as great for the xrs cells as for CHO-K1, but variation in the data was considerable. A much larger difference between CHO-K1 and the xrs mutants was found when the DNA concentration dependence of transformation was explored. While the transformation frequency of CHO-K1 increased linearly with DNA concentration, no such increase occurred with the xrs mutants irrespective of whether complete plasmids or pairs of deletion plasmids were transferred. The fraction of cells taking up DNA, assayed autoradiographically, was similar in all cell types. Therefore we suggest that while homologous recombination of plasmid molecules may not be substantially reduced in the xrs mutants,processes involved in the stable integration of plasmid DNA into genomic DNA are significantly impaired.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号