首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A procedure is described for demonstrating plasmid DNA and its molecular weight, based on rate zonal centrifugation of unlabelled DNA in neutral sucrose gradients containing a low concentration of ethidium bromide. Each DNA species is then visualized as a discrete fluorescent band when the centrifuge tube is illuminated with ultra-violet light. Plasmids exist as closed circular and as relaxed circular molecules, which sediment separately, but during preparation of lysates, closed circular molecules are nicked so that each plasmid forms only a single band of relaxed circles within the gradient.  相似文献   

2.
Complementary circular single strands of plasmid PβG or bacteriophage PM2 DNA but not of single-stranded φX174 DNA associate under hybridisation conditions, giving rise to a two-stranded complex. This DNA, which we call form V, has well-defined physico-chemical properties. It sediments as a sharp peak in neutral sucrose gradients; its electrophoretic mobility in agarose gels is between that of covalently closed (form I) and denatured DNA. In the electron microscope form V appears as highly folded duplex molecules indistinguishable from form I. However, increasing concentrations of ethidium bromide which lead to relaxation and recoiling of form I DNA have no comparable effect upon form V. At 260 nm form V PβG DNA has a hypochromicity of 18.6%, as compared to 23.4% in the case of PβG form II DNA and 10.5% in the case of single-stranded φX174 DNA. The thermal melting of form V is non-cooperative with gradual increase in absorbance similar to that of single-stranded DNA. The circular dichroism spectrum of form V DNA differs from that of form I, circular nicked (form II) and single-stranded φX174 DNA in that it shows a negative band at 295 nm and a shift for the main positive band from 273 to 266 nm. We propose that form V consists of right-handed Watson-Crick type double-helices which are compensated by an equal number of left-handed duplex turns and negative supercoils. Wo cannot decide whether left-handed duplex turns are stabilised by base-stacking and hydrogen bonding, as for example in the models described by Rodley et al. (1976) or Sasisekharan &; Pattabiraman (1976), or whether they are merely compensatory turns without inherent stability.  相似文献   

3.
Structure of Replicating Simian Virus 40 Deoxyribonucleic Acid Molecules   总被引:41,自引:21,他引:20       下载免费PDF全文
Properties of replicating simian virus 40 (SV40) deoxyribonucleic acid (DNA) have been examined by sedimentation analysis and by direct observation during a lytic cycle of infection of African green monkey kidney cells. Two types of replicating DNA molecules were observed in the electron microscope. One was an open structure containing two branch points, three branches, and no free ends whose length measurements were consistent with those expected for replicating SV40 DNA molecules. A second species had the same features as the open structure, but in addition it contained a superhelix in the unreplicated portion of the molecule. Eighty to ninety per cent of the replicative intermediates (RI) were in this latter configuration, and length measurements of these molecules also were consistent with replicating SV40 DNA. Replicating DNA molecules with this configuration have not been described previously. RI, when examined in ethidium bromide-cesium chloride (EB-CsCl) isopycnic gradients, banded in a heterogeneous manner. A fraction of the RI banded at the same density as circular SV40 DNA containing one or more single-strand nicks (component II). The remaining radioactive RI banded at densities higher than that of component II, and material was present at all densities between that of supercoiled double-stranded DNA (component I) and component II. When RI that banded at different densities in EB-CsCl were examined in alkaline gradients, cosedimentation of parental DNA and newly replicated DNA did not occur. All newly replicated DNA sedimented more slowly than did intact single-stranded SV40 DNA, a finding that is inconsistent with the rolling circle model of DNA replication. An inverse correlation exists between the extent of replication of the SV40 DNA and the banding density in EB-CsCl. Under alkaline conditions, the parental DNA strands that were contained in the RI sedimented as covalently closed structures. The sedimentation rates in alkali of the covalently closed parental DNA decreased as replication progressed. Based on these observations, some possible models for replication of SV40 DNA are proposed.  相似文献   

4.
Addition of the intercalating dye ethidium bromide (EtdBr) to a solution of alkali-denatured double-stranded closed circular PM2, ΦX174, or λb2b5c phage DNAs, under conditions such that the solution remains strongly alkaline, can result in the renaturation of up to 100% of the DNA upon neutralization of the solution. For a fixed time of incubation of the alkaline dye-containing solution before neutralization, there exists a minimum concentration of the dye below which no EtdBr-mediated renaturation is observed for each species of closed circular DNA examined. These minimum concentrations increase, for a given DNA, with increasing ionic strength and temperature. The kinetics of accumulation of forms renaturing upon neutralization of alkaline solutions, at fixed concentrations of dye and DNA, are dependent upon the molecular weight and superhelix density of the starting DNA. After extended periods of incubation at a fixed ionic strength and temperature, however, the profiles of percentage of DNA renatured as a function of ethidium concentration become very similar for all the closed circular DNAs tested and display a transition from an absence of dye-mediated renaturation to virtually 100% renaturation upon neutralization over a small range of dye concentration. Circular DNA containing one or more strand scissions remains strand-separated under all the conditions used to effect the renaturation of closed circular DNA. These findings indicate that configurations of closed circular DNA, in which at least some of the complementary bases are apposed, can be selectively stabilized and accumulate in the presence of ethidium in solutions containing 0.19 N hydroxide ion.  相似文献   

5.
Levels of unintegrated viral DNA made in Fv-1b/b (SIM.R, JLS-V9) and Fv-1n/n (NIH/3T3) cell lines after infection with N- or B-tropic murine leukemia virus (MuLV) have been measured. Different forms of viral DNA were sedimented on neutral sucrose or ethidium bromide-cesium chloride density gradients and detected by hybridization with complementary DNA. It was found that the major viral DNA species made in Fv-1 permissive or resistant cells was sedimenting at 20S on neutral sucrose gradient. Levels of this 20S viral DNA species were not significantly different in both systems. However levels of closed circular (form I) viral DNA separated on ethidium bromide-cesium chloride gradients were found to be decreased in Fv-1 resistant cells. Various species of viral DNA were also analyzed by the agarose gel-DNA transfer procedure of Southern. The major viral DNA species was found to migrate as a double-stranded linear DNA of 5.7 x 10(6) daltons. The molecular weight of linear viral DNA molecules extracted from Fv-1 permissive or resistant cells appeared to be the same. Levels of this linear viral DNA were almost identical in both systems except in B-tropic MuLV-infected resistant NIH/3T3 cells in which a moderate decrease has been measured. Two closed circular viral DNA species were observed by this technique. Their levels were markedly decreased in Fv-1 resistant cells. Our results indicate that the Fv-1 restriction does not grossly affect the formation of linear double-stranded viral DNA, but prevents the accumulation of closed circular viral DNA. Therefore the Fv-1 gene product could allow the synthesis of a normal linear viral DNA but interfere with the formation of supercoiled viral DNA. Alternatively, it could promote the synthesis of a faulty linear viral DNA whose defect (yet undetected) would prevent its circularization. In any case, the Fv-1 restriction mechanism appears to occur before the integration event itself.  相似文献   

6.
Interaction between DNA and an Escherichia coli protein omega   总被引:102,自引:0,他引:102  
An E. coli protein, designated ω, has been purified at least 1000-fold. Treatment of a eovalently closed DNA duplex containing negative superhelical turns with ω results in the loss of most of the superhelical turns. The loss of superhelical turns follows a gradual course rather than a one-hit mechanism. This reaction does not require a cofactor. No other change in the physical properties of the DNA could be detected. The DNA remains covalently closed. Its ultraviolet absorption spectrum, circular dichroism, buoyant density in CsCl, sedimentation properties in neutral media containing varying amounts of ethidium and in an alkaline medium, and its susceptibility toward Neurospora endonuclease, are not significantly different from an untreated DNA containing the same number of superhelical turns. Thus it appears that ω is capable of introducing a “swivel” reversibly into a DNA. A plausible mechanism is postulated.  相似文献   

7.
Superhelix density heterogeneity in closed circular intracellular PM2 DNA   总被引:3,自引:0,他引:3  
Covalently closed intracellular DNA obtained from Pseudomonas BAL 31 20 min after infection with PM2 phage has been shown to be heterogeneous in superhelix density. Analytical band sedimentation, in the presence of low concentrations of ethidium bromide, has been carried out on fractions centripetal and centrifugal to the mode of a single band of closed circular DNA in a preparative propidium iodide–CsCl buoyant density gradient. Different average sedimentation rates, as well as different band shapes, have been observed for upper and lower fractions centrifuged at a dye concentration near the minimum in s° versus ethidium bromide concentration titrations performed on DNA from proximate intermediate fractions. Similar differences, although not as pronounced, have been obtained at a dye concentration corresponding to a point in the steep region of the titrations. Differential band sedimentation experiments performed on the same fractions have confirmed these results. Differential band sedimentation experiments on similarly fractionated mature PM2 I DNA (closed circular form) have shown slight differences in the relative sedimentation rates of upper and lower fractions at dye concentrations corresponding to the steep regions in the titrations. The same experiments, when performed on nicked circular DNA obtained from heating both the mature and intracellular fractions, showed no evidence of differences in sedimentation coefficients. Such results may indicate slight heterogeneity in the superhelix density of viral PM2 I DNA; however, the degree of this heterogeneity would be somewhat less than that of the intracellular DNA. The possibility that superhelix density heterogeneity may arise from displacement loops, which have been found at low levels in intracellular PM2 DNA, has been subjected to experimental tests. Unless such structures are originally present and removed by the isolation procedure, this possibility may be rejected.  相似文献   

8.
Treatment of single-stranded circular phage fd DNA with Escherichia coli ω protein yields a new species which sediments 1.2 to 1.5 times faster than the untreated DNA in an alkaline medium. The infectivity of this species in spheroplast assays, after purification of the DNA by zone sedimentation in an alkaline sucrose gradient, is only slightly lower than that of untreated fd DNA. The formation of this species requires Mg(II) and is strongly dependent on salt concentration and temperature. At 37 °C, over 85% of the input DNA can be converted to this form when incubation is carried out in media containing 0.15 to 0.25 m-salt. The yield decreases with increasing temperature or decreasing salt concentration. The increase in sedimentation coefficient of fd DNA in an alkaline medium following treatment with ω is not due to protein binding, as no change was observed upon treatment of the product with phenol or Pronase. Furthermore, neither the buoyant density of this new species in neutral CsCl nor its sedimentation coefficient in a neutral medium is significantly different from the corresponding properties of untreated fd DNA. Examination by electron microscopy shows that the new form has the appearance of a knotted ring of about the same contour length as an untreated monomeric single-stranded fd DNA. The new form can be converted to full-length linear fd DNA by treatment with pancreatic DNAase I. The rate of conversion is approximately the same as that of untreated circular fd DNA to the linear form. These results show that the new form of fd DNA is a novel topological isomer: a knotted single-stranded DNA ring. It is also found that further treatment of the knotted DNA rings with ω at low ionic strength can reverse the reaction, i.e. the knotted DNA rings can be converted back to simple DNA rings indistinguishable from fd DNA from the phage. At intermediate ionic strength the two forms are interconvertible and form an equilibrium mixture. Results similar to those obtained for fd DNA have also been observed for single-stranded circular φX174 DNA. A mechanism based on the known activity of ω protein on double-stranded DNA, the secondary structure of a single-stranded circular DNA, and the experimental results described here is proposed.  相似文献   

9.
We report a concise and efficient method to make a circular single-stranded DNA containing a defined DNA lesion. In this protocol, phagemid DNA containing Uracil is used as a template to synthesize a complementary DNA strand using T7 DNA polymerase and an oligonucleotide primer including a site-specific DNA lesion. The ligated lesion-containing strand can be recovered after the phage-derived template DNA is degraded by treatment with E. coli Uracil DNA glycosylase and Exonucleases I and III. The resulting product is a circular single-stranded DNA containing a defined DNA lesion suitable for in vitro translesion replication assays.  相似文献   

10.
The sedimentation coefficients of closed circular Simian virus (SV40) DNA, phage PM2 DNA and animal mitochondrial DNAs in alkaline NaCl and alkaline CsCl were found to decrease by about 5% as the initial superhelix densities decreased from 0.0 to ?0.10, corresponding to a decrease in the degree of strand interwinding from 1.0 to 0.9 net turns per ten base pairs. The small dependence of the appropriately normalized sedimentation coefficients on the degree of strand interwinding is taken to indicate that fully titrated and denatured closed circular DNA is highly supercoiled in a positive sense. This supercoiling results from the spontaneous decrease in the number of secondary turns in the no longer ordered pairs of polynucleotide strands.The measured sedimentation coefficients form a smoothly connected monotonie curve when plotted along with the sedimentation coefficients in alkali (Sebring et al., 1971) of parental closed circles derived from closed circular SV40 DNA replicating intermediates. These DNAs have degrees of strand interwinding that range from 0.6 to 0.15.The possibility raised by Paoletti &; LePecq (1971) that closed circular duplex DNAs contain positive supercoils, i.e. have degrees of strand interwinding greater than 1.0, has been ruled out in a series of ethidium bromide titrations of partially replicated mitochondrial DNA before and after removal of the progeny strand. More ethidium bromide was required in the latter case for relaxation, a result which shows that intercalated ethidium and a displacing strand act on the duplex in the same way, and that both unwind the duplex. This result requires the supercoils of naturally closed circular DNAs to be negative.  相似文献   

11.
Examination of in vivo long-labeled, pulse-labeled and pulse-chase-labeled mitochondrial DNA has corroborated and extended the basic elements of the displacement model of replication. Mitochondrial DNA molecules are shown to replicate an average of once per cell doubling in exponentially growing cultures. Analysis of the separate strands of partially replicated molecules indicates that replication is highly asynchronous with heavy-strand synthesis preceding light-strand synthesis. Native and denatured pulse-labeled replicating molecules exhibit sedimentation properties predicted by the displacement model of replication. Pulse-label incorporated into molecules isolated in the lower band region of ethidium bromide/cesium chloride gradients is found primarily in heavy daughter strands. Pulse-label incorporated into molecules isolated in the upper band region is found primarily in light daughter strands. The results of a series of pulse-chase experiments indicate that the complete process of replication requires approximately 120 minutes. Both daughter molecules are shown to segregate in an open circular form. They are then converted to closed circular molecules having a superhelix density near zero. After closure, the 7 S heavy-strand initation sequence is synthesized, and this process is accompanied by nicking, unwinding and closing of at least one of the parental strands resulting in the formation of the D-loop structure. The 7 S heavy-strand initiation sequence of the D-loop structure is not stable and turns over with a half-life of 7·9 hours. We suggest that all in vivo forms of parental closed circular mitochondrial DNA have superhelix densities of near zero, and that the previously observed superhelix density of closed circular mitochondrial DNA, σ~ ?0·02, results from the loss of the 7 S heavy-strand initiation sequence from D-loop mitochondrial DNA molecules during isolation.  相似文献   

12.
We have developed a modified isolation procedure that yields kinetoplast DNA networks containing more than 90% closed circular DNA, as judged by two criteria: (a) In 0.15 M NaCl/0.015 M sodium citrate (pH 7.0), less than 10% of the intact kinetoplast DNA melts in the temperature region of sonicated kinetoplast DNA. In 7.2 M NaCl04 the kinetoplast DNA melts with a Tm 26 degrees C higher than sonicated kinetoplast DNA. Even after complete melting in 7.2 M NaClO4 at 90 degrees C, the network remains intact, as judged by regain of hypochromicity on cooling and analysis in CsCl containing propidium dixodide. (b) In alkaline sucrose gradients more than 90% of the kinetoplast DNA sediments in a single peak. 2. In CsCl gradients containing ethidium bromide of propidium diiodide intact kinetoplast DNA gives a single uni-modal band showing an extremely restricted dye uptake. From the position of the bank relative to the bands of PM2 DNA, the superhelix density of these networks is calculated to be +3.9 twists per 1000 base pairs. The superhelix density of closed mini-circles, efficiently liberated from the networks by shear in a French press, is -0.5 twists per 1000 base pairs. We attribute the high superhelix density (the highest yet observed in any DNA) of intact networks to their compact, highly catenated structure, leading to an additional constraint on dye uptake, superimposed on the restriction due to closed circularity.  相似文献   

13.
Evidence from electron microscopy of the replicative form of S13 and φX174 DNA shows the presence of a “figure-8” configuration. This species consists of two monomer length and one dimer length circular strands in covalently closed circular form and containing a fused junction that divides the molecule into two equal circular segments. Its existence is supported by the demonstration that it is converted by digestion with the restriction endonuclease of Hemophilus influenzae strain Rd to α- and X-shaped forms that retain the fused junction, and by examination by electron microscopy in the presence of ethidium bromide, which eliminates tangling and accidental overlays of parts of the DNA molecules. Kgure-8s are present to the extent of about 5% of the dimers present in replicative form DNA. They are proposed to be intermediates in genetic recombination in S13 and φX174.  相似文献   

14.
A series of covalently closed bacteriophage PM2 DNA samples with varying degrees of superhelicity were prepared in vitro. The amount of bound ethidium per DNA nueleotide needed for the removal of all superhelical turns, vc0, was determined for each sample by a number of methods. In order to evaluate the unwinding angle for the binding of one ethidium molecule to a DNA double helix, the pH dependence of the buoyant densities in CsCI of these samples was examined. A new calibration relating the change in buoyant density of a DNA to the fraction of bases titrated has been obtained, by measuring the buoyant densities of a number of catenanes (interlocked rings) containing both single-stranded and double-stranded λ DNA rings, at a pH such that the single-stranded DNA is fully titrated while the double-stranded DNA is not titrated. This calibration was used to obtain the pH dependence of the fraction of DNA bases titrated for the phage PM2 DNAs with differing extents of supercoiling. A simple theoretical analysis shows that in a restricted pH range close to pHm, the melting pH of the DNA in the absence of the topological constraint associated with covalently closed double-stranded DNAs, the difference in the fraction of bases titrated at a certain pH between two covalently closed DNAs with different degrees of superhelicity is directly proportional to the difference in the vc0 values of the DNAs. The unwinding angle per bound ethidium molecule can be obtained from the proportionality constant. In this way, it is not necessary to know precisely the actual pH value for either DNA, pHe, at which the DNA is titrated to the extent that it contains no superhelical turns. The conclusion of the theoretical analysis and the experimental results is that the binding of an ethidium molecule to a double-stranded DNA unwinds the DNA helix by an angle φe = 26 °. The uncertainty in this value is estimated to be less than 10%. The new value for φe is approximately a factor of two larger than the value 12 °, which has been in use in the past decade. In the earlier alkaline titration results for polyoma DNA (Vinograd et al., 1968), which had been interpreted as supporting the 12 ° value, the calculation of φe was critically dependent on knowing pHe. It is believed that pHe was underestimated in the earlier work, resulting in a low φe value. Since the previous value φe = 12 ° has been widely used in the determination of the number of superhelical turns for many DNAs, and in measurements on the angular alterations of the DNA helix by the binding of a variety of small and large molecules and by solvent and temperature changes, the new value φe = 26 ° requires proportional adjustments of many previous results.  相似文献   

15.
Replication of the DNA of chick embryo lethal orphan virus   总被引:16,自引:0,他引:16  
Replication of the DNA of chick embryo lethal orphan virus was semi-conservative. In CsCl density gradients a portion of pulse-labelled intracellular viral DNA was more dense than mature DNA and sometimes approached the density of denatured DNA. Chromatography on benzoylated naphthoylated DEAE-cellulose also suggested that replicating viral DNA had extensive single-stranded regions. In neutral sucrose, some pulse-labelled viral DNA sedimented faster than mature DNA. Short pulses of [3H]thymidine were incorporated into fragments that sedimented at about 12 s in alkaline sucrose. As the pulse length was increased, label was found in material that sedimented faster than 12 s fragments but more slowly than the strands of mature viral DNA, and finally in full length viral DNA strands. During a “chase” in unlabelled medium, pulse-labelled intracellular viral DNA was converted to a form with properties like those of mature DNA. No closed circular structures could be detected when pulse-labelled DNA was centrifuged in CsCl in the presence of ethidium bromide. Thus the replication of this DNA, which is linear and lacks terminal repetitions detectable by exonuclease digestion and annealing, does not involve circles or concatemers in which one or both strands are continuous. However, the 5′ ends of the daughter strands cannot be completed unless the nascent DNA forms a maturation intermediate, the most likely form of which is a concatemer with staggered nicks in both strands at one genome intervals. This implies an unusual structure of the ends of the DNA, or the existence of a protein that interacts with the ends.  相似文献   

16.
Sibiromycin added to linear chromosomal E. coli DNA in vitro leads to the decrease of bouyant density in neutral CsCl density gradient. This decrease is a linear function of sibiromycin/DNA ratio and amounts to about 32 mg/ml at the ratio equal to 0.1. Binding sibiromycin does not change the degree of hydration of DNA as revealed by centrifugation in metrizamide density gradients. When added to the covalently closed or open circular DNA of PM-2 phage, sibiromycin decreased the bouyant density of these DNA species to a similiar extent. The antibiotic does not induce single-strand breaks in DNA in vitro as follows from the results of ethidium bromide-CsCl density gradient centrifugation of covalently closed PM-2 DNA.  相似文献   

17.
Cesium chloride centrifugation of DNA extracted from cells of blood strain Trypanosoma lewisi revealed a main band, ρ = 1.707, a light satellite, ρ = 1.699, and a heavy satellite, ρ = 1.721. Culture strain T. lewisi DNA comprised only a main band, ρ = 1.711, and a light satellite, ρ = 1.699. DNA isolated from DNase-treated kinetoplast fractions of both the blood and culture strains consisted of only the light satellite DNA. Electron microscope examination of rotary shadowed preparations of lysates revealed that DNA from kinetoplast fractions was mainly in the form of single 0.4 µ circular molecules and large masses of 0.4 µ interlocked circles with which longer, often noncircular molecules were associated. The 0.4 µ circular molecules were mainly in the covalently closed form: they showed a high degree of resistance to thermal denaturation which was lost following sonication; and they banded at a greater density than linear DNA in cesium chloride-ethidium bromide gradients. Interpretation of the large masses of DNA as comprising interlocked covalently closed 0.4 µ circles was supported by the findings that they banded with single circular molecules in cesium chloride-ethidium bromide gradients, and following breakage of some circles by mild sonication, they disappeared and were replaced by molecules made up of low numbers of apparently interlocked 0.4 µ circles. When culture strain cells were grown in the presence of either ethidium bromide or acriflavin, there was a loss of stainable kinetoplast DNA in cytological preparations. There was a parallel loss of light satellite and of circular molecules from DNA extracted from these cells.  相似文献   

18.
A rapid and simple purification of covalently closed circular (supercoiled) DNA from both bacterial clones (plasmids) and African green monkey cells (SV40) is presented. The method involves immediate treatment of lysed cells with sodium hydroxide, followed by neutralization and phenol extraction in high salt. After the extraction mixture is centrifuged, supercoiled DNA is found in the aqueous phase, the noncovalently closed DNA molecules form a white precipitate at the interphase, and proteins pellet. Contaminating RNA is eliminated from the aqueous phase by RNAse treatment and precipitation of the supercoiled DNA with polyethylene glycol. Residual polyethylene glycol is removed from the resuspended DNA by chloroform extraction. The purified supercoiled DNA is compatible with restriction enzymes, and is efficient at transforming both χ1776 and HB101 bacterial hosts. Centrifugation in ethidium bromide-cesium chloride or sucrose gradients is not necessary. The method is virtually independent of the molecular size and gives good yields of supercoiled DNA. The technique is applicable to large-scale preparations and as a rapid “screening” procedure in which 20 to 30 samples can be easily purified within 5 to 6 h.  相似文献   

19.
A simple method is described in detail for the efficient isolation of high molecular weight covalently closed circular DNA (ccc-DNA) from Agrobacterium. Although this method was developed for isolating ccc-DNA of molecular weights greater than 108 daltons in Agrobacterium, the technique also proves to be useful in isolating ccc-DNA of varying sizes from a variety of other bacteria. The technique involves the shearing and alkali denaturation of the chromosomal DNA, followed by the preferential removal of the single-stranded DNA by phenol extraction. The DNA which remains is largely ccc-DNA. The DNA is then concentrated, and the ccc-DNA is separated from the chromosomal DNA by centrifugation in a cesium chloride-ethidium bromide density gradient. By this technique, ccc-DNA of varying sizes has also been isolated from species of Escherichia, Rhizobium, Citrobacter, and Lactobacillus.  相似文献   

20.
When a negatively twisted covalently closed DNA is annealed with single-stranded fragments of the same DNA, under proper conditions a loop (or loops) may form by the disruption of a segment (or segments) of base pairs between the complementary strands of the covalently closed DNA, and the formation of base pairs between the strands of the covalently closed DNA and the single-stranded fragments. Since such a process involves essentially no net gain or loss of the number of base pairs, it is driven by the free energy favoring the reduction of the number of superhelical turns. If the fragments are sufficiently long or are present at a sufficiently hig concentration during annealing, the most stable product between a covalently closed DNA and the DNA fragments (under conditions favoring the formation of double-stranded DNA) is a looped molecule devoid of superhelical turns. The size of the looped region or regions, which can be measured by electron microscopy, provides a way to determine the degree of superhelicity of the covalently closed DNA in the absence of the fragments. When this is compared with the degree of superhelicity of the covalently closed DNA determined by titration with the intercalative dye ethidium, the unwinding angle of the DNA double helix due to the intercalation of an ethidium can be calculated. Such measurements were done on two samples of phage PM2 DNA with different extents of supercoiling. The results are in agreement with the value 26 degree obtained recently by alkaline titration of covalently closed PM2 DNA samples in CsC1 density gradients (Wange, J.C., (1974) J. Mol. Biol. 89, 783-801).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号