首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Centromere protein B (CENP-B) is a centromeric DNA-binding protein that binds to α-satellite DNA at the 17 bp CENP-B box sequence. The binding of CENP-B, along with other proteins, to α-satellite DNA sequences at the centromere, is thought to package the DNA into heterochromatin subjacent to the kinetochore of mitotic chromosomes. To determine the importance of CENP-B to kinetochore assembly and function, we generated a mouse null for the cenpB gene. The deletion removed part of the promoter and the entire coding sequence except for the carboxyl-terminal 35 amino acids of the CENP-B polypeptide. Mice heterozygous or homozygous for the cenpB null mutation are viable and healthy, with no apparent defect in growth and morphology. We have established mouse embryo fibroblasts from heterozygous and homozygous cenpB null littermates. Microscopic analysis, using immunofluorescence and electron microscopy of the cultured cells, indicated that the centromere-kinetochore complex was intact and identical to control cells. Mitosis was identical in fibroblasts derived from cenpB wild-type, heterozygous and null animals. Our studies demonstrate that CENP-B is not required for the assembly of heterochromatin or the kinetochore, or for completion of mitosis. Received: 17 September 1998 / Accepted: 9 October 1998  相似文献   

2.
Interleukin-6 (IL-6) has been shown to be involved in the pathogenesis of several bone diseases characterized by an imbalance between bone resorption and formation. The aim of the study was to estimate serum markers of bone turnover: osteoclast-derived tartrate-resistant acid phosphatase form 5a (TRACP 5b) and osteocalcin in IL-6-deficient mice to assess the role of IL-6 in bone metabolism in hypothyroidism in mice. C57BL/6J (wild-type; WT) and C57BL/6J(IL6-/-Kopf) (IL-6 knock-out; IL6KO) mice randomly divided into 4 groups with 10 in each one: 1/ WT mice in hypothyroidism (WT-ht), 2/ WT controls, 3/ IL6KO mice with hypothyroidism (IL6KO-ht) and 4/ IL6KO controls. Experimental model of hypothyroidism was induced by intraperitoneal injection of propylthiouracyl. The serum levels of TRACP 5b and osteocalcin were determined by ELISA. Serum concentrations of TRACP 5b (median and interquartile ranges) were significantly decreased in both groups of mice with hypothyroidism: WT (3.2 (2.5-4.7) U/l) and IL6KO (2.6 (1.8-3.5) U/l) as compared to the respective controls. Similarly, serum osteocalcin levels were significantly reduced in both groups of mice in experimental hypothyroidism: WT (25.8 (23.0-28.2) ng/ml) and IL6KO (21.5(19.0-24.6) ng/ml) in comparison to the respective controls. There were no significant differences in bone turnover markers between IL6KO and WT mice both in hypothyroid and control animals. The results of the present study suggest that IL-6 does not play an important role in bone turnover in both euthyroid and hypothyroid mice.  相似文献   

3.
Arginase of the Helicobacter pylori urea cycle hydrolyzes L-arginine to L-ornithine and urea. H. pylori urease hydrolyzes urea to carbon dioxide and ammonium, which neutralizes acid. Both enzymes are involved in H. pylori nitrogen metabolism. The roles of arginase in the physiology of H. pylori were investigated in vitro and in vivo, since arginase in H. pylori is metabolically upstream of urease and urease is known to be required for colonization of animal models by the bacterium. The H. pylori gene hp1399, which is orthologous to the Bacillus subtilis rocF gene encoding arginase, was cloned, and isogenic allelic exchange mutants of three H. pylori strains were made by using two different constructs: 236-2 and rocF::aphA3. In contrast to wild-type (WT) strains, all rocF mutants were devoid of arginase activity and had diminished serine dehydratase activity, an enzyme activity which generates ammonium. Compared with WT strain 26695 of H. pylori, the rocF::aphA3 mutant was approximately 1, 000-fold more sensitive to acid exposure. The acid sensitivity of the rocF::aphA3 mutant was not reversed by the addition of L-arginine, in contrast to the WT, and yielded a approximately 10, 000-fold difference in viability. Urease activity was similar in both strains and both survived acid exposure equally well when exogenous urea was added, indicating that rocF is not required for urease activity in vitro. Finally, H. pylori mouse-adapted strain SS1 and the 236-2 rocF isogenic mutant colonized mice equally well: 8 of 9 versus 9 of 11 mice, respectively. However, the rocF::aphA3 mutant of strain SS1 had moderately reduced colonization (4 of 10 mice). The geometric mean levels of H. pylori recovered from these mice (in log(10) CFU) were 6.1, 5.5, and 4.1, respectively. Thus, H. pylori rocF is required for arginase activity and is crucial for acid protection in vitro but is not essential for in vivo colonization of mice or for urease activity.  相似文献   

4.
TSLP induces Th2 cytokine production by Th2 cells and various other types of cells, thereby contributing to Th2-type immune responses and development of allergic disorders. We found that house dust mite (HDM) extract induced TSLP production by nasal epithelial cells, suggesting that TSLP may be involved in development of HDM-induced allergic rhinitis (AR). To investigate that possibility in greater detail, wild-type and TSLP receptor-deficient (TSLPR?/?) mice on the C57BL/6J background were repeatedly treated intranasally with HDM extract. The frequency of sneezing, numbers of eosinophils and goblet cells, thickness of submucosal layers, serum levels of total IgE and HDM-specific IgG1, and levels of IL-4, IL-5 and IL-13 in the culture supernatants of HDM-stimulated LN cells were comparable in the two mouse strains. Those findings indicate that, in mice, TSLPR is not crucial for development of HDM-induced AR.  相似文献   

5.
Caspases, a family of cysteine proteases, are critical mediators of apoptosis. To address the importance of caspases in thymocyte development, we have generated transgenic mice that express the baculovirus protein p35, a viral caspase inhibitor, specifically in the thymus. p35 expression inhibited Fas (CD95)-, CD3-, or peptide-induced caspase activity in vitro and conferred resistance to Fas-induced apoptosis. However, p35 did not block specific peptide-induced negative selection in OT1 and HY TCR transgenic mouse models. Even the potent pharmacological caspase inhibitor zVAD-FMK (benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl-ketone) could not prevent peptide-induced deletion of OT1 thymocytes, although it improved basal thymocyte survival in vitro. Moreover, the developmental block observed in rag1-/- thymocytes, which lack pre-TCR signaling, was also not rescued by p35 expression. These results indicate that caspase-independent signal transduction pathways can mediate thymocyte death during normal T cell development.  相似文献   

6.
7.
Essential fatty acid (EFA) deficiency induces fat malabsorption, but the pathophysiological mechanism is unknown. Bile salts (BS) and EFA-rich biliary phospholipids affect dietary fat solubilization and chylomicron formation, respectively. We investigated whether altered biliary BS and/or phospholipid secretion mediate EFA deficiency-induced fat malabsorption in mice. Free virus breed (FVB) mice received EFA-containing (EFA(+)) or EFA-deficient (EFA(-)) chow for 8 wk. Subsequently, fat absorption, bile flow, and bile composition were determined. Identical dietary experiments were performed in multidrug resistance gene-2-deficient [Mdr2((-/-))] mice, secreting phospholipid-free bile. After 8 wk, EFA(-)-fed wild-type [Mdr2((+/+))] and Mdr2((-/-)) mice were markedly EFA deficient [plasma triene (20:3n-9)-to-tetraene (20:4n-6) ratio >0.2]. Fat absorption decreased (70.1 +/- 4.2 vs. 99.1 +/- 0.3%, P < 0.001), but bile flow and biliary BS secretion increased in EFA(-) mice compared with EFA(+) controls (4.87 +/- 0.36 vs. 2.87 +/- 0.29 microl x min(-1) x 100 g body wt(-1), P < 0.001, and 252 +/- 30 vs. 145 +/- 20 nmol x min(-1) x 100 g body wt(-1), P < 0.001, respectively). BS composition was similar in EFA(+)- and EFA(-)-fed mice. Similar to EFA(-) Mdr2((+/+)) mice, EFA(-) Mdr2((-/-)) mice developed fat malabsorption associated with twofold increase in bile flow and BS secretion. Fat malabsorption in EFA(-) mice is not due to impaired biliary BS or phospholipid secretion. We hypothesize that EFA deficiency affects intracellular processing of dietary fat by enterocytes.  相似文献   

8.
A disintegrin and metalloprotease 33 (ADAM33) is a transmembrane protease and integrin ligand that has been identified as an asthma susceptibility gene product. To determine whether ADAM33 plays important roles in mammalian development and the modulation of allergic airway dysfunction, we generated ADAM33-null mice by gene targeting. ADAM33-null mice were born at expected Mendelian ratios, and both male and females developed normally and were fertile. No anatomical or histological abnormalities were detected in any tissues. In an animal model of allergic asthma, ADAM33-null mice showed normal allergen-induced airway hyperreactivity, immunoglobulin E production, mucus metaplasia, and airway inflammation. Our results demonstrate that ADAM33 is not essential for growth or reproduction in the mouse and does not modulate baseline or allergen-induced airway responsiveness.  相似文献   

9.
Ornithine decarboxylase (ODC) activity increases by 2 times in the process of progesterone-induced Bufo oocyte maturation (Table 1). Tumor promotor phorbol ester (PMA) is unable to affect both basal and stimulated ODC activity (Fig. 5) although it is capable of elevating the rate of steroid-induced maturation (Fig. 4). Spermine can inhibit significantly ODC activity of oocytes (Fig. 3). Hormone-stimulated ODC activity falls by 17% when Bufo oocytes are cultured in the alkaline Ringer's solution containing 5 mM spermine (pH 11.6) (Fig. 2). The period, however, is shortened by more than 50% during which the oocytes undergo GVBD (Fig. 1). Otherwise, spermine is found to repress ODC activity in dose dependent manner when microinjected in Bufo oocytes (Fig. 3). But oocytes undergo GVBD with a frequency of more than 80% when progesterone-induced increment of the enzyme activity is totally inhibited in the oocytes injected with approximately 50 nl 4.0 mM spermine. The conclusion may emerge from the above-stated results that increased ornithine decarboxylase activity is not essential for progesterone-induced Bufo oocyte maturation. In addition, ODC activity begins to increase rapidly when endogenous spermine level has been lowered to the largest extent in the maturation process. Therefore the endogenous spermine probably acts as a physiologically negative regulator of ODC activity since exogenous spermine inhibits seriously ODC activity of Bufo oocytes.  相似文献   

10.
To determine the role of ceruloplasmin (Cp) in epileptic seizures, we used a kainate (KA) seizure animal model and examined hippocampal samples from epileptic patients. Treatment with KA resulted in a time-dependent decrease in Cp protein expression in the hippocampus of rats. Cp-positive cells were colocalized with neurons or reactive astrocytes in KA-treated rats and epileptic patient samples. KA-induced seizures, initial oxidative stress (i.e., hydroxyl radical formation, lipid peroxidation, protein oxidation, and synaptosomal reactive oxygen species), altered iron status (increasing Fe2+ accumulation and L-ferritin-positive reactive microglial cells and decreasing H-ferritin-positive neurons), and impaired glutathione homeostasis and neurodegeneration (i.e., Fluoro-Nissl and Fluoro-Jade B staining analyses) were more pronounced in Cp antisense oligonucleotide (ASO)- than in Cp sense oligonucleotide-treated rats. Consistently, Cp ASO facilitated KA-induced lactate dehydrogenase (LDH) release, Fe2+ accumulation, and glutathione loss in neuron-rich and mixed cultures. However, Cp ASO did not alter KA-induced LDH release or Fe2+ accumulation in the astroglial culture, but did facilitate impairment in glutathione homeostasis in the same culture. Importantly, treatment with human Cp protein resulted in a significant attenuation against these neurotoxicities induced by Cp ASO. Our results suggest that Cp-mediated neuroprotection occurs via the inhibition of seizure-associated oxidative damage (including impairment in glutathione homeostasis), Fe2+ accumulation, and alterations in ferritin immunoreactivity. Moreover, interactive modulation between neurons and glia was found to be important for Cp upregulation in the attenuation of epileptic damage in both animals and humans.  相似文献   

11.
Malat1 is an abundant long, noncoding RNA that localizes to nuclear bodies known as nuclear speckles, which contain a distinct set of pre-mRNA processing factors. Previous studies in cell culture have demonstrated that Malat1 interacts with pre-mRNA splicing factors, including the serine- and arginine-rich (SR) family of proteins, and regulates a variety of biological processes, including cancer cell migration, synapse formation, cell cycle progression, and responses to serum stimulation. To address the physiological function of Malat1 in a living organism, we generated Malat1-knockout (KO) mice using homologous recombination. Unexpectedly, the Malat1-KO mice were viable and fertile, showing no apparent phenotypes. Nuclear speckle markers were also correctly localized in cells that lacked Malat1. However, the cellular levels of another long, noncoding RNA--Neat1--which is an architectural component of nuclear bodies known as paraspeckles, were down-regulated in a particular set of tissues and cells lacking Malat1. We propose that Malat1 is not essential in living mice maintained under normal laboratory conditions and that its function becomes apparent only in specific cell types and under particular conditions.  相似文献   

12.
Seed priming is a technique of controlled hydration and drying that results in more rapid gemination when the seeds are reimbibed. Advancement of radicle meristem cells into the S and G2 phases of the cell cycle, increasing the percentage of nuclei having a 4C DNA content, has been reported to occur during priming. It has been suggested that the efficiency of priming is related to the accumulation of 4C nuclei in the radicle meristem, but the extent of cell cycle activity varied among different treatments and seed lots. A wide range of priming treatments across temperatures, water potentials and durations can be compared on a common basis using the hydrothermal priming time model. Flow cytometry was used to monitor cell cycle activity in a number of tomato (Lycopersicon esculentum Mill.) seed lots during priming in relation to the accumulation of hydrothermal priming time and the subsequent germination rate response. In some seed lots, the percentage of 4C nuclei in the radicle meristems prior to emergence increased in proportion to accumulated hydrothermal priming time, while in other lots, no increase in nuclear DNA content was detected. All lots, however, demonstrated rapid radicle emergence following priming. Thus, replicative DNA synthesis in radicle meristem nuclei often occurred during seed priming, but an increase in the percentage of 4C nuclei was not essential for germination advancement.  相似文献   

13.
CD11b is an alpha chain of the leukocyte beta(2)-integrin, Mac-1, which mediates binding and extravasation of leukocytes. Because this event is critical in atherosclerosis, we examined the role of CD11b in lesion formation. Atherosclerosis-susceptible, low density lipoprotein receptor-deficient (LDL-R(-/)-) mice were irradiated and repopulated with bone marrow cells from CD11b-deficient (CD11b(-/)-) mice. After 4 weeks, <2% of the peripheral blood leukocytes of the CD11b(-/)- bone marrow-transplanted LDL-R(-/)- mice expressed CD11b, whereas approximately 25% of the CD11b(+/)+ bone marrow-transplanted LDL-R(-/)- mice expressed CD11b. After consuming a high-fat diet for 16 weeks the mean lesion aortic valve area, cholesterol accumulation in the aorta, and the degree of intimal macrophage infiltration were similar in mice reconstituted with either CD11b(+)(/+) or CD11b(-/)- bone marrow cells.The studies confirm that CD11b expression of bone marrow-derived cells does not influence the development of atherosclerosis in hypercholesterolemic LDL-R(-/)- mice.  相似文献   

14.
Cell-mediated immunity (CMI) may be important in immunity against blood-stage malaria. Accordingly, we examined the role of type 1 cytokines in the resolution of Plasmodium chabaudi adami malaria in mice genetically modified to have type 1 cytokine gene defects. Parasitemia was prolonged in double knockout (IL-2(-/-), IFNgamma(-/-)) mice compared to control mice. Despite deficiencies in gammadelta T cell and B cell subsets, these mice produced anti-malarial antibodies and eventually cured their infections, possibly by antibody-mediated immunity. However, because acute P. c. adami parasitemia may also be suppressed by CMI, the requirements for IL-2 and IFNgamma were evaluated in mice lacking B cells and functional IL-2 or IFNgamma genes. Acute malaria in J(H)(-/-), IL-2(-/-) mice was prolonged, but eventually cured. In contrast, J(H)(-/-), IFNgamma(-/-) mice developed unremitting parasitemia. These data strongly suggest that IFNgamma, but not IL-2, plays an essential role in the expression of CMI against P. c. adami infections. This finding may prove useful in developing malarial vaccines aimed at inducing CMI.  相似文献   

15.
A murine endotoxemia model and cultured Calu-3 monolayers were used to test the hypothesis that excessive nitric oxide (NO) production secondary to induction of inducible NO synthase (iNOS) is a key factor leading to altered tight junction (TJ) protein expression and function in the pulmonary epithelium. C57Bl/6J mice were injected with either Escherichia coli 0111:B4 lipopolysaccharide (LPS; 2 mg/kg) or vehicle. Twelve hours later, leakage of FITC-dextran (M(r) 4 kDa; FD4) from blood into bronchoalveolar lavage fluid was significantly increased in endotoxemic but not control mice. This decrease in bronchoalveolar barrier function was associated with upregulation of iNOS protein expression and NF-kappaB activation in lung tissue. Expression of the TJ proteins, zonula occludens (ZO)-1, ZO-2, ZO-3, and occludin, as assessed by immunoblotting and/or immunofluorescence, decreased in lung after the injection of mice with LPS. Treatment of endotoxemic mice with an isoform-selective iNOS inhibitor [l-N(6)-(1-iminoethyl)lysine; l-NIL] ameliorated LPS-induced changes in TJ protein expression and preserved bronchoalveolar epithelial barrier function. Incubating Calu-3 bronchiolar epithelial monolayers with cytomix (a mixture of 1,000 U/ml IFN-gamma, 10 ng/ml TNF-alpha, and 1 ng/ml IL-1beta) increased permeability to FD4, but adding l-NIL prevented this effect. These results suggest that decreased expression and mistargeting of TJ proteins in lung after systemic inflammation may be NO dependent.  相似文献   

16.
Atm-deficient mice die of malignant thymic lymphomas characterized by translocations within the Tcr alpha/delta locus, suggesting that tumorigenesis is secondary to aberrant responses to double-stranded DNA (dsDNA) breaks that occur during RAG-dependent V(D)J recombination. We recently demonstrated that development of thymic lymphoma in Atm(-/-) mice was not prevented by loss of RAG-2. Thymic lymphomas that developed in Rag2(-/-) Atm(-/-) mice contained multiple chromosomal abnormalities, but none of these involved the Tcr alpha/delta locus. These findings indicated that tumorigenesis in Atm(-/-) mice is mediated by chromosomal translocations secondary to aberrant responses to dsDNA breaks and that V(D)J recombination is an important, but not essential, event in susceptibility. In contrast to these findings, it was recently reported that Rag1(-/-) Atm(-/-) mice do not develop thymic lymphomas, a finding that was interpreted as demonstrating a requirement for RAG-dependent recombination in the susceptibility to tumors in Atm-deficient mice. To test the possibility that RAG-1 and RAG-2 differ in their roles in tumorigenesis, we studied Rag1(-/-) Atm(-/-) mice in parallel to our previous Rag2(-/-) Atm(-/-) study. We found that thymic lymphomas occur at high frequency in Rag1(-/-) Atm(-/-) mice and resemble those that occur in Rag2(-/-) Atm(-/-) mice. These results indicate that both RAG-1 and RAG-2 are necessary for tumorigenesis involving translocation in the Tcr alpha/delta locus but that Atm deficiency leads to tumors through a broader RAG-independent predisposition to translocation, related to a generalized defect in dsDNA break repair.  相似文献   

17.
18.
The Fto gene locus has been linked to increased body weight and obesity in human population studies, but the role of the actual FTO protein in adiposity has remained controversial. Complete loss of FTO protein in mouse and of FTO function in human patients has multiple and variable effects. To determine which effects are due to the ability of FTO to demethylate mRNA, we genetically engineered a mouse with a catalytically inactive form of FTO. Our results demonstrate that FTO catalytic activity is not required for normal body composition although it is required for normal body size and viability. Strikingly, it is also essential for normal bone growth and mineralization, a previously unreported FTO function.  相似文献   

19.
To elucidate whether phosphorylation of myosin II regulatory light chain (MRLC) is essential for myosin II recruitment to the furrow during cytokinesis, HeLa cells transfected with three types of GFP-tagged recombinant MRLCs, wild-type MRLC, non-phosphorylated form of MRLC, and phosphorylated form of MRLC, were examined. Living cell-imaging showed that both phosphorylated and non-phosphorylated form of MRLCs were recruited to the equator at the same time after anaphase onset, suggesting that phosphorylation of MRLC is not responsible for recruitment of myosin II to the equator. Moreover, the treatment with an inhibitor of myosin II activity, blebbistatin, induced no effect on recruitment of those three recombinant MRLCs. During cytokinesis, phosphorylated but not non-phosphorylated form of MRLC was retained in the equator. These results suggest that phosphorylation of MRLC is essential for retainment of myosin II in the furrow but not for initial recruitment of myosin II to the furrow in dividing HeLa cells.  相似文献   

20.
UvrD is an SF1 family helicase involved in DNA repair that is widely conserved in bacteria. Mycobacterium tuberculosis has two annotated UvrD homologues; here we investigate the role of UvrD2. The uvrD2 gene at its native locus could be knocked out only in the presence of a second copy of the gene, demonstrating that uvrD2 is essential. Analysis of the putative protein domain structure of UvrD2 shows a distinctive domain architecture, with an extended C terminus containing an HRDC domain normally found in SF2 family helicases and a linking domain carrying a tetracysteine motif. Truncated constructs lacking the C-terminal domains of UvrD2 were able to compensate for the loss of the chromosomal copy, showing that these C-terminal domains are not essential. Although UvrD2 is a functional helicase, a mutant form of the protein lacking helicase activity was able to permit deletion of uvrD2 at its native locus. However, a mutant protein unable to hydrolyze ATP or translocate along DNA was not able to compensate for lack of the wild-type protein. Therefore, we concluded that the essential role played by UvrD2 is unlikely to involve its DNA unwinding activity and is more likely to involve DNA translocation and, possibly, protein displacement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号