首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The type I, 55-kDa tumor necrosis factor receptor (TNFR1) is released from cells to the extracellular space where it can bind and modulate TNF bioactivity. Extracellular TNFR1 release occurs by two distinct pathways: the inducible proteolytic cleavage of TNFR1 ectodomains and the constitutive release of full-length TNFR1 in exosome-like vesicles. Regulation of both TNFR1 release pathways appears to involve the trafficking of cytoplasmic TNFR1 vesicles. Vesicular trafficking is controlled by ADP-ribosylation factors (ARFs), which are active in the GTP-bound state and inactive when bound to GDP. ARF activation is enhanced by guanine nucleotide-exchange factors that catalyze replacement of GDP by GTP. We investigated whether the brefeldin A (BFA)-inhibited guanine nucleotide-exchange proteins, BIG1 and/or BIG2, are required for TNFR1 release from human umbilical vein endothelial cells. Effects of specific RNA interference (RNAi) showed that BIG2, but not BIG1, regulated the release of TNFR1 exosome-like vesicles, whereas neither BIG2 nor BIG1 was required for the IL-1beta-induced proteolytic cleavage of TNFR1 ectodomains. BIG2 co-localized with TNFR1 in diffusely distributed cytoplasmic vesicles, and the association between BIG2 and TNFR1 was disrupted by BFA. Consistent with the preferential activation of class I ARFs by BIG2, ARF1 and ARF3 participated in the extracellular release of TNFR1 exosome-like vesicles in a nonredundant and additive fashion. We conclude that the association between BIG2 and TNFR1 selectively regulates the extracellular release of TNFR1 exosome-like vesicles from human vascular endothelial cells via an ARF1- and ARF3-dependent mechanism.  相似文献   

2.
Extracellular tumor necrosis factor (TNF) receptors function as TNF-binding proteins that modulate TNF activity. In human vascular endothelial cells (HUVEC), extracellular TNFR1 (type I TNF receptor, TNFRSF1A) is generated by two mechanisms, proteolytic cleavage of soluble TNFR1 ectodomains and the release of full-length 55-kDa TNFR1 in the membranes of exosome-like vesicles. TNFR1 release from HUVEC is known to involve the association between ARTS-1 (aminopeptidase regulator of TNFR1 shedding), an integral membrane aminopeptidase, and TNFR1. The goal of this study was to identify ARTS-1 binding partners that modulate TNFR1 release to the extracellular space. A yeast two-hybrid screen of a human placenta cDNA library showed that NUCB2 (nucleobindin 2), via its helix-loop-helix domains, binds the ARTS-1 extracellular domain. The association between endogenous ARTS-1 and NUCB2 in HUVEC was demonstrated by co-immunoprecipitation experiments, which showed the formation of a calcium-dependent NUCB2.ARTS-1 complex that associated with a subset of total cellular TNFR1. Confocal microscopy experiments demonstrated that this association involved a distinct population of NUCB2-containing intracytoplasmic vesicles. RNA interference was utilized to specifically knock down NUCB2 and ARTS-1 expression, which demonstrated that both are required for the constitutive release of a full-length 55-kDa TNFR1 within exosome-like vesicles as well as the inducible proteolytic cleavage of soluble TNFR1 ectodomains. We propose that calcium-dependent NUCB2.ARTS-1 complexes, which associate with TNFR1 prior to its commitment to pathways that result in either the constitutive release of TNFR1 exosome-like vesicles or the inducible proteolytic cleavage of TNFR1 ectodomains, play an important role in mediating TNFR1 release to the extracellular compartment.  相似文献   

3.
The type I, 55-kDa tumor necrosis factor receptor (TNFR1) is released to the extracellular space by two mechanisms, the constitutive release of TNFR1 exosome-like vesicles and the inducible proteolytic cleavage of TNFR1 ectodomains. Both pathways appear to be regulated by an interaction between TNFR1 and ARTS-1 (aminopeptidase regulator of TNFR1 shedding). Here, we sought to identify ARTS-1-interacting proteins that modulate TNFR1 release. Co-immunoprecipitation identified an association between ARTS-1 and RBMX (RNA-binding motif gene, X chromosome), a 43-kDa heterogeneous nuclear ribonucleoprotein. RNA interference attenuated RBMX expression, which reduced both the constitutive release of TNFR1 exosome-like vesicles and the IL-1β-mediated inducible proteolytic cleavage of soluble TNFR1 ectodomains. Reciprocally, over-expression of RBMX increased TNFR1 exosome-like vesicle release and the IL-1β-mediated inducible shedding of TNFR1 ectodomains. This identifies RBMX as an ARTS-1-associated protein that regulates both the constitutive release of TNFR1 exosome-like vesicles and the inducible proteolytic cleavage of TNFR1 ectodomains.  相似文献   

4.
Extracellular type I tumor necrosis factor receptors (TNFR1) are generated by two mechanisms, proteolytic cleavage of TNFR1 ectodomains and release of full-length TNFR1 in the membranes of exosome-like vesicles. Here, we assessed whether TNFR1 exosome-like vesicles circulate in human blood. Immunoelectron microscopy of human serum demonstrated TNFR1 exosome-like vesicles, with a diameter of 27-36 nm, while Western blots of human plasma showed a 48-kDa TNFR1, consistent with a membrane-associated receptor. Gel filtration chromatography revealed that the 48-kDa TNFR1 in human plasma co-segregated with LDL particles by size, but segregated independently by density, demonstrating that they are distinct from LDL particles. Furthermore, the 48-kDa exosome-associated TNFR1 in human plasma contained a reduced content of N-linked carbohydrates as compared to the 55-kDa membrane-associated TNFR1 from human vascular endothelial cells. Thus, a distinct population of TNFR1 exosome-like vesicles circulate in human plasma and may modulate TNF-mediated inflammation.  相似文献   

5.
TNF, an important mediator of inflammatory and innate immune responses, can be regulated by binding to soluble TNF receptors. The 55-kDa type 1 TNFR (TNFR1), the key receptor for TNF signaling, is released to the extracellular space by two mechanisms, the inducible cleavage and shedding of 34-kDa soluble TNFR1 (sTNFR1) ectodomains and the constitutive release of full-length 55-kDa TNFR1 within exosome-like vesicles. The aim of this study was to identify and characterize TLR signaling pathways that mediate TNFR1 release to the extracellular space. To our knowledge, we demonstrate for the first time that polyinosinic-polycytidylic acid [poly (I:C)], a synthetic dsRNA analogue that signals via TLR3, induces sTNFR1 shedding from human airway epithelial (NCI-H292) cells, whereas ligands for other microbial pattern recognition receptors, including TLR4, TLR7, and nucleotide-binding oligomerization domain containing 2, do not. Furthermore, poly (I:C) selectively induces the cleavage of 34-kDa sTNFR1 ectodomains but does not enhance the release of full-length 55-kDa TNFR1 within exosome-like vesicles. RNA interference experiments demonstrated that poly (I:C)-induced sTNFR1 shedding is mediated via activation of TLR3-TRIF-RIP1 signaling, with subsequent activation of two downstream pathways. One pathway involves the dual oxidase 2-mediated generation of reactive oxygen species, and the other pathway is via the caspase-mediated activation of apoptosis. Thus, the ability of dsRNA to induce the cleavage and shedding of the 34-kDa sTNFR1 from human bronchial epithelial cells represents a novel mechanism by which innate immune responses to viral infections are modulated.  相似文献   

6.
7.
Compartmentalization of cAMP-dependent protein kinase (PKA) is in part mediated by specialized protein motifs in the dimerization domain of the regulatory (R)-subunits of PKA that participate in protein-protein interactions with an amphipathic helix region in A-kinase anchoring proteins (AKAPs). In order to develop a molecular understanding of the subcellular distribution and specific functions of PKA isozymes mediated by association with AKAPs, it is of importance to determine the apparent binding constants of the R-subunit-AKAP interactions. Here, we present a novel approach using surface plasmon resonance (SPR) to examine directly the association and dissociation of AKAPs with all four R-subunit isoforms immobilized on a modified cAMP surface with a high level of accuracy. We show that both AKAP79 and S-AKAP84/D-AKAP1 bind RIIalpha very well (apparent K(D) values of 0.5 and 2 nM, respectively). Both proteins also bind RIIbeta quite well, but with three- to fourfold lower affinities than those observed versus RIIalpha. However, only S-AKAP84/D-AKAP1 interacts with RIalpha at a nanomolar affinity (apparent K(D) of 185 nM). In comparison, AKAP95 binds RIIalpha (apparent K(D) of 5.9 nM) with a tenfold higher affinity than RIIbeta and has no detectable binding to RIalpha. Surface competition assays with increasing concentrations of a competitor peptide covering amino acid residues 493 to 515 of the thyroid anchoring protein Ht31, demonstrated that Ht31, but not a proline-substituted peptide, Ht31-P, competed binding of RIIalpha and RIIbeta to all the AKAPs examined (EC(50)-values from 6 to 360 nM). Furthermore, RIalpha interaction with S-AKAP84/D-AKAP1 was competed (EC(50) 355 nM) with the same peptide. Here we report for the first time an approach to determine apparent rate- and equilibria binding constants for the interaction of all PKA isoforms with any AKAP as well as a novel approach for characterizing peptide competitors that disrupt PKA-AKAP anchoring.  相似文献   

8.
9.
10.
The type 1 55-kDa TNF receptor (TNFR1) is an important modulator of lung inflammation. Here, we hypothesized that the proteasome might regulate TNFR1 shedding from human airway epithelial cells. Treatment of NCI-H292 human airway epithelial cells for 2 h with the specific proteasome inhibitor clasto-lactacystin beta-lactone induced the shedding of proteolytically cleaved TNFR1 ectodomains. Clasto-lactacystin beta-lactone also induced soluble TNFR1 (sTNFR1) release from the A549 pulmonary epithelial cell line, as well as from primary cultures of human small airway epithelial cells and human umbilical vein endothelial cells. Furthermore, sTNFR1 release induced by clasto-lactacystin beta-lactone was not a consequence of apoptosis or the extracellular release of TNFR1 exosome-like vesicles. The clasto-lactacystin beta-lactone-induced increase in TNFR1 shedding was associated with reductions in cell surface receptors and intracytoplasmic TNFR1 stores that were primarily localized to vesicular structures. As expected, the broad-spectrum zinc metalloprotease inhibitor TNF-alpha protease inhibitor 2 (TAPI-2) attenuated clasto-lactacystin beta-lactone-mediated TNFR1 shedding, which is consistent with its ability to inhibit the zinc metalloprotease-catalyzed cleavage of TNFR1 ectodomains. TAPI-2 also reduced TNFR1 on the cell surface and attenuated the clasto-lactacystin beta-lactone-induced reduction of intracytoplasmic TNFR1 vesicles. This suggests that TNFR1 shedding induced by clasto-lactacystin beta-lactone involves the zinc metalloprotease-dependent trafficking of intracytoplasmic TNFR1 vesicles to the cell surface. Together, these data are consistent with the conclusion that proteasomal activity negatively regulates TNFR1 shedding from human airway epithelial cells, thus identifying previously unrecognized roles for the proteasome and zinc metalloproteases in modulating the generation of sTNFRs.  相似文献   

11.
A-Kinase anchor proteins (AKAPs) immobilize and concentrate protein kinase A (PKA) isoforms at specific subcellular compartments. Intracellular targeting of PKA holoenzyme elicits rapid and efficient phosphorylation of target proteins, thereby increasing sensitivity of downstream effectors to cAMP action. AKAP121 targets PKA to the cytoplasmic surface of mitochondria. Here we show that conditional expression of AKAP121 in PC12 cells selectively enhances cAMP.PKA signaling to mitochondria. AKAP121 induction stimulates PKA-dependent phosphorylation of the proapoptotic protein BAD at Ser(155), inhibits release of cytochrome c from mitochondria, and protects cells from apoptosis. An AKAP121 derivative mutant that localizes on mitochondria but does not bind PKA down-regulates PKA signaling to the mitochondria and promotes apoptosis. These findings indicate that PKA anchored by AKAP121 transduces cAMP signals to the mitochondria, and it may play an important role in mitochondrial physiology.  相似文献   

12.
Although Cystic fibrosis transmembrane conductance regulator (CFTR) has been shown to regulate the activity of NHE3, the potential reciprocal interaction of NHE3 to modulate the protein kinase A (PKA)-dependent regulation of CFTR in epithelial cells is still unknown. In the present work, we describe experiments to define the interactions between CFTR and NHE3 with the regulatory, scaffolding protein, NHERF that organize their PKA-dependent regulation in a renal epithelial cell line that expresses endogenous CFTR. The expression of rat NHE3 significantly decreased PKA-dependent activation of CFTR without altering CFTR expression, and this decrease was prevented by mutation of either of the two rat NHE3 PKA target serines to alanine (S552A or S605A). Inhibition of CFTR expression by antisense treatment resulted in an acute decrease in PKA-dependent regulation of NHE3 activity. CFTR, NHE3, and ezrin were recognized by NHERF-2 but not NHERF-1 in glutathione S-transferase pull-down experiments. Ezrin may function as a protein kinase A anchoring protein (AKAP) in this signaling complex, because blocking the binding of PKA to an AKAP by incubation with the S-Ht31 peptide inhibited the PKA-dependent regulation of CFTR in the absence of NHE3. In the A6-NHE3 cells S-Ht31 blocked the PKA regulation of NHE3 whereas it now failed to affect the regulation of CFTR. We conclude that CFTR and NHE3 reciprocally interact via a shared regulatory complex comprised of NHERF-2, ezrin, and PKA.  相似文献   

13.
14.
Association of PKA with the AMPA receptor GluR1 subunit via the A kinase anchor protein AKAP150 is crucial for GluR1 phosphorylation. Mutating the AKAP150 gene to specifically prevent PKA binding reduced PKA within postsynaptic densities (>70%). It abolished hippocampal LTP in 7-12 but not 4-week-old mice. Inhibitors of PKA and of GluR2-lacking AMPA receptors blocked single tetanus LTP in hippocampal slices of 8 but not 4-week-old WT mice. Inhibitors of GluR2-lacking AMPA receptors also prevented LTP in 2 but not 3-week-old mice. Other studies demonstrate that GluR1 homomeric AMPA receptors are the main GluR2-lacking AMPA receptors in adult hippocampus and require PKA for their functional postsynaptic expression during potentiation. AKAP150-anchored PKA might thus critically contribute to LTP in adult hippocampus in part by phosphorylating GluR1 to foster postsynaptic accumulation of homomeric GluR1 AMPA receptors during initial LTP in 8-week-old mice.  相似文献   

15.
Protein kinases and phosphatases are targeted through association with anchoring proteins that tether the enzymes to subcellular structures and organelles. Through in situ fluorescent techniques using a Green Fluorescent Protein tag, we have mapped membrane-targeting domains on AKAP79, a multivalent anchoring protein that binds the cAMP-dependent protein kinase (PKA), protein kinase C (PKC) and protein phosphatase 2B, calcineurin (CaN). Three linear sequences termed region A (residues 31-52), region B (residues 76-101) and region C (residues 116-145) mediate targeting of AKAP79 in HEK-293 cells and cortical neurons. Analysis of these targeting sequences suggests that they contain putative phosphorylation sites for PKA and PKC and are rich in basic and hydrophobic amino acids similar to a class of membrane-targeting domains which bind acidic phospholipids and calmodulin. Accordingly, the AKAP79 basic regions mediate binding to membrane vesicles containing acidic phospholipids including phosphatidylinositol-4, 5-bisphosphate [PtdIns(4,5)P2] and this binding is regulated by phosphorylation and calcium-calmodulin. Finally, AKAP79 was shown to be phosphorylated in HEK-293 cells following stimulation of PKA and PKC, and activation of PKC or calmodulin was shown to release AKAP79 from membrane particulate fractions. These findings suggest that AKAP79 might function in cells not only as an anchoring protein but also as a substrate and effector for the anchored kinases and phosphatases.  相似文献   

16.
Heterotrimeric G proteins and protein kinase A (PKA) are two important transmitters that transfer signals from a wide variety of cell surface receptors to generate physiological responses. The established mechanism of PKA activation involves the activation of the Gs-cAMP pathway. Binding of cAMP to the regulatory subunit of PKA (rPKA) leads to a release and subsequent activation of a catalytic subunit of PKA (cPKA). Here, we report a novel mechanism of PKA stimulation that does not require cAMP. Using yeast two-hybrid screening, we found that the alpha subunit of G13 protein interacted with a member of the PKA-anchoring protein family, AKAP110. Using in vitro binding and coimmunoprecipitation assays, we have shown that only activated G alpha 13 binds to AKAP110, suggesting a potential role for AKAP110 as a G alpha subunit effector protein. Importantly, G alpha 13, AKAP110, rPKA, and cPKA can form a complex, as shown by coimmunoprecipitation. By characterizing the functional significance of the G alpha 13-AKAP110 interaction, we have found that G alpha 13 induced release of the cPKA from the AKAP110-rPKA complex, resulting in a cAMP-independent PKA activation. Finally, AKAP110 significantly potentiated G alpha 13-induced activation of PKA. Thus, AKAP110 provides a link between heterotrimeric G proteins and cAMP-independent activation of PKA.  相似文献   

17.
The mediation of cAMP effects by specific pools of protein kinase A (PKA) targeted to distinct subcellular domains raises the question of how inactivation of the cAMP signal is achieved locally and whether similar targeting of phosphodiesterases (PDEs) to sites of cAMP/PKA action could be observed. Here, we demonstrate that Sertoli cells of the testis contain an insoluble PDE4D3 isoform, which is shown by immunofluorescence to target to centrosomes. Staining of PDE4D and PKA shows co-localization of PDE4D with PKA-RIIalpha and RIIbeta in the centrosomal region. Co-precipitation of RII subunits and PDE4D3 from cytoskeletal extracts indicates a physical association of the two proteins. Distribution of PDE4D overlaps with that of the centrosomal PKA-anchoring protein, AKAP450, and AKAP450, PDE4D3, and PKA-RIIalpha co-immunoprecipitate. Finally, both PDE4D3 and PKA co-precipitate with a soluble fragment of AKAP450 encompassing amino acids 1710 to 2872 when co-expressed in 293T cells. Thus, a centrosomal complex that includes PDE4D and PKA constitutes a novel signaling unit that may provide accurate spatio-temporal modulation of cAMP signals.  相似文献   

18.
AKAP121 focuses distinct signaling events from membrane to mitochondria by binding and targeting cAMP-dependent protein kinase (PKA), protein tyrosine phosphatase (PTPD1), and mRNA. We find that AKAP121 also targets src tyrosine kinase to mitochondria via PTPD1. AKAP121 increased src-dependent phosphorylation of mitochondrial substrates and enhanced the activity of cytochrome c oxidase, a component of the mitochondrial respiratory chain. Mitochondrial membrane potential and ATP oxidative synthesis were enhanced by AKAP121 in an src- and PKA-dependent manner. Finally, siRNA-mediated silencing of endogenous AKAP121 drastically impaired synthesis and accumulation of mitochondrial ATP. These findings indicate that AKAP121, through its role in enhancing cAMP and tyrosine kinase signaling to distal organelles, is an important regulator in mitochondrial metabolism.  相似文献   

19.
Although RII protein kinase A (PKA) regulatory subunits are constitutively localized to discrete cellular compartments through binding to A-kinase-anchoring proteins (AKAPs), RI subunits are primarily diffuse in the cytoplasm. In this paper, we report a novel AKAP-dependent localization of RIα to distinct organelles, specifically, multivesicular bodies (MVBs). This localization depends on binding to AKAP11, which binds tightly to free RIα or RIα in complex with catalytic subunit (holoenzyme). However, recruitment to MVBs occurs only with the release of PKA catalytic subunit (PKAc). This recruitment is reversed by reassociation with PKAc, and it is disrupted by the presence of AKAP peptides, mutations in the RIα AKAP-binding site, or knockdown of AKAP11. Cyclic adenosine monophosphate binding not only unleashes active PKAc but also leads to the targeting of AKAP11:RIα to MVBs. Therefore, we show that the RIα holoenzyme is part of a signaling complex with AKAP11, in which AKAP11 may direct RIα functionality after disassociation from PKAc. This model defines a new paradigm for PKA signaling.  相似文献   

20.
Gravin, a multivalent A-kinase anchoring protein (AKAP), localizes to the cell periphery in several cell types and is postulated to target PKA and other binding partners to the plasma membrane. An N-terminal myristoylation sequence and three regions rich in basic amino acids are proposed to mediate this localization. Reports indicating that phorbol ester affects the distribution of SSeCKS, the rat orthologue of gravin, further suggest that PKC may also regulate the subcellular distribution of gravin, which in turn may affect PKA distribution. In this study, quantitative confocal microscopy of cells expressing full-length and mutant gravin-EGFP constructs lacking the proposed targeting domains revealed that either the N-myristoylation site or the polybasic regions were sufficient to target gravin to the cell periphery. Moreover, phorbol ester treatment induced redistribution of gravin-EGFP from the cell periphery to a juxtanuclear vesicular compartment, but this required the presence of the N-myristoylation site. Confocal microscopy further revealed that not only did gravin-EGFP target a PKA RII-ECFP construct to the cell periphery, but PKC activation resulted in redistribution of the gravin and PKA constructs to the same subcellular site. It is postulated that this dynamic response by gravin to PKC activity may mediate PKC dependent control of PKA activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号