首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Collaborative and in-house laboratory trials were conducted to evaluate Cryptosporidium oocyst and Giardia cyst recoveries from source and finished-water samples by utilizing the Filta-Max system and U.S. Environmental Protection Agency (EPA) methods 1622 and 1623. Collaborative trials with the Filta-Max system were conducted in accordance with manufacturer protocols for sample collection and processing. The mean oocyst recovery from seeded, filtered tap water was 48.4% +/- 11.8%, while the mean cyst recovery was 57.1% +/- 10.9%. Recovery percentages from raw source water samples ranged from 19.5 to 54.5% for oocysts and from 46.7 to 70.0% for cysts. When modifications were made in the elution and concentration steps to streamline the Filta-Max procedure, the mean percentages of recovery from filtered tap water were 40.2% +/- 16.3% for oocysts and 49.4% +/- 12.3% for cysts by the modified procedures, while matrix spike oocyst recovery percentages ranged from 2.1 to 36.5% and cyst recovery percentages ranged from 22.7 to 68.3%. Blinded matrix spike samples were analyzed quarterly as part of voluntary participation in the U.S. EPA protozoan performance evaluation program. A total of 15 blind samples were analyzed by using the Filta-Max system. The mean oocyst recovery percentages was 50.2% +/- 13.8%, while the mean cyst recovery percentages was 41.2% +/- 9.9%. As part of the quality assurance objectives of methods 1622 and 1623, reagent water samples were seeded with a predetermined number of Cryptosporidium oocysts and Giardia cysts. Mean recovery percentages of 45.4% +/- 11.1% and 61.3% +/- 3.8% were obtained for Cryptosporidium oocysts and Giardia cysts, respectively. These studies demonstrated that the Filta-Max system meets the acceptance criteria described in U.S. EPA methods 1622 and 1623.  相似文献   

2.
When determining the recovery efficiency of a procedure for the detection of Cryptosporidium or the removal efficiency of a treatment process, it is necessary to accurately enumerate a 'seed dose'. Conventional techniques for this are highly variable and consequently, can result in misleading data. In this study, a flow cytometric method was developed for the production of suspensions of Cryptosporidium oocysts in which the number of organisms could be precisely determined. A Becton Dickinson FACScalibur flow cytometer was employed to produce oocyst suspensions containing 100 oocysts. Analysis of these suspensions resulted in a mean dose of 99.5 oocysts (S.D. = 1.1, %cv = 1.1). These results indicate that the use of such suspensions to seed test systems generates far more accurate data than is presently possible using conventional techniques. In addition, the use of immunomagnetic separation (IMS) for the isolation of oocysts from three different water matrices, after seeding with oocysts counted using flow cytometry, was investigated. The recovery efficiency of the IMS procedure was found to be high, with the percentage recovery of oocysts ranging from 82.3 to 86.3%, and the use of precise numbers of oocysts allowed accurate recovery efficiency data to be generated. A laser scanning instrument (ChemScan RDI) was employed for the rapid detection and enumeration of oocysts after capture using membrane filtration. This technique was found to be faster and easier to perform than conventional epifluorescence microscopy. These findings demonstrate that the ChemScan RDI system may be used as alternative procedure for the routine examination of IMS supernatant fluids for the presence of Cryptosporidium.  相似文献   

3.
Cryptosporidium parvum can be found in both source and drinking water and has been reported to cause serious waterborne outbreaks which threaten public health safety. The U.S. Environmental Protection Agency has developed method 1622 for detection of Cryptosporidium oocysts present in water. Method 1622 involves four key processing steps: filtration, immunomagnetic separation (IMS), fluorescent-antibody (FA) staining, and microscopic evaluation. The individual performance of each of these four steps was evaluated in this study. We found that the levels of recovery of C. parvum oocysts at the IMS-FA and FA staining stages were high, averaging more than 95%. In contrast, the level of recovery declined significantly, to 14.4%, when the filtration step was incorporated with tap water as a spiking medium. This observation suggested that a significant fraction of C. parvum oocysts was lost during the filtration step. When C. parvum oocysts were spiked into reclaimed water, tap water, microfiltration filtrate, and reservoir water, the highest mean level of recovery of (85.0% +/- 5.2% [mean +/- standard deviation]) was obtained for the relatively turbid reservoir water. Further studies indicated that it was the suspended particles present in the reservoir water that contributed to the enhanced C. parvum oocyst recovery. The levels of C. parvum oocyst recovery from spiked reservoir water with different turbidities indicated that particle size and concentration could affect oocyst recovery. Similar observations were also made when silica particles of different sizes and masses were added to seeded tap water. The optimal particle size was determined to be in the range from 5 to 40 micro m, and the corresponding optimal concentration of suspended particles was 1.42 g for 10 liters of tap water.  相似文献   

4.
Numerous studies have documented the presence of Cryptosporidium parvum, an anthropozoonotic enteric parasite, in molluscan shellfish harvested for commercial purposes. Getting accurate estimates of Cryptosporidium contamination levels in molluscan shellfish is difficult because recovery efficiencies are dependent on the isolation method used. Such estimates are important for determining the human health risks posed by consumption of contaminated shellfish. In the present study, oocyst recovery was compared for multiple methods used to isolate Cryptosporidium parvum oocysts from oysters (Crassostrea virginica) after exposure to contaminated water for 24 h. The immunomagnetic separation (IMS) and immunofluorescent antibody procedures from Environmental Protection Agency method 1623 were adapted for these purposes. Recovery efficiencies for the different methods were also determined using oyster tissue homogenate and hemolymph spiked with oocysts. There were significant differences in recovery efficiency among the different treatment groups (P < 0.05). We observed the highest recovery efficiency (i.e., 51%) from spiked samples when hemolymph was kept separate during the homogenization of the whole oyster meat but was then added to the pellet following diethyl ether extraction of the homogenate, prior to IMS. Using this processing method, as few as 10 oocysts could be detected in a spiked homogenate sample by nested PCR. In the absence of water quality indicators that correlate with Cryptosporidium contamination levels, assessment of shellfish safety may rely on accurate quantification of oocyst loads, necessitating the use of processing methods that maximize oocyst recovery. The results from this study have important implications for regulatory agencies charged with determining the safety of molluscan shellfish for human consumption.  相似文献   

5.
Cryptosporidium is a zoonotic coccidian parasite associated with diarrhea, and the disinfectant-resistant oocysts are threats to public health even in industrialized countries. In order to make an accurate assessment of the risk to public health, a detection method that has a high recovery rate of oocysts in water is required. In this study, we developed a new filter-eluting solution that facilitates more efficient recovery of Cryptosporidium oocysts from different kinds of water samples. The filter-eluting solution, referred to as PET, consists of sodium pyrophosphate (0.02%), Tween 80 (0.01%) and trisodium EDTA (0.03%). By using PET instead of conventional filter-eluting solutions, the average recovery rate significantly increased from 25.5+/-15.1% to 43.1+/-13.9% (p<0.05). The improved oocyst recovery was likely due to the increased separation of the oocysts from debris trapped on the filter membrane as well as increased capture of the oocysts by immunomagnetic beads. We recommend that PET be used as the filter-eluting solution for detection of Cryptosporidium oocysts in environmental water.  相似文献   

6.
An existing method for the detection of Cryptosporidium oocysts in water was modified to investigate oocyst prevalence in large volumes of water. Surface waters and sewage effluents were filtered, eluted from the filter, and concentrated using centrifugation. The resultant pellet was then homogenized, sonicated, and placed on a sucrose gradient to separate oocysts from the sediment. The uppermost gradient layer was then examined by immunofluorescence using a labeled monoclonal antibody. Using this technique, average numbers of oocysts detected in raw and treated sewage were 5.18 X 10(3) and 1.30 X 10(3)/L, respectively. Filtered sewage effluents had significantly lower numbers of oocysts (10.0/L). These data show that sand filtration may reduce the concentrations of this parasite in waste waters. Highly variable oocyst numbers were encountered in surface waters. Since Cryptosporidium oocysts are frequently present in environmental waters, they could be responsible for waterborne outbreaks of disease.  相似文献   

7.
A new strategy for the detection of infectious Cryptosporidium parvum oocysts in water samples, which combines immunomagnetic separation (IMS) for recovery of oocysts with in vitro cell culturing and PCR (CC-PCR), was field tested with a total of 122 raw source water samples and 121 filter backwash water grab samples obtained from 25 sites in the United States. In addition, samples were processed by Percoll-sucrose flotation and oocysts were detected by an immunofluorescence assay (IFA) as a baseline method. Samples of different water quality were seeded with viable C. parvum to evaluate oocyst recovery efficiencies and the performance of the CC-PCR protocol. Mean method oocyst recoveries, including concentration of seeded 10-liter samples, from raw water were 26.1% for IMS and 16.6% for flotation, while recoveries from seeded filter backwash water were 9.1 and 5.8%, respectively. There was full agreement between IFA oocyst counts of IMS-purified seeded samples and CC-PCR results. In natural samples, CC-PCR detected infectious C. parvum in 4.9% (6) of the raw water samples and 7.4% (9) of the filter backwash water samples, while IFA detected oocysts in 13.1% (16) of the raw water samples and 5.8% (7) of the filter backwash water samples. All CC-PCR products were confirmed by cloning and DNA sequence analysis and were greater than 98% homologous to the C. parvum KSU-1 hsp70 gene product. DNA sequence analysis also revealed reproducible nucleotide substitutions among the hsp70 fragments, suggesting that several different strains of infectious C. parvum were detected.  相似文献   

8.
AIMS: Evaluation of three flocculation methods for the purification of Cryptosporidium parvum oocysts from tap water. METHODS AND RESULTS: Ferric sulphate, aluminium sulphate and calcium carbonate were compared for their recovery efficiency of C. parvum oocysts from tap water. Lower mean recovery was achieved by calcium carbonate (38.8%) compared with ferric sulphate (61.5%) and aluminium sulphate (58.1%) for the recovery of 2.5 x 10(5) oocysts l(-1); 2.5 oocysts l(-1) and 1 oocyst l(-1) were adequately purified using ferric sulphate flocculation. In vitro excystation experiments showed that ferric sulphate flocculation does not markedly reduce the viability of oocysts. CONCLUSIONS: Ferric sulphate flocculation is a simple and effective tool for the purification of C. parvum oocysts from tap water. SIGNIFICANCE AND IMPACT OF THE STUDY: The high recovery rates and low impact on oocyst viability provided by ferric sulphate flocculation might be useful for the detection of Cryptosporidium oocysts in environmental water samples.  相似文献   

9.
The protozoan parasite Cryptosporidium parvum is known to occur widely in both raw and drinking water and is the cause of waterborne outbreaks of gastroenteritis throughout the world. The routinely used method for the detection of Cryptosporidium oocysts in water is based on an immunofluorescence assay (IFA). It is both time-consuming and nonspecific for the human pathogenic species C. parvum. We have developed a TaqMan polymerase chain reaction (PCR) test that accurately quantifies C. parvum oocysts in treated and untreated water samples. The protocol consisted of the following successive steps: Envirochek capsule filtration, immunomagnetic separation (IMS), thermal lysis followed by DNA purification using Nanosep centrifugal devices and, finally, real-time PCR using fluorescent TaqMan technology. Quantification was accomplished by comparing the fluorescence signals obtained from test samples with those from standard dilutions of C. parvum oocysts. This IMS-real-time PCR assay permits rapid and reliable quantification over six orders of magnitude, with a detection limit of five oocysts for purified oocyst solutions and eight oocysts for spiked water samples. Replicate samples of spiked tap water and Seine River water samples (with approximately 78 and 775 oocysts) were tested. C. parvum oocyst recoveries, which ranged from 47.4% to 99% and from 39.1% to 68.3%, respectively, were significantly higher and less variable than those reported using the traditional US Environmental Protection Agency (USEPA) method 1622. This new molecular method offers a rapid, sensitive and specific alternative for C. parvum oocyst quantification in water.  相似文献   

10.
Cryptosporidium parvum and C. hominis have been the cause of large and serious outbreaks of waterborne cryptosporidiosis. A specific and sensitive recovery-detection method is required for control of this pathogen in drinking water. In the present study, nested PCR-restriction fragment length polymorphism (RFLP), which targets the divergent Cpgp40/15 gene, was developed. This nested PCR detected only the gene derived from C. parvum and C. hominis strains, and RFLP was able to discriminate between the PCR products from C. parvum and C. hominis. To evaluate the sensitivity of nested PCR, C. parvum oocysts inoculated in water samples of two different turbidities were recovered by immunomagnetic separation (IMS) and detected by nested PCR and fluorescent antibody assay (FA). Genetic detection by nested PCR and oocyst number confirmed by FA were compared, and the results suggested that detection by nested PCR depends on the confirmed oocyst number and that nested PCR in combination with IMS has the ability to detect a single oocyst in a water sample. We applied an agitation procedure with river water solids to which oocysts were added to evaluate the recovery and detection by the procedure in environmental samples and found some decrease in the rate of detection by IMS.  相似文献   

11.
U.S. EPA Methods 1622 and 1623 are used to detect and quantify Cryptosporidium oocysts in water. The protocol consists of filtration, immunomagnetic separation (IMS), staining with a fluorescent antibody, and microscopic analysis. Microscopic analysis includes detection by fluorescent antibody and confirmation by the demonstration of 1-4 sporozoites or nuclei after staining with 4',6-diamidino-2-phenyl indole dihydrochloride (DAPI). The purpose of this study was to evaluate a new IMS dissociation, a 10-min incubation at 80 degrees C. Heat dissociation improved the average oocyst recovery from 41% to 71% in seeded reagent water, and from 10% to 51% in seeded river samples. The average DAPI confirmation rate improved from 49% to 93% in reagent water, and from 48% to 73% in river samples. This modification improved both oocyst recovery and confirmation.  相似文献   

12.
Purification methods for Cryptosporidium oocysts are usually selected on the basis of recovery yield, but the amount of particulate debris in environmental matrices could limit efficiency of oocyst detection by microscopic examination or PCR detection. Previous studies have shown that the standard immunomagnetic separation (IMS) procedure would not be the most suitable method for oocyst purification from turbid matrices. We compared the capacity of Percoll-sucrose flotation and six other density-based purification methods to achieve selective separation of Cryptosporidium oocysts from particulate debris. Rate of oocyst recovery and particulate loading in the purified suspensions were chosen as comparison criteria for the different purification methods. In most earlier studies, the chemical treatments employed to obtain a purified oocyst suspension modify the surface properties of oocysts in spiked samples. Assuming this produces unrealistic conditions affecting the evaluation of purification methods, we performed the present study with native oocysts. Flotation and gradient procedures were tested with and without formaldehyde ethyl acetate (FEA) separation. FEA separation was found to be unsuitable. Filtration and Percoll gradient did not allow selective oocyst separation from debris. Among the purification methods suitable for routine microscopic examination, Percoll-sucrose flotation provided the best recovery rates. For automated enumeration systems or PCR detection, potassium bromide and especially Nycodenz gradients appeared to be the most suitable purification methods. Potassium bromide and Nycodenz gradients provided the best balance between oocyst recovery and particulate load.  相似文献   

13.
Numerous studies have documented the presence of Cryptosporidium parvum, an anthropozoonotic enteric parasite, in molluscan shellfish harvested for commercial purposes. Getting accurate estimates of Cryptosporidium contamination levels in molluscan shellfish is difficult because recovery efficiencies are dependent on the isolation method used. Such estimates are important for determining the human health risks posed by consumption of contaminated shellfish. In the present study, oocyst recovery was compared for multiple methods used to isolate Cryptosporidium parvum oocysts from oysters (Crassostrea virginica) after exposure to contaminated water for 24 h. The immunomagnetic separation (IMS) and immunofluorescent antibody procedures from Environmental Protection Agency method 1623 were adapted for these purposes. Recovery efficiencies for the different methods were also determined using oyster tissue homogenate and hemolymph spiked with oocysts. There were significant differences in recovery efficiency among the different treatment groups (P < 0.05). We observed the highest recovery efficiency (i.e., 51%) from spiked samples when hemolymph was kept separate during the homogenization of the whole oyster meat but was then added to the pellet following diethyl ether extraction of the homogenate, prior to IMS. Using this processing method, as few as 10 oocysts could be detected in a spiked homogenate sample by nested PCR. In the absence of water quality indicators that correlate with Cryptosporidium contamination levels, assessment of shellfish safety may rely on accurate quantification of oocyst loads, necessitating the use of processing methods that maximize oocyst recovery. The results from this study have important implications for regulatory agencies charged with determining the safety of molluscan shellfish for human consumption.  相似文献   

14.
Immunomagnetic separation (IMS) has been specified as a standard method for the measurement of Cryptosporidium in some countries. In this study, the IMS method was evaluated on the basis of the recovery efficiencies of Cryptosporidium oocysts at various IMS operation conditions. The average recovery for different Cryptosporidium concentrations in deionized water was 82.6 +/- 18.2% (n = 52). No significant change in recovery was observed by altering the debris ratio of the water samples. The efficiency was increased by prolonging the reaction time, and by increasing the amount of immunomagnetic beads. The recoveries of oocysts seeded in an Eppendorf with a small reaction volume were similar to those seeded in glass tubes with 10 times the reaction volume. The recovery efficiency of oocysts was reduced significantly when the reaction buffer was replaced by PBS. In conclusion, this method has good reproducibility and high recovery.  相似文献   

15.
AIMS: To determine the occurrence and levels of Cryptosporidium parvum oocysts in wastewater and surface waters in north-eastern Spain. METHODS AND RESULTS: Samples from five sewage treatment plants were taken monthly and quarterly during 2003. In addition, water was collected monthly from the River Llobregat (NE Spain) during the period from 2001 to 2003. All samples were analysed by filtration on cellulose acetate filters or through Envirocheck using EPA method 1623, followed by immunomagnetic separation and examination by laser scanning cytometry. All raw sewage, secondary effluent and river water samples tested were positive for Cryptosporidium oocysts. Of the tertiary sewage effluents tested, 71% were positive for Cryptosporidium oocysts. The proportion of viable oocysts varied according to the sample. CONCLUSIONS: Two clear maxima were observed during spring and autumn in raw sewage, showing a seasonal distribution and a correlation with the number of cryptosporidiosis cases and rainfall events. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides the first data on the occurrence of Cryptosporidium oocysts in natural waters in north-eastern Spain.  相似文献   

16.
Immunomagnetic separation (IMS) procedures for the simultaneous isolation of Cryptosporidium oocysts and Giardia cysts have recently become available. We validated Dynal's GC-Combo IMS kit using source water at three turbidity levels (5000, 500 and 50 nephelometric turbidity units [ntu]) obtained from different geographical locations and spiked with approximately 9--11 (oo)cysts per ml. Mean recoveries of Cryptosporidium oocysts and Giardia cysts in deionized water were 62% and 69%, respectively. In turbid water matrices, mean recoveries of Cryptosporidium oocysts were between 55.9% and 83.1% while mean recoveries of cysts were between 61.1% and 89.6%. Marginally higher recoveries of the heat inactivated (oo)cysts were observed (119.4% Cryptosporidium oocysts and 90.9% Giardia cysts) in deionized water when compared with recoveries of viable (oo)cysts (69.7% Cryptosporidium oocysts and 79% Giardia cysts). Age of (oo)cysts on recoveries using the GC-Combo IMS kit demonstrated no effects up to 20 months old. Recovery of Giardia cysts was consistent for isolates aged up to 8 months (81.4%), however, a significant reduction in recoveries was noted at 20 months age. Recoveries of low levels (5 and 10 (oo)cysts) of Cryptosporidium oocysts and Giardia cysts in deionized water using IMS ranged from 51.3% to 78% and from 47.6% to 90.0%, respectively. Results of this study indicate that Dynal's GC-Combo IMS kit is an efficient technique to separate Cryptosporidium/Giardia from turbid matrices and yields consistent, reproducible recoveries. The use of fresh (recently voided and purified) (oo)cysts, aged (oo)cysts, viable and heat-inactivated (oo)cysts indicated that these parameters do not influence IMS performance.  相似文献   

17.
Cryptosporidium parvum is a waterborne pathogen that poses potential risk to drinking water consumers. The detection of Cryptosporidium oocysts, its transmissive stage, is used in the latest U.S. Environmental Protection Agency method 1622, which utilizes organic fluorophores such as fluorescein isothiocyanate (FITC) to label the oocysts by conjugation with anti-Cryptosporidium sp. monoclonal antibody (MAb). However, FITC exhibits low resistance to photodegradation. This property will inevitably limit the detection accuracy after a short period of continuous illumination. In view of this, the use of inorganic fluorophores, such as quantum dot (QD), which has a high photobleaching threshold, in place of the organic fluorophores could potentially enhance oocyst detection. In this study, QD605-streptavidin together with biotinylated MAb was used for C. parvum oocyst detection. The C. parvum oocyst detection sensitivity increased when the QD605-streptavidin concentration was increased from 5 to 15 nM and eventually leveled off at a saturation concentration of 20 nM and above. The minimum QD605-streptavidin saturation concentration for detecting up to 4,495 +/- 501 oocysts (mean +/- standard deviation) was determined to be 20 nM. The difference in the enumeration between 20 nM QD605-streptavidin with biotinylated MAb and FITC-MAb was insignificant (P > 0.126) when various C. parvum oocyst concentrations were used. The QD605 was highly photostable while the FITC intensity decreased to 19.5% +/- 5.6% of its initial intensity after 5 min of continuous illumination. The QD605-based technique was also shown to be sensitive for oocyst detection in reservoir water. This observation showed that the QD method developed in this study was able to provide a sensitive technique for detecting C. parvum oocysts with the advantage of having a high photobleaching threshold.  相似文献   

18.
A new strategy for the detection of infectious Cryptosporidium parvum oocysts in water samples, which combines immunomagnetic separation (IMS) for recovery of oocysts with in vitro cell culturing and PCR (CC-PCR), was field tested with a total of 122 raw source water samples and 121 filter backwash water grab samples obtained from 25 sites in the United States. In addition, samples were processed by Percoll-sucrose flotation and oocysts were detected by an immunofluorescence assay (IFA) as a baseline method. Samples of different water quality were seeded with viable C. parvum to evaluate oocyst recovery efficiencies and the performance of the CC-PCR protocol. Mean method oocyst recoveries, including concentration of seeded 10-liter samples, from raw water were 26.1% for IMS and 16.6% for flotation, while recoveries from seeded filter backwash water were 9.1 and 5.8%, respectively. There was full agreement between IFA oocyst counts of IMS-purified seeded samples and CC-PCR results. In natural samples, CC-PCR detected infectious C. parvum in 4.9% (6) of the raw water samples and 7.4% (9) of the filter backwash water samples, while IFA detected oocysts in 13.1% (16) of the raw water samples and 5.8% (7) of the filter backwash water samples. All CC-PCR products were confirmed by cloning and DNA sequence analysis and were greater than 98% homologous to the C. parvum KSU-1 hsp70 gene product. DNA sequence analysis also revealed reproducible nucleotide substitutions among the hsp70 fragments, suggesting that several different strains of infectious C. parvum were detected.  相似文献   

19.
This study evaluated clams as bioindicators of fecal protozoan contamination using three approaches: (i) clam tissue spiking experiments to compare several detection techniques; (ii) clam tank exposure experiments to evaluate clams that had filtered Cryptosporidium oocysts from inoculated water under a range of simulated environmental conditions; (iii) sentinel clam outplanting to assess the distribution and magnitude of fecal contamination in three riverine systems in California. Our spiking and tank experiments showed that direct fluorescent antibody (DFA), immunomagnetic separation (IMS) in combination with DFA, and PCR techniques could be used to detect Cryptosporidium in clam tissues. The most analytically sensitive technique was IMS concentration with DFA detection of oocysts in clam digestive gland tissues, which detected 10 oocysts spiked into a clam digestive gland 83% of the time. In the tank experiment, oocyst dose and clam collection time were significant predictors for detecting Cryptosporidium parvum oocysts in clams. In the wild clam study, Cryptosporidium and Giardia were detected in clams from all three study regions by IMS-DFA analysis of clam digestive glands, with significant variation by sampling year and season. The presence of C. parvum DNA in clams from riverine ecosystems was confirmed with PCR and DNA sequence analysis.  相似文献   

20.
The protozoan parasite Cryptosporidium parvum is known to occur widely in both source and drinking water and has caused waterborne outbreaks of gastroenteritis. To improve monitoring, the U.S. Environmental Protection Agency developed method 1622 for isolation and detection of Cryptosporidium oocysts in water. Method 1622 is performance based and involves filtration, concentration, immunomagnetic separation, fluorescent-antibody staining and 4',6-diamidino-2-phenylindole (DAPI) counterstaining, and microscopic evaluation. The capsule filter system currently recommended for method 1622 was compared to a hollow-fiber ultrafilter system for primary concentration of C. parvum oocysts in seeded reagent water and untreated surface waters. Samples were otherwise processed according to method 1622. Rates of C. parvum oocyst recovery from seeded 10-liter volumes of reagent water in precision and recovery experiments with filter pairs were 42% (standard deviation [SD], 24%) and 46% (SD, 18%) for hollow-fiber ultrafilters and capsule filters, respectively. Mean oocyst recovery rates in experiments testing both filters on seeded surface water samples were 42% (SD, 27%) and 15% (SD, 12%) for hollow-fiber ultrafilters and capsule filters, respectively. Although C. parvum oocysts were recovered from surface waters by using the approved filter of method 1622, the recovery rates were significantly lower and more variable than those from reagent grade water. In contrast, the disposable hollow-fiber ultrafilter system was compatible with subsequent method 1622 processing steps, and it recovered C. parvum oocysts from seeded surface waters with significantly greater efficiency and reliability than the filter suggested for use in the version of method 1622 tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号