首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A Bacillus subtilis malate dehydrogenase gene.   总被引:2,自引:1,他引:1       下载免费PDF全文
A Bacillus subtilis gene for malate dehydrogenase (citH) was found downstream of genes for citrate synthase and isocitrate dehydrogenase. Disruption of citH caused partial auxotrophy for aspartate and a requirement for aspartate during sporulation. In the absence of aspartate, citH mutant cells were blocked at a late stage of spore formation.  相似文献   

2.
1. Starch gel electrophoresis of adult brine shrimps from 15 populations revealed little intrapopulation polymorphism in NAD-dependent malate dehydrogenase (MDH) isozymes or in the two fastest esterases (demonstrated with alpha-naphthyl propionate as substrate). 2. Interpopulation differences could be summarized as three different electrophoresis band patterns for the five- to seven-banded MDH isozymes and another three patterns for the two fastest esterases. 3. These differences in electrophoresis patterns divide the 15 Artemia populations into four categories (each containing one to seven populations) which may be distinguished by isozyme content and which are congruent with categories established by the criterion of reproductive isolation in an earlier study.  相似文献   

3.
Bacillus subtilis strain 168 possesses an NAD-dependent glutamate dehydrogenase. The level of this enzyme is influenced by the stage of growth, the source of nitrogen, and a high rate of tryptophan biosynthesis. The enzyme appears to serve an anabolic function and, therefore, must be considered as a possible route for the incorporation of inorganic nitrogen into an organic form.  相似文献   

4.
5.
6.
NADH dehydrogenase from Bacillus subtilis W23 has been isolated from membrane vesicles solubilized with 0.1% Triton X-100 by hydrophobic interaction chromatography on an octyl-Sepharose CL-4B column. A 70-fold purification is achieved. No other components could be detected with sodium dodecyl sulphate polyacrylamide gel electrophoresis. Ferguson plots of the purified protein indicated no anomalous binding of sodium dodecyl sulphate and an accurate molecular weight of 63 000 could be determined. From the amino acid composition a polarity of 43.8% was calculated indicating that the protein is not very hydrophobic. Optical absorption spectra and acid extraction of the enzyme chromophore followed by thin-layer chromatography showed that the enzyme contains 1 molecule FAD/molecule. The enzyme was found to be specific for NADH. NADPH is oxidized at a rate which is less than 6% of the rate of NADH oxidation. The activity of the enzyme as determined by NADH:3-(4'-5'-dimethyl-thiazol-2-yl)2,4-diphenyltetrazolium bromide oxidoreduction is optimal at 37 C and pH 7.5-8.0. The purified enzyme has a Kapp for NADH of 60 microM and a V of 23.5 mumol NADH/min X mg protein. These parameters are not influenced by phospholipids. The enzyme activity is hardly or not at all affected by NADH-related compounds such as ATP, ADP, AMP, adenosine, deoxyadenosine, adenine and nicotinic amide indicating the high binding specificity of the enzyme for NADH.  相似文献   

7.
MDH2, the nonmitochondrial isozyme of malate dehydrogenase in Saccharomyces cerevisiae, was determined to be a target of glucose-induced proteolytic degradation. Shifting a yeast culture growing with acetate to medium containing glucose as a carbon source resulted in a 25-fold increase in turnover of MDH2. A truncated form of MDH2 lacking amino acid residues 1-12 was constructed by mutagenesis of the MDH2 gene and expressed in a haploid yeast strain containing a deletion disruption of the corresponding chromosomal gene. Measurements of malate dehydrogenase specific activity and determination of growth rates with diagnostic carbon sources indicated that the truncated form of MDH2 was expressed at authentic MDH2 levels and was fully active. However, the truncated enzyme proved to be less susceptible to glucose-induced proteolysis, exhibiting a 3.75-fold reduction in turnover rate following a shift to glucose medium. Rates of loss of activity for other cellular enzymes known to be subject to glucose inactivation were similarly reduced. An extended lag in attaining wild type rates of growth on glucose measured for strains expressing the truncated MDH2 enzyme represents the first evidence of a selective advantage for the phenomenon of glucose-induced proteolysis in yeast.  相似文献   

8.
A Karmali  L Serralheiro 《Biochimie》1988,70(10):1401-1409
Glucose dehydrogenase (EC 1.1.1.47) from Bacillus subtilis was purified about 5240-fold, using an aqueous two-phase system and triazine-dye affinity chromatography. The specific activity of the purified preparation was about 460 units/mg of protein with a final recovery of enzyme activity of about 75%. The affinity column could be regenerated and reused again several times. The purified enzyme appeared to be homogeneous when analyzed both on SDS-PAGE and native PAGE. The protein band on native PAGE coincided with the activity stain. ATP acts apparently as a competitive inhibitor for this enzyme with respect to NAD and protects the enzyme from dissociation into partially inactive dimers. In the absence of either glycerol or ATP, the enzyme dissociates into partially inactive dimers.  相似文献   

9.
10.
Regulation of glutamate dehydrogenase in Bacillus subtilis.   总被引:5,自引:5,他引:0       下载免费PDF全文
The activity of the nicotinamide adenine dinucleotide-dependent glutamate dehydrogenase in Bacillus subtilis was influenced by the carbon source, but not the nitrogen source, in the growth medium. The highest specific activity for this enzyme was found when B. subtilis was grown in a minimal or rich medium that contained glutamate as the carbon source. It is proposed that glutamate dehydrogenase serves a catabolic function in the metabolism of glutamate, is induced by glutamate, and is subject to catabolite repression.  相似文献   

11.
Aspartokinase III, a new isozyme in Bacillus subtilis 168.   总被引:7,自引:4,他引:3       下载免费PDF全文
A previously undetected Bacillus subtilis aspartokinase isozyme, which we have called aspartokinase III, has been characterized. The new isozyme was most readily detected in extracts of cells grown with lysine, which repressed aspartokinase II and induced aspartokinase III, or in extracts of strain VS11, a mutant lacking aspartokinase II. Antibodies against aspartokinase II did not cross-react with aspartokinase III. Aspartokinases II and III coeluted on gel filtration chromatography at Mr 120,000, which accounts for the previous inability to detect it. Aspartokinase III was induced by lysine and repressed by threonine. It was synergistically inhibited by lysine and threonine. Aspartokinase III activity, like aspartokinase II activity, declined rapidly in B. subtilis cells that were starved for glucose. In contrast, the specific activity of aspartokinase I, the diaminopimelic acid-inhibitable isozyme, was constant under all growth conditions examined.  相似文献   

12.
13.
IR spectra of NAD-dependent malate dehydrogenase in the deuterium oxide solutions were studied in the absence of CO2 and at solution saturation with it. The presence of CO2 in the system results in weakening the absorption band intensity at 1650 cm-1 and in the appearance of the band at 1543 cm-1, which is explained by the formation of carbamates under conditions of the protein molecules free amino groups interaction with CO2.  相似文献   

14.
Alcohol dehydrogenase (ADH) and mitochondrial malate dehydrogenase (mMDH) isozymes were tested as markers to study the effect of a high kinetin concentration on isozyme phenotypes and on the development ofCereus peruvianus callus tissue culture. Three-year-old callus tissues were used as samples. Callus tissue samples grown on 4.0 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) and on 4.0 and 8.0 mg/LN-(2-furanylmethyl)-1H-purine-6 amine (kinetin) were cut and transferred to fresh medium containing 4.0 mg/L 2,4-D and 4.0, 8.0, 16.0, and 32 mg/L kinetin combinations. The pattern of changes observed in the ADH and mMDH isozymes as well as the growth of callus tissues was independent of the concentrations tested. The various ADH and mMDH isozymes seem to be products of differential association of subunits of the twoAdh and twomMdh genes. Both genes are active throughout callus tissue development; however, gene expression changed with various callus culture conditions. This study addresses how long-term callus culture conditions affect constitutive and differential gene expression of theAdh andmMdh genes inC. peruvianus.  相似文献   

15.
3-Phosphoglycerate dehydrogenase (3-phosphoglycerate:NAD oxidoreductase, EC. 1.1.1.95) was purified from Bacillus subtilis by conventional methods. The final preparation was homogeneous by electrophoretic analysis and had a sedimentation constant of 6.3 S. On the basis of gel filtration data the enzyme had a molecular weight of about 166000. The plot of velocity versus phosphoglycerate concentration was biphasic while similar plots for hydroxypyruvate phosphate and NADH were the conventional hyperbolic type. The enzyme was specifically inhibited by serine. The inhibition was time dependent, requiring several minutes incubation before a constant level of inhibition was achieved. Serine inhibition was of the "mixed type" with respect to 3-phosphoglycerate and Hill plots of these data had slopes that approached 2. Desensitization of the enzyme to serine inhibition was achieved by incubation in the absence of dithiothreitol. The desensitized enzyme was different from the native enzyme in fluoresence properties, sedimentation characteristics and in the absence of the biphasic phosphoglycerate saturation curve. Evidence was obtained for the participation of sulphydryl groups in the changes in protein structure responsible for serine inhibition as well as the dehydrogenase activity of the enzyme.  相似文献   

16.
Homoserine dehydrogenase in dialyzed cell extracts of Bacillus subtilis 168 was studied, particularly with regard to inhibition, repression, and level of activity as a function of stage of development (growth and sporulation). It was assayed in the "forward direction" using L-aspartic semialdehyde and NADPH as substrates. Of the potentials inhibitors tested, only cysteine and NADP were found to be effective. Both L- and D-cysteine were equally effective. Therefore, the physiological significance of cysteine as an inhibitor is somewhat questionable. Amino acids involved in repression of homoserine dehydrogenase included methionine, isoleucine, possibly threonine, and one or more unidentified components of Casamino acids. The specific activity of homoserine dehydrogenase was highest during the exponential phase of growth and declined steadily during the stationary phase of growth. The low specific activity during late sporulation may favor preferential funnelling of L-aspartic semialdehyde into the lysine pathway, where it is needed for synthesis of large amounts of dipicolinic acid and diaminopimelic acid.  相似文献   

17.
Bacillus subtilis natto is widely used in industry to produce natto, a traditional and popular Japanese soybean food. However, during its secondary fermentation, high amounts of ammonia are released to give a negative influence on the flavor of natto. Glutamate dehydrogenase (GDH) is a key enzyme for the ammonia produced and released, because it catalyzes the oxidative deamination of glutamate to alpha-ketoglutarate using NAD+ or NADP+ as co-factor during carbon and nitrogen metabolism processes. To solve this problem, we employed multiple computational methods model and re-design GDH from Bacillus subtilis natto. Firstly, a structure model of GDH with cofactor NADP+ was constructed by threading and ab initio modeling. Then the substrate glutamate were flexibly docked into the structure model to form the substrate-binding mode. According to the structural analysis of the substrate-binding mode, Lys80, Lys116, Arg196, Thr200, and Ser351 in the active site were found could form a significant hydrogen bonding network with the substrate, which was thought to play a crucial role in the substrate recognition and position. Thus, these residues were then mutated into other amino acids, and the substrate binding affinities for each mutant were calculated. Finally, three single mutants (K80A, K116Q, and S351A) were found to have significant decrease in the substrate binding affinities, which was further supported by our biochemical experiments.  相似文献   

18.
Isolated cell walls from horseradish contain NAD-specific malate dehydrogenase which is not released on treatment with 2 M NaCl. This enzyme catalyses a rapid reduction of oxalacetate. Its physiological role, however, is assumed to be the oxidation of malate, thus providing NADH as electron donor in the formation of H2O2, by a wall-bound peroxidase. In the presence of malate, NAD and Mn2+ ions, cell walls catalyse the synthesis of H2O2 which might be utilized in lignin formation. In analogy to the known malate-oxalacetate shuttles, the possibility is discussed that this cell wall-associated malate dehydrogenase is involved in the transport of cytoplasmic reducing equivalents through the plasmalemma into the cell wall.  相似文献   

19.
Cytochrome b558 of the Bacillus subtilis succinate dehydrogenase complex was studied by electron-paramagnetic-resonance (EPR) spectroscopy. The cytochrome amplified in Escherichia coli membranes by expression of the cloned cytochrome gene and in the succinate dehydrogenase complex immunoprecipitated from solubilized B. subtilis membranes, respectively, is shown to be low spin with a highly anisotropic (gmax approximately equal to 3.5) EPR signal. The amino acid residues most likely forming fifth and sixth axial ligands to heme in cytochrome b558 are discussed on the basis of the EPR signal and the recently determined gene sequence (K. Magnusson, M. Philips, J.R. Guest, and L. Rutberg, J. Bacteriol. 166:1067-1071, 1986) and in comparison with other b-type cytochromes.  相似文献   

20.
Escherichia coli containing the Bacillus subtilis glucose dehydrogenase gene on a plasmid (prL7) was used to produce the enzyme in high quantities. Gluc-DH-S was purified from the cell extract by (NH4)2SO4-precipitation, ion-exchange chromatography and Triazine-dye chromatography to a specific activity of 375 U/mg. The enzyme was apparently homogenous on SDS-PAGE with a subunit molecular mass of 31.5 kDa. Investigation of Gluc-DH-S was performed for comparison with the corresponding properties of Gluc-DH-M. The limiting Michaelis constant at pH 8.0 for NAD+ is Ka = 0.11 mM and for D-glucose Kb = 8.7 mM. The dissociation constant for NAD+ is Kia = 17.1 mM. Similar to Gluc-DH-M, Gluc-DH-S is inactivated by dissociation under weak alkaline conditions at pH 9.0. Complete reactivation is attained by readjustment to pH 6.5. Ultraviolet absorption, fluorescence and CD-spectra of native Gluc-DH-S, as well as fluorescence- and CD-backbone-spectra of the dissociated enzyme were nearly identical to the corresponding spectra of Gluc-DH-M. The aromatic CD-spectrum of dissociated Gluc-DH-S was different, representing a residual ellipticity of tryptophyl moieties in the 290-310 nm region. Density gradient centrifugation proved that this behaviour is due to the formation of inactive dimers in equilibrium with monomers after dissociation. In comparison to Gluc-DH-M, the kinetics of inactivation as well as the time-dependent change of fluorescence intensity at pH 9.0 of Gluc-DH-S showed a higher velocity and a changed course of the dissociation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号