首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hu Y  Jia W  Wang J  Zhang Y  Yang L  Lin Z 《Plant cell reports》2005,23(10-11):705-709
Embryogenic calli of Festuca arundinacea were transformed with the Agrobacterium tumefaciens isopentenyl transferase (ipt) gene driven by a maize ubiquitin promoter. Tillering ability, levels of chlorophyll a and b, and cold tolerance were greatly increased in the transgenic turfgrass, which resulted in the plants remaining more vigorous and staying green longer under lower temperatures.  相似文献   

2.
为了解广西农业科学院甘蔗研究所种质资源圃(南宁)保存的400份甘蔗种质材料的耐寒性表现,在2008年初低温灾害的自然条件下,以蔗茎节间受害指数和节间生长点受害指数为基础,通过系统聚类方法将参试材料分为不同耐寒性表现类群。结果表明,2008年初的低温灾害属于阴雨霜冻类型,400份甘蔗种质材料可分为5个耐寒性表现类群,耐寒性强的材料有226份(56.50%),耐寒性较强的材料有103份(26.75%),耐寒性一般的材料有53份(13.25%),耐寒性较差的材料有7份(1.75%),耐寒性差的材料有7份(1.75%)。可构建甘蔗耐寒性指数(CTI):CTI=0.3×节间受害指数+0.7×节间生长点受害指数。节间生长点对低温伤害的敏感性高于蔗茎节间组织,建议作为耐寒性评价的重要指标之一;甘蔗耐寒性指数可以用于评价阴雨霜冻灾害下甘蔗种质材料的耐寒性。  相似文献   

3.
T F Lee  L C Wang 《Life sciences》1985,36(21):2025-2032
During severe cold exposure, old rats (23-26 months) were less capable in maintaining normal body temperature as compared to young rats (6-9 months) due to lower rate of heat production (HP). Single injection of optimal doses of aminophylline (AMPY; 10 and 18.7 mg/kg, i.p.), a phosphodiesterase inhibitor which enhances the intracellular cyclic AMP concentration, significantly increased the rate of HP in old rats to levels beyond the control values observed in young rats. Consequently, cold tolerance of the old rats was significantly improved. This AMPY-improved cold tolerance is apparently not due to increased non-shivering thermogenesis (NST) since AMPY failed to enhance norepinephrine-stimulated NST in the old rats. It is likely that AMPY increased substrate mobilization and/or conversion, thereby circumventing the limiting role of substrate availability for shivering thermogenesis. Thus, the age-dependent decrease in cold tolerance may be due to a reduced capacity for substrate mobilization when challenged by cold.  相似文献   

4.
There are indications that the cytokinin content in transgenic tissues expressing the cytokinin biosynthetic ipt gene is under metabolic control, which prevents the accumulation of cytokinins to lethal levels. The objective of this study was to investigate the relationships between the content of endogenous cytokinins and the activity of cytokinin oxidase (which is believed to be a copper-containing amine oxidase, EC 1.4.3.6.) in ipt transgenic tobacco callus. In addition, the effect of exogenously applied N-benzyladenine (BA) on this relationship was examined. Endogenous cytokinin concentrations were measured in callus of Nicotiana tabacum L. cv. Petit Havana SRI transformed with the ipt of Agrobacterium tumefaciens under the control of a light-inducible promoter and in non-transformed tissue using LC-tandem mass spectrometry. The activity of cytokinin oxidase was estimated by measuring the conversion of [2,8-3H]N6-(Δ2-isopentenyl)adenine to [3H]adenine by enzyme preparations in vitro. The 14-day-old ipt-transformed callus contained a 25-fold higher amount of cytokinins as compared to the non-transformed tissue. Mainly zeatin- and dihydrozeatin-types of cytokinins (free bases, ribosides, nucleotides and O-glucosides) accumulated in the ipt transgenic tissue. The cytokinin pool of both ipt-transformed and non-transformed tissues consisted predominantly of cytokinins that are either resistant to cytokinin oxidase attack (nucleotides and O-glucosides of cytokinins and cytokinins bearing N6-saturated side chain) or have a low affinity for the enzyme (zeatin and its riboside). The former represented 71.6 and 74.8% and the latter 27.7 and 24.4% of the pool of endogenous cytokinins in ipt-transformed and non-transformed tissues, respectively. Enzyme preparations from ipt-transformed tissue exhibited 1.5-fold higher cytokinin oxidase activity compared with that observed in control tissues. Application of exogenous BA affected the total levels of cytokinins of the two tissue lines in different ways. The cytokinin content increased by 1.7- and 1.5-fold in ipt-transformed tissues 6 and 12 h after BA application, respectively, while it declined in the non-transformed control by 1.6- to 2.0-fold between 3 and 12 h after BA application. The increase in cytokinin content in the ipt callus is due to an increase of zeatin- and dihydrozeatin-type cytokinins (nucleotides, ribosides and free bases) leading to an enhanced accumulation of O-glucosides after 12 h. Following BA treatment, the cytokinin oxidase activity increased up to 1.8-fold in ipt-transformed and 1.6-fold in non-transformed tissues. The levels of isopentenyl-type cytokinins were near the detection limit; however, the enhancement of cytokinin oxidase activity after BA treatment in both tissue lines was correlated with the content of preferred substrate of the enzyme, N6-(Δ2-isopentenyl)adenosine.  相似文献   

5.
Cytokinins (CKs) may be involved in the regulation of plant adaptation to drought stress. The objectives of the study were to identify proteomic changes in leaves and roots in relation to improved drought tolerance in transgenic creeping bentgrass (Agrostis stolonifera) containing a senescence-activated promoter (SAG12) and the isopentyl transferase (ipt) transgene that increases endogenous CK content. Leaves of SAG12-ipt bentgrass exhibited less severe senescence under water stress, as demonstrated by maintaining lower electrolyte leakage and lipid peroxidation, and higher photochemical efficiency (F(v)/F(m)), compared with the null transformant (NT) plants. SAG12-ipt plants had higher root/shoot ratios and lower lipid peroxidation in leaves under water stress than the NT plants. The suppression of drought-induced leaf senescence and root dieback in the transgenic plants was associated with the maintenance of greater antioxidant enzyme activities (superoxide dismutase, peroxidase, and catalase). The SAG12-ipt and NT plants exhibited differential protein expression patterns under well-watered and drought conditions in both leaves and roots. Under equivalent leaf water deficit (47% relative water content), SAG12-ipt plants maintained higher abundance of proteins involved in (i) energy production within both photosynthesis and respiration [ribulose 1,5-bisphosphate carboxylase (RuBisCO) and glyceraldehyde phosphate dehydrogenase (GAPDH)]; (ii) amino acid synthesis (methionine and glutamine); (iii) protein synthesis and destination [chloroplastic elongation factor (EF-Tu) and protein disulphide isomerases (PDIs)]; and (iv) antioxidant defence system (catalase and peroxidase) than the NT plants. These results suggest that increased endogenous CKs under drought stress may directly or indirectly regulate protein abundance and enzymatic activities involved in the above-mentioned metabolic processes, thereby enhancing plant drought tolerance.  相似文献   

6.
Phenylalanine ammonia-lyase (PAL) catalyzes the first reaction in biosynthesis pathway of flavonoids and plays an important role in plant stress resistance. In this study, the 5’ flanking region of phenylalanine ammonia-lyase gene was isolated from Fagopyrum tataricum by thermal asymmetric interlaced PCR method, named PFtPal (GenBank: KF463139). To investigate the functional properties of PFtPal, we constructed a series of plant expression vectors that contained different promoter fragments resulting from nest deletions and had successfully transformed them into tobacco leaves by Agrobacterium tumefaciens. Histochemical assay of GUS suggested that PFtPal could drive GUS gene expression in leaves and roots, while GUS activity was not detected in the stem. In addition, the region of ?274 bp to ?1 bp was enough to drive normal expression of GUS gene. Low temperature treatment of transgenic tobacco plants demonstrated that PFtPal conferred cold-induced expression. Taken together, our study will help to better understand the Pal promoter, and provides a candidate promoter for molecular breeding in Fagopyrum plants.  相似文献   

7.
8.
9.
Phenotypes of five transgenic lines of narrow-leafed lupin (Lupinus angustifolius [L] cv Merrit) stably transformed with the isopentenyl pyrophosphate transferase (ipt) gene from Agrobacterium tumefaciens coupled to a flower-specific promoter (TP12) from Nicotiana tabacum [L.] are described. Expression of the transgene was detected in floral tissues and in shoot apical meristems on all orders of inflorescence. In each transgenic line there was significant axillary bud outgrowth at all nodes on the main stem with pronounced branch development from the more basal nodes in three of the lines. The lowest basal branches developed in a manner similar to the upper stem axillary branches on cv Merrit and bore fruits, which, in two lines, contained a significant yield of filled seeds at maturity. Senescence of the cotyledons was delayed in all lines with green cotyledons persisting beyond anthesis in one case. IPT expression increased cytokinin (CK) levels in flowers, meristem tissues and phloem exudates in a form specific manner, which was suggestive of localized flower and meristem production with significant long-distance re-distribution in phloem. The total number of fruits formed (pod set) on some transgenic lines was increased compared to cv Merrit. Grain size compared to cv Merrit was not significantly altered in transgenic lines.  相似文献   

10.
11.
12.
Ma bamboo (Dendrocalamus latiflorus Munro) is a widespread culm and shoot-producing species in southern China. However, low temperatures reduce Ma bamboo shoot production and delay its development. In an attempt to enhance its cold-tolerance, a bacterial CodA gene encoding choline oxidase was introduced into Ma bamboo by Agrobacterium-mediated transformation, an approach that had not been previously utilized in bamboo. PCR and Southern blot analyses confirmed that CodA had integrated into the Ma bamboo genome. RT-PCR results showed that expression of CodA driven by the Arabidopsis Rd29A promoter was induced by cold stress in the transgenic bamboo lines. Following treatment at 4°C for 24 h, the content of glycine betaine (GB) increased to 83% and 140% in control plants (wild type (WT)) and CodA transgenic Ma bamboo plants, respectively. Superoxide dismutase, peroxidase, and catalase activities increased in both transgenic and WT plants. However, increases in these enzymes activities were much greater in the transgenic lines than in the WT plants under cold stress. The accumulation of malondialdehyde and electrolyte leakage (REL) in CodA transgenic Ma bamboo plants was less than that in control plants. Collectively, these results suggest that increased cold-tolerance induced by accumulation of GB in vivo was associated with the enhancement of antioxidant enzyme activities, which led to reduced accumulation of reactive oxygen species and stabilization of membrane integrity against extreme temperatures in transgenic plants.  相似文献   

13.
14.
以广西农科院甘蔗研究所自育的7个新材料和2个生产上的主栽品种为研究对象,在甘蔗苗期进行低温胁迫处理,研究了各品种(系)甘蔗形态特征的冷害指数、叶绿素含量及光合特性相关指标的变化及其光合特性相关指标与甘蔗抗寒性间的相关性。结果表明:随着低温胁迫处理时间的延长,冷害指数不断增大,但变化的大小与快慢因品种(系)不同表现不一样。各甘蔗品种(系)叶片叶绿素含量均随时间延长而降低。叶片净光合速率、气孔导度在低温处理与常温处理间具有显著差异。低温胁迫处理显著降低了各甘蔗品种(系)最大光化学效率(Fv/Fm)、PSⅡ实际光能转化效率ΦPSⅡ、光适应下PSⅡ反应中心的最大光能转化效率Fv′/Fm′、光化学猝灭系数qP、电子传递速率ETR,而显著提高了初始荧光Fo、稳态荧光Fs、非光化学猝灭系数qNP。相关性分析表明整个测定时期各指标间相关显著,Fv/Fm、Fv′/Fm′、ΦPSⅡ与冷害指数I之间的相关系数在0.800以上,Fv/Fm、Fv′/Fm′、ΦPSⅡ可以作为甘蔗品种(系)抗寒性鉴定的重要参考指标。  相似文献   

15.
16.
A cryoprotective protein, HIC6, was expressed transgenically in tobacco, a cold-sensitive plant, and the localization of the protein within the cell as well as freezing tolerance of the transgenic tobacco was investigated. For constitutive expression of HIC6 in tobacco, its corresponding gene was subcloned into pBI121. Through the transformation with pBI121/hiC6, fifteen transgenic tobacco lines were acquired, out of which twelve lines expressed the HIC6 protein. None of the transgenic tobacco lines, however, showed significant differences in freezing tolerance from the control plants (wild-type and transformed with pBI121) at -1, -3, and -4 degrees C, with the exception that their freezing temperature was -2 degrees C. In order to increase the accumulation level of HIC6, pBE2113 with a stronger promoter was used. Eight lines expressed the protein out of thirteen lines transformed with pBE2113/hiC6. The accumulation levels of the protein were clearly higher in the tobacco plants transformed with pBE2113/hiC6 than in those with pBI121/hiC6. The HIC6 protein seemed to be localized in mitochondria of the transgenic tobacco plants. Freezing-tolerance tests at -1 - -4 degrees C showed that the degree of electrolyte leakage was significantly lower in the plants with pBE2113/hiC6 than in the control plants. A leaf browning observation also showed that high accumulation of HIC6 significantly suppressed injury caused by freezing to the transgenic tobacco at -3 degrees C.  相似文献   

17.
18.
Sucrose: sucrose 1-fructosyltransferase (1-SST) cDNA from Lactuca sativa, coding the enzyme responsible for lower degree polymers fructan biosynthesis, was cloned by RT-PCR and RACE methods. The 1-SST cDNA under the control of CaMV 35S promoter was introduced into tobacco by Agrobacterium-mediated leaf disc transformation protocol. Fructan synthesis in vitro and carbohydrate analysis showed that sense transgenic tobacco plant displayed sucrose: sucrose 1-fructosyltransferse activity. After freezing stress, significant increases in electrolyte leakage and malondialdehyde were found in the wild type and anti-sense transgenic plants, while no apparent differences were observed in sense transgenic plants. Meanwhile, water soluble carbohydrate, fructan and fructose of sense transgenic plants remarkably increased, compared with those of wild type and anti-sense plants. No significant difference was detected in superoxide dismutase activity between transgenic and wild type plants. The above results demonstrated that the expression of 1-SST gene improved the freezing resistance of transgenic tobacco plants.  相似文献   

19.
The ipt gene from the T-DNA of Agrobacterium tumefaciens was transferred to tobacco (Nicotiana tabacum L.) in order to study the control which auxin appears to exert over levels of cytokinin generated by expression of this gene. The transgenic tissues contained elevated levels of cytokinins, exhibited cytokinin and auxin autonomy and grew as shooty calli on hormone-free media. Addition of 1-naphthylacetic acid to this culture medium reduced the total level of cytokinins by 84% while 6-benzylaminopurine elevated the cytokinin level when added to media containing auxin. The cytokinins in the transgenic tissue were labelled with 3H and auxin was found to promote conversion of zeatin-type cytokinins to 3H-labelled adenine derivatives. When the very rapid metabolism of exogenous [3H]zeatin riboside was suppressed by a phenylurea derivative, a noncompetitive inhibitor of cytokinin oxidase, auxin promoted metabolism to adenine-type compounds. Since these results indicated that auxin promoted cytokinin oxidase activity in the transformed tissue, this enzyme was purified from the tobacco tissue cultures. Auxin did not increase the level of the enzyme per unit tissue protein, but did enhance the activity of the enzyme in vitro and promoted the activity of both glycosylated and non-glycosylated forms. This enhancement could contribute to the decrease in cytokinin level induced by auxin. Studies of cytokinin biosynthesis in the transgenic tissues indicated that trans-hydroxylation of isopentenyladenine-type cytokinins to yield zeatin-type cytokinins occurred principally at the nucleotide level.Abbreviations Ade adenine - Ados adenosine - BA 6-benzylaminopurine - C control - Con A concanavallin A - CP cellulose phosphate - IPT isopentenyl transferase - NAA 1-naphthylacetic acid - NP normal phase - NPPU N-(3-nitrophenyl)-N-phenylurea - RIA radioimmunoassay - RP reversed phase We wish to thank Dr. J. Zwar for supplying phenylurea derivitives.  相似文献   

20.
Porcine membrane cofactor protein (pMCP) is abundantly expressed throughout the body with particularly strong expression on the vascular endothelia. Previous studies demonstrated that the promoter of the pMCP gene induced efficient expression of a human complement regulatory protein, decay-accelerating factor (DAF; CD55), in transgenic mice. In the present study, we tried to produce transgenic pigs with two hybrid genes, 0.9/hDAF and 5.4/hDAF, which were composed of human DAF (hDAF) gene regulated under pMCP promoters of different lengths (0.9 and 5.4 kb). Five live founder transgenic pigs were obtained only with the 0.9/hDAF construct. Although, four founder pigs transmitted the transgene to the second generation, the transmission rates varied among founders. We examined the expression of hDAF in tissues of descendants of two lines (Dm1 and Dm4). Human DAF specific RNAs were confirmed by an RT-PCR analysis in all organs examined. Levels of hDAF protein in the organs from the descendants of Dm1 line were higher than those in the corresponding human organs as determined by enzyme-linked immunosorbent assay. Immunohistochemical studies showed that the tissue distribution of hDAF in the descendants of both lines was similar to that of endogenous pMCP. The expression level of hDAF on the vascular endothelial cells in Dm1 line was twice that on the corresponding human cells. We tested whether proinflammatory cytokines upregulate an efficiency of pMCP promoter on hDAF expression in transgenic pigs. Although the expression of hDAF on the human endothelial cells increased with a combination of cytokines, tumor necrosis factor alpha and interferon-gamma, no cytokine-induced upregulation was seen in the cells of transgenic pigs. The endothelial cells from transgenic pigs exhibited high resistance to the human serum-mediated cytolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号