首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human PARP family consists of 17 members of which PARP-1 is a prominent member and plays a key role in DNA repair pathways. It has an N-terminal DNA-binding domain (DBD) encompassing the nuclear localisation signal (NLS), central automodification domain and C-terminal catalytic domain. PARP-1 accounts for majority of poly-(ADP-ribose) polymer synthesis that upon binding to numerous proteins including PARP itself modulates their activity. Reduced PARP-1 activity in ageing human samples and its deficiency leading to telomere shortening has been reported. Hence for cell survival, maintenance of genomic integrity and longevity presence of intact PARP-1 in the nucleus is paramount. Although localisation of full-length and truncated PARP-1 in PARP-1 proficient cells is well documented, subcellular distribution of PARP-1 fragments in the absence of endogenous PARP-1 is not known. Here we report the differential localisation of PARP-1 N-terminal fragment encompassing NLS in PARP-1+/+ and PARP-1−/− mouse embryo fibroblasts by live imaging of cells transiently expressing EGFP tagged fragment. In PARP-1+/+ cells the fragment localises to the nuclei presenting a granular pattern. Furthermore, it is densely packaged in the midsections of the nucleus. In contrast, the fragment localises exclusively to the cytoplasm in PARP-1−/− cells. Flourescence intensity analysis further confirmed this observation indicating that the N-terminal fragment requires endogenous PARP-1 for its nuclear transport. Our study illustrates the trafficking role of PARP-1 independently of its enzymatic activity and highlights the possibility that full-length PARP-1 may play a key role in the nuclear transport of its siblings and other molecules.  相似文献   

2.
Poly(ADP-ribose) polymerase-1 (PARP-1), a nuclear enzyme that catalyzes the NAD+-dependent addition of ADP-ribose polymers on a variety of nuclear proteins, has been shown to be associated with the nuclear matrix. As yet, the properties and conditions of this association are unclear. Here, we show the existence of two PARP-1 pools associated with the nuclear matrix of rat liver and the ability of PARP-1 automodification to facilitate its binding to the nuclear matrix.  相似文献   

3.
4.
5.
Genotoxic stress activates nuclear poly(ADP-ribose) (PAR) metabolism leading to PAR synthesis catalyzed by DNA damage activated poly(ADP-ribose) polymerases (PARPs) and rapid PAR turnover by action of nuclear poly(ADP-ribose) glycohydrolase (PARG). The involvement of PARP-1 and PARP-2 in responses to DNA damage has been well studied but the involvement of nuclear PARG is less well understood. To gain insights into the function of nuclear PARG in DNA damage responses, we have quantitatively studied PAR metabolism in cells derived from a hypomorphic mutant mouse model in which exons 2 and 3 of the PARG gene have been deleted (PARG-Delta2,3 cells), resulting in a nuclear PARG containing a catalytic domain but lacking the N-terminal region (A domain) of the protein. Following DNA damage induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), we found that the activity of both PARG and PARPs in intact cells is increased in PARG-Delta2,3 cells. The increased PARG activity leads to decreased PARP-1 automodification with resulting increased PARP activity. The degree of PARG activation is greater than PARP, resulting in decreased PAR accumulation. Following MNNG treatment, PARG-Delta2,3 cells show reduced formation of XRCC1 foci, delayed H2AX phosphorylation, decreased DNA break intermediates during repair, and increased cell death. Our results show that a precise coordination of PARPs and PARG activities is important for normal cellular responses to DNA damage and that this coordination is defective in the absence of the PARG A domain.  相似文献   

6.
Exposure to ultraviolet radiation (UVR) promotes the formation of UVR-induced, DNA helix distorting photolesions such as (6-4) pyrimidine-pyrimidone photoproducts and cyclobutane pyrimidine dimers. Effective repair of such lesions by the nucleotide excision repair (NER) pathway is required to prevent DNA mutations and chromosome aberrations. Poly(ADP-ribose) polymerase-1 (PARP-1) is a zinc finger protein with well documented involvement in base excision repair. PARP-1 is activated in response to DNA damage and catalyzes the formation of poly(ADP-ribose) subunits that assist in the assembly of DNA repair proteins at sites of damage. In this study, we present evidence for PARP-1 contributions to NER, extending the knowledge of PARP-1 function in DNA repair beyond the established role in base excision repair. Silencing the PARP-1 protein or inhibiting PARP activity leads to retention of UVR-induced photolesions. PARP activation following UVR exposure promotes association between PARP-1 and XPA, a central protein in NER. Administration of PARP inhibitors confirms that poly(ADP-ribose) facilitates PARP-1 association with XPA in whole cell extracts, in isolated chromatin complexes, and in vitro. Furthermore, inhibition of PARP activity decreases UVR-stimulated XPA chromatin association, illustrating that these relationships occur in a meaningful context for NER. These results provide a mechanistic link for PARP activity in the repair of UVR-induced photoproducts.  相似文献   

7.
PARP inhibitors for cancer therapy   总被引:1,自引:0,他引:1  
Poly(ADP-ribose) polymerase 1 (PARP-1) is a zinc-finger DNA-binding enzyme that is activated by binding to DNA breaks. Poly(ADP-ribosyl)ation of nuclear proteins by PARP-1 converts DNA damage into intracellular signals that activate either DNA repair by the base-excision pathway or cell death. A family of 18 PARPs has been identified, but only the most abundant, PARP-1 and PARP-2, which are both nuclear enzymes, are activated by DNA damage. PARP inhibitors of ever-increasing potency have been developed in the 40 years since the discovery of PARP-1, both as tools for the investigation of PARP-1 function and as potential modulators of DNA-repair-mediated resistance to cytotoxic therapy. Owing to the high level of homology between the catalytic domains of PARP-1 and PARP-2, the inhibitors probably affect both enzymes. Convincing biochemical evidence, which has been corroborated by genetic manipulation of PARP-1 activity, shows that PARP inhibition is associated with increased sensitivity to DNA-alkylating agents, topoisomerase I poisons and ionising radiation. Novel PARP inhibitors of sufficient potency and suitable pharmacokinetic properties to allow evaluation in animal models have been shown to enhance the antitumour activity of temozolomide (a DNA-methylating agent), topoisomerase poisons and ionising radiation; indeed, the combination with temozolomide resulted in complete tumour regression in two independent studies. The combination of a PARP inhibitor and temozolomide is currently undergoing clinical evaluation for the first time.  相似文献   

8.
9.
Poly(ADP-ribose) polymerases (PARPs) are a family of enzymes, which show differences in structure, cellular location and functions. However, all these enzymes possess poly(ADP-ribosyl)ation activity. Overactivation of PARP enzymes has been implicated in the pathogenesis of several diseases, including stroke, myocardial infarction, diabetes, shock, neurodegenerative disorder and allergy. The best studied of these enzymes (PARP-1) is involved in the cellular response to DNA damage so that in the event of irreparable DNA damage overactivation of PARP-1 leads to necrotic cell death. Inhibitors of PARP-1 activity in combination with DNA-binding antitumor drugs may constitute a suitable strategy in cancer chemotherapy. In addition, PARP inhibitors may be also useful to restore cellular functions in several pathophysiological states and diseases. This review gives an update of the state-of-the-art concerning PARP enzymes and their exploitation as pharmacological targets in several illnesses.  相似文献   

10.
Poly(ADP-ribose) polymerase-1 (PARP-1) plays the active role of “nick sensor” during DNA repair and apoptosis, when it synthesizes ADP-ribose from NAD+ in the presence of DNA strand breaks. Moreover, PARP-1 becomes a target of apoptotic caspases, which originate two proteolytic fragments of 89 and 24 kDa. The precise relationship between PARP-1 activation and degradation during apoptosis is still a matter of debate. In human Hep-2 cells driven to apoptosis by actinomycin D, we have monitored PARP-1 activity by the mAb 10H, which is specific for the ADP-ribose polymers, and we have observed that poly(ADP-ribose) synthesis is a very early response to the apoptotic stimulus. The analysis of the presence and fate of the p89 proteolytic fragment revealed that PARP-1 proteolysis by caspases is concomitant with poly(ADP-ribose) synthesis and that p89 migrates from the nucleus into the cytoplasm in late apoptotic cells with advanced nuclear fragmentation.  相似文献   

11.
12.
13.
14.
Poly (ADP-ribose) polymerase (113 kDa; PARP-1) is a constitutive factor of the DNA damage surveillance network developed by the eukaryotic cell to cope with the numerous environmental and endogenous genotoxic agents. This enzyme recognizes and is activated by DNA strand breaks. This original property plays an essential role in the protection and processing of the DNA ends as they arise in DNA damage that triggers the base excision repair (BER) pathway. The generation, by homologous recombination, of three independent deficient mouse models have confirmed the caretaker function of PARP-1 in mammalian cells under genotoxic stress. Unexpectedly, the knockout strategy has revealed the instrumental role of PARP-1 in cell death after ischemia-reperfusion injury and in various inflammation process. Moreover, the residual PARP activity found in PARP-1 deficient cells has been recently attributed to a novel DNA damage-dependent poly ADP-ribose polymerase (62 kDa; PARP-2), another member of the expanding PARP family that, on the whole, appears to be involved in the genome protection. The present review summarizes the recent data obtained with the three PARP knockout mice in comparison with the chemical inhibitor approach.  相似文献   

15.
PARP-2, A novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase.   总被引:23,自引:0,他引:23  
Poly(ADP-ribosylation) is a post-translational modification of nuclear proteins in response to DNA damage that activates the base excision repair machinery. Poly(ADP-ribose) polymerase which we will now call PARP-1, has been the only known enzyme of this type for over 30 years. Here, we describe a cDNA encoding a 62-kDa protein that shares considerable homology with the catalytic domain of PARP-1 and also contains a basic DNA-binding domain. We propose to call this enzyme poly(ADP-ribose) polymerase 2 (PARP-2). The PARP-2 gene maps to chromosome 14C1 and 14q11.2 in mouse and human, respectively. Purified recombinant mouse PARP-2 is a damaged DNA-binding protein in vitro and catalyzes the formation of poly(ADP-ribose) polymers in a DNA-dependent manner. PARP-2 displays automodification properties similar to PARP-1. The protein is localized in the nucleus in vivo and may account for the residual poly(ADP-ribose) synthesis observed in PARP-1-deficient cells, treated with alkylating agents or hydrogen peroxide.  相似文献   

16.
Poly(ADP-ribose) polymerase-1 cleavage during apoptosis: an update   总被引:11,自引:1,他引:10  
Poly(ADP-ribosylation) is a post-translational modification of proteins playing a crucial role in many processes, including DNA repair and cell death. The best known poly(ADP-ribosylating) enzime, PARP-1, is a DNA nick sensor and uses NAD+ to form polymers of ADP-ribose which are further bound to nuclear protein acceptors. To strictly regulate poly(ADP-ribose) turnover, its degradation is assured by the enzyme poly(ADP-ribose) glycohydrolase (PARG). During apoptosis, PARP-1 plays two opposite roles: its stimulation leads to poly(ADP-ribose) synthesis, whereas caspases cause PARP-1 cleavage and inactivation. PARP-1 proteolysis produces an 89 kDa C-terminal fragment, with a reduced catalytic activity, and a 24 kDa N-terminal peptide, which retains the DNA binding domains. The fate and the possible role of these fragments during apoptosis will be discussed.  相似文献   

17.
18.
Upon massive DNA damage, hyperactivation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP)-1 causes severe depletion of intracellular NAD and ATP pools as well as mitochondrial dysfunction. Thus far, the molecular mechanisms contributing to PARP-1-dependent impairment of mitochondrial functioning have not been identified. We found that degradation of the PARP-1 product poly(ADP-ribose) through the concerted actions of poly(ADP-ribose) glycohydrolase and NUDIX (nucleoside diphosphate-X) hydrolases leads to accumulation of AMP. The latter, in turn, inhibits the ADP/ATP translocator, prompting mitochondrial energy failure. For the first time, our findings identify NUDIX hydrolases as key enzymes involved in energy derangement during PARP-1 hyperactivity. Also, these data disclose unanticipated AMP-dependent impairment of mitochondrial exchange of adenine nucleotides, which can be of relevance to organelle functioning and disease pathogenesis.  相似文献   

19.
There is a wide inter-individual variation in PARP-1 {PAR [poly(ADP-ribose)] polymerase 1} activity, which may have implications for health. We investigated if the variation: (i) is due to polymorphisms in the PARP-1 gene or PARP-1 protein expression; and (ii) affects patients' response to anticancer treatment. We studied 56 HV (healthy volunteers) and 118 CP (cancer patients) with supporting in vivo experiments. PARP activity ranged between 10 and 2600 pmol of PAR/106 cells and expression between 0.02-1.55 ng of PARP-1/μg of protein. PARP-1 expression correlated with activity in HV (R2=0.19, P=0.003) and CP (R2=0.06, P=0.01). A short CA repeat in the promoter was significantly associated with increased cancer risk [OR (odds ratio), 5.22; 95% CI (confidence interval), 1.79-15.24]. PARP activity was higher in men than women (P=0.04) in the HV. Male mice also had higher PARP activity than females or castrated males. Oestrogen supplementation activated PARP in PBMCs (peripheral blood mononuclear cells) from female mice (P=0.003), but inhibited PARP-1 in their livers by 80%. PARP activity and expression were not dependent on the investigated polymorphisms, but there was a modest correlation of PARP activity with expression. Studies in the HV revealed sex differences in PARP activity, which was confirmed in mice and shown to be associated with sex hormones. Toxic response to treatment was not associated with PARP activity and/or expression.  相似文献   

20.
Inhibition of PARP activity results in extreme sensitization to MMS-induced cell killing in cultured mouse fibroblasts. In these MMS-treated cells, PARP inhibition is accompanied by an accumulation of S-phase cells that requires signaling by the checkpoint kinase ATR [J.K. Horton, D.F. Stefanick, J.M. Naron, P.S. Kedar, S.H. Wilson, Poly(ADP-ribose) polymerase activity prevents signaling pathways for cell cycle arrest following DNA methylating agent exposure, J. Biol. Chem. 280 (2005) 15773-15785]. Here, we examined mouse fibroblast extracts for formation of a complex that may reflect association between the damage responsive proteins PARP-1 and ATR. Co-immunoprecipitation of PARP-1 and ATR was observed in extracts prepared from MMS-treated cells, but not under conditions of PARP inhibition. Further, our experiments demonstrated PAR-adduction of ATR in extracts from control and MMS-treated cells. An interaction between purified ATR and PARP-1 was similarly demonstrated, suggesting that the observed co-immunoprecipitation of ATR and PARP-1 from cell extracts may be due to a direct interaction between the two enzymes. In addition, purified recombinant ATR is a substrate for poly(ADP-ribosyl)ation by PARP-1, and poly(ADP-ribose) adduction of PARP-1 and ATR resulted in an increase in PARP-1 and ATR co-immunoprecipitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号