首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A repetitive sequence of 411 bp, named pSaO5411, was identified in theSecale africanum genome (Ra) by random amplified polymorphic DNA (RAPD) analysis of wheat and wheat—S. africanum amphiploids. GenBank BLAST search revealed that the sequence of pSaO5411 was highly homologous to a part of a Ty1-copia retrotransposon. Fluorescence in situ hybridization (FISH) analyses indicated that pSaO5411 was significantly hybridized toS. africanum chromosomes of a wheat—S. africanum amphiploid, and it was dispersed along theSecale chromosome arms except the terminal regions. Basing on the sequence of pSaO5411, a pair of sequence-characterized amplified region (SCAR) primers were designed, and the resultant SCAR marker was able to target both cultivated rye and the wildSecale species, which also enabled to identify effectively theS. africanum chromatin introduced into the wheat genome.  相似文献   

2.
The genus of Secale has many agronomically important characters. In order to use the best of this species, markers tracking the rye chromatin incorporated into wheat must be developed. In this study, one rye genome-specific random amplified polymorphic DNA (RAPD) marker was isolated from Secale africanum (Ra genome). Two cloned markers, named OPP131165 and OPP13662, were 1165 bp and 662 bp, respectively. Sequence analysis revealed that OPP131165 was highly homologous to a part of a new class of transposon-like gene called the Revolver family, and OPP13662 was partially similar to LTR gypsy-like retrotransposon. Fluorescence in situ hybridization (FISH) showed only OPP131165 localized within the whole arms of rye except their terminal regions and no signal was detected on wheat chromosomes, while OPP13662 had no hybridization signal detected on wheat and rye genomes. Based on these sequences, two pairs of sequence-characterized amplified region (SCAR) primers were designed, and the resulted SCAR markers were able to target both cultivated and wild Secale species. The FISH patterns and the two SCAR markers should be able to identify and track all wheat-rye translocation lines, especially the S. africanum chromatin.  相似文献   

3.
Lei M  Li G  Zhang S  Liu C  Yang Z 《Journal of genetics》2011,90(2):283-287
A stable, highly fertile wheat Secale africanum substitution line LF24, derived from the F7 generation of a cross between Mianyang11 (MY11) and Triticum durum, S. africanum amphiploid (YF) was identified through molecular cytogenetic analysis. Application of C-banding, in situ hybridization and molecular markers analysis showed that LF24 was a wheat S. africanum 2Ra(2D) substitution line. When inoculated with stripe rust isolates, T. durum and MY11 were highly susceptible, while S. africanum, YF and LF24 were immune. It is confirmed through molecular cytogenetic analysis that the stripe rust resistance of LF24 was derived from S. africanum chromosome 2Ra. We compared the banding patterns and disease resistance of reported chromosomes 2R from different S. cereale introduced into wheat background, and found that there was new stripe rust resistance gene(s) on S. africanum 2Ra. LF24 is a new substitution line which can be used as stripe rust resistant source in wheat improvement.  相似文献   

4.
A novel type of polymerase chain reaction (PCR) marker was developed for the mapping of cereal rye (Secale cereale). Primer pairs were synthesized targeting the insertion sites of three individual copies of the R173 family of rye specific repeated DNA sequences. While one primer was derived from a sequence within the respective R173 element, the second primer corresponded to a flanking region. The complex banding patterns obtained in rye allowed not only the mapping of the three R173 elements to certain chromosome regions of 1RS (the short arm of rye chromosome 1) but also the mapping of an additional 3-10 easily identifiable bands per primer pair to other rye chromosomes. Linkage mapping of a polymorphic 1R band derived from three rye cultivars demonstrated the presence of nonallelic, dominant markers in two independent crosses. Because of the high copy number of the R173 family (15,000 copies per diploid rye genome), its dispersion over the entire length of all chromosomes and the high number of markers obtained per primer pair, PCR markers based on the R173 family provide an almost unlimited source for well-spaced markers in rye mapping.  相似文献   

5.
曾雪  杨足君  李光蓉  雷孟平  刘成  贾举庆  任正隆 《遗传》2008,30(8):1056-1062
以非洲黑麦、小麦-非洲黑麦双二倍体、安岳排灯麦等为材料筛选100条ISSR引物。其中, 引物UBC815可在非洲黑麦中扩增出1条长561 bp的特异性片段(命名为pSaUBC815561), 而小麦对照均未扩出该片段。引物UBC815同样能在黑麦属的瓦维洛夫黑麦(Secale vavilovii Grossh.)、森林黑麦(Secale sylvestre Host.)等5个种扩增出pSaUBC815561。根据pSaUBC815561设计特异PCR引物U815-F、U815-R, 对小麦族多物种进行扩增, 表明pSaUBC815561为黑麦属特有。进而利用一套中国春-Imperial黑麦二体附加系及小麦-黑麦异源材料进行扩增, 结果显示, pSaUBC815561分布在黑麦整套染色体上, 并且所有后代材料都能扩增出pSaUBC815561, 表明pSaUBC815561可作为特异性标记用来检测小麦背景中的黑麦染色质。  相似文献   

6.
黑麦1R染色体特异性PCR引物的分子证据   总被引:3,自引:0,他引:3  
Based on the differences of rRNA intergenic sequences between wheat ( Triticum aestivum L. ) and rye ( Secale cereale L. ), rye specific primer set NOR-R1 was synthesized according to Koebner' design. PCR analyses were carried out on different DNA substrates of common wheat and its relatives such as Agropyron elongataum (Host) Beauv., Haynaldia villosa Shur. and Hordeum vulgare L. The results confirmed that NOR-R1 primer set is specific to rye. It was found that PCR using DNAs from wheat materials containing 1R chromosome resulted in the specific amplification products of rye, whereas no amplification product was detected in PCR when using DNAs with other rye chromosomes. FISH (Fluorescent in situ Hybridization) further revealed that the binding sites for the primer set NOR-R1 were only on nucleolar organizing region of chromosome 1R. These results indicated that the primer set NOR-R1 provides a useful means for molecular tagging of rye chromosomes 1 R in wheat genetic background.  相似文献   

7.
Parental genomes are separated throughout the cell cycle in a plant hybrid   总被引:12,自引:0,他引:12  
The positions of the genomes originating from each parent were analysed in root-tip nuclei of the mature, sexual F1 hybrid plant Hordeum vulgare (barley) x Secale africanum (a wild rye). The two genomes of the hybrid were identified in both spread and sectioned material by non-radioactive DNA:DNA in situ hybridization using labelled total genomic DNA from one parent as a proble and unlabelled total genomic DNA from the other parent to block non-specific hybridization. Complete three-dimensional reconstructions of sets of labelled sections enabled detailed analysis of the position of the genomes at interphase. The parental genomes lay in various non-intermixed configurations, including lateral and concentric arrangements. On spread preparations, the two parental genomes were found to be spatially separated throughout the cell cycle; the genome originating from H. vulgare tended to be located more centrally than that from S. africanum. This results show that the nucleus is spatially organized above the level of the DNA and chromosome at the genome level.by M.F. Trendelenburg  相似文献   

8.
We used rye-specific repetitive DNA sequences in fluorescence in situ hybridization (FISH) to paint the rye genome and to identify rye DNA in a wheat background. A 592 bp fragment from the rye-specific dispersed repetitive family R173 (named UCM600) was cloned and used as a FISH probe. UCM600 is dispersed over the seven rye chromosomes, being absent from the pericentromeric and subtelomeric regions. A similar pattern of distribution was also observed on the rye B chromosomes, but with weaker signals. The FISH hybridization patterns using UCM600 as probe were comparable with those obtained with the genomic in situ hybridization (GISH) procedure. There were, however, sharper signals and less background with FISH. UCM600 was combined with the rye-specific sequences Bilby and pSc200 to obtain a more complete painting. With these probes, the rye chromosomes were labeled with distinctive patterns; thus, allowing the rye cultivar 'Imperial' to be karyotyped. It was also possible to distinguish rye chromosomes in triticale and alien rye chromatin in wheat-rye addition and translocation lines. The distribution of UCM600 was similar in cultivated rye and in the wild Secale species Secale vavilovii Grossh., Secale sylvestre Host, and Secale africanum Stapf. Thus, UCM600 can be used to detect Secale DNA introgressed from wild species in a wheat background.  相似文献   

9.
Abundance, variability and chromosomal location of microsatellites in wheat   总被引:51,自引:0,他引:51  
The potential of microsatellite sequences as genetic markers in hexaploid wheat (Triticum aestivum) was investigated with respect to their abundance, variability, chromosomal location and usefulness in related species. By screening a lambda phage library, the total number of (GA)n blocks was estimated to be 3.6 x 104 and the number of (GT)n blocks to be 2.3 x 104 per haploid wheat genome. This results in an average distance of approximately 270 kb between these two microsatellite types combined. Based on sequence analysis data from 70 isolated microsatellites, it was found that wheat microsatellites are relatively long containing up to 40 dinucleotide repeats. Of the tested primer pairs, 36% resulted in fragments with a size corresponding to the expected length of the sequenced microsatellite clone. The variability of 15 microsatellite markers was investigated on 18 wheat accessions. Significantly, more variation was detected with the microsatellite markers than with RFLP markers with, on average, 4.6 different alleles per microsatellite. The 15 PCR-amplified microsatellites were further localized on chromosome arms using cytogenetic stocks of Chinese Spring. Finally, the primers for the 15 wheat microsatellites were used for PCR amplification with rye (Secale cereale) and barley accessions (Hordeum vulgare, H. spontaneum). Amplified fragments were observed for ten primer pairs with barley DNA and for nine primer pairs with rye DNA as template. A microsatellite was found by dot blot analysis in the PCR products of barley and rye DNA for only one primer pair.  相似文献   

10.
P. K. Gupta 《Genetica》1971,42(2):199-213
The work on methods for determining the homoeologous relationship between wheat and rye chromosomes has been reviewed. The results obtained for rye chromosomes belonging to different homoeologous groups have been discussed. It is proposed that chromosome 3R of Lee et al. (1969) should be designated as 1R/3R. It is pointed out that homoeology of all seven rye chromosomes may not be known in the future also, due to translocations. It is, therefore, suggested that Secale montanum should be used instead of S. cereale. Future lines of work have been suggested.  相似文献   

11.
Chinese rye cultivar Jingzhouheimai (Secale cereale L.) shows a high level of resistance to powdery mildew. Identification, location, and mapping of the resistance gene would be helpful for developing a highly resistant germplasm or cultivar in wheat. Using sequential C-banding, GISH, and marker analysis, an addition chromosome with powdery mildew resistance was identified in a line derived from a cross between Chinese wheat landrace Huixianhong and rye cultivar Jingzhouheimai. The line, designated H-J DA2RDS1R(1D), had 44 chromosomes including two pairs of rye chromosomes, 1R and 2R, and lacked a pair of wheat chromosomes 1D, that is, it is a double disomic addition disomic substitution line. According to its reaction to different isolates of the powdery mildew pathogen, the resistance gene in H-J DA2RDS1R(1D) differed from the Pm8 and Pm7 genes located earlier on rye chromosomes 1R and 2R, respectively. In order to determine the location of the resistance gene, line H-J DA2RDS1R(1D) was crossed with wheat landrace Huixianhong and the F2 population and corresponding F2:3 families were tested for disease reaction and assessed with molecular markers. The results showed that a resistance gene, designated PmJZHM2RL, is located in rye chromosome arm 2RL.  相似文献   

12.
The effect of individual rye chromosomes on the induction of callus and the character of its regenerating capacity was studied with cultured immature embryos of wheat–rye (Triticum aestivum L. cv. Saratovskaya 29–Secale cereale L. cv. Onokhoiskaya) substitution lines. The genotypic diversity of the substitution lines proved to significantly affect variation of parameters characterizing the major types of callus cultures, that is, frequencies of embryogenic calli, which are capable of shoot regeneration, and of morphogenic calli, which produce root structures. Functioning in the genotypic background of common wheat cultivar Saratovskaya 29, chromosomes 2R and 3R of rye cultivar Onokhoiskaya stimulated significantly the induction of embryogenic callus highly capable of shoot regeneration. Rye chromosome 2R present in place of chromosome 2D in the common wheat genome suppressed the induction of callus producing root structures. Rye chromosomes 1R and 6R suppressed the induction of embryogenic callus capable of shoot regeneration.  相似文献   

13.
利用小麦微卫星引物建立簇毛麦染色体组特异性标记   总被引:18,自引:1,他引:17  
刘成  杨足君  冯娟  周建平  迟世华  任正隆 《遗传》2006,28(12):1573-1579
选位于普通小麦1A-7A、1B-7B、1D-7D染色体上的102对微卫星引物对多年生簇毛麦、二倍体簇毛麦、小麦-簇毛麦双二倍体与后代和普通小麦中国春、R25、R111、MY11进行了PCR扩增, 发现引物对Xgwm301可以在含簇毛麦染色体的材料中扩出一条长415 bp的特异片段(命名为Xgwm301/415), 而所有供试小麦均未扩出此片段。进而用一套中国春-二倍体簇毛麦附加系来进行扩增, 发现1V-7V染色体均可以扩出该片段, 说明该片段为簇毛麦1V-7V染色体所共有。因此, Xgwm301/415是簇毛麦染色体组上的一个特异片段, 可以用来快速跟踪检测导入到普通小麦背景中的簇毛麦染色体。  相似文献   

14.
Genomic in situ hybridization banding (GISH-banding), a technique slightly modified from conventional GISH, was used to probe the Chinese native rye (Secale cereale L.) DNA, and enabled us to visualize the Individual rye chromosomes and create a universal reference karyotype of the S. cereale chromosome 1R to 7R. The GISH-banding approach used in the present study was able to discriminate S. cereale chromosomes or segments in the wheat (Triticum aeativum L.) background, including the Triticale, wheat-rye addition and translocation lines. Moreover, the GISH-banding pattern of S.cereale subsp. Afghanicum chromosomes was consistent with that of Chinese native rye cv. Jingzhou rye; whereas the GISH-banding pattem of Secale vavilovli was different from that of S. cereale, indicating that GISH-banding can be used to study evolutionary polymorphism in species or subspecies of Secale. In addition, the production and application of GISH-banding to the study of adenine-thymine-riched heterochromatin is discussed.  相似文献   

15.
The polymerase chain reaction (PCR) was used to locate Secale cereale (inter-simple sequence repeat ISSR) or Secale cereale inter-microsatellite (SCIM) markers using wheat–rye addition lines in order to develop a set of molecular markers distributed on the seven rye chromosomes. The number of SCIM markers located on 1R, 2R, 3R, 4R, 5R, 6R and 7R chromosomes were 4, 3, 12, 3, 2, 9 and 8, respectively. Therefore, a total of 41 new SCIMs were located on the seven rye chromosomes. The segregation of the 63 different SCIM markers in three different F2 was studied. The observed ISSR segregations were the 3:1 (50.7%), the 15:1 (12.7%) and the 1:1 (14.2%). The linkage analysis carried out indicated that seven of the segregating SCIMs were linked to chromosome 7R and two were linked to chromosome 4R. The use of the SCIM markers as a source of molecular markers that could be linked to interesting genes or other important agronomic traits is discussed.  相似文献   

16.
The leaf rust resistance gene Lr25, transferred from Secale cereale L. into wheat and located on chromosome 4B, imparts resistance to all pathotypes of leaf rust in South-East Asia. In an F2-derived F3 population, created by crossing TcLr25 that carries the gene Lr25 for leaf rust resistance with leaf rust-susceptible parent Agra Local, three microsatellite markers located on the long arm of chromosome 4B were found to be linked to the Lr25 locus. The donor parent TcLr25 is a near-isogenic line derived from the variety Thatcher. The most virulent pathotype of leaf rust in the South-East Asian region, designated 77–5 (121R63-1), was used for challenging the population under artificially controlled conditions. The marker Xgwm251 behaved as a co-dominant marker placed 3.8 cM away from the Lr25 locus on 4BL. Two null allele markers, Xgwm538 and Xgwm6, in the same linkage group were located at a distance of 3.8 cM and 16.2 cM from the Lr25 locus, respectively. The genetic sequence of Xgwm251, Lr25, Xgwm538, and Xgwm6 covered a total length of 20 cM on 4BL. The markers were validated for their specificity to Lr25 resistance in a set of 43 wheat genetic stocks representing 43 other Lr genes.  相似文献   

17.
Transmission of chromosome 5R of rye (Secale cereale L.) and chromosome 5D of common wheat (Triticum aestivum L.) through gametes of 5R5D dimonosomics (2n = 42, 20W″ + 5R′ + 5D′) was studied. Chromosome 5R was found to have lower competitiveness as compared to 5D. Gametes with the rye chromosome were two times less often involved in the formation of a progeny. The combined frequency of the karyotypes of wheat (5D5D) and wheat monosomics (5D) was 11.6-fold higher than the frequency of the karyotypes of substitution lines (5R5R) and monosomics for the rye chromosome (5R). The karyotypes of 10.38% of hybrid plants had aberrant 5R chromosomes with different translocations formed as a result of breakages in the centromere and in the proximal region of the long arm. Telocentrics for the short arm t5RS, i5RS isochromosomes, and chromosomes with a terminal deletion T5RS.5RL-del were identified. The absence of amplification of SSR markers mapped on 5RS and the detection of PCR products for a number of 5RL markers (including the genome-specific rye marker Xrms115) permitted nine plants carrying only the long arm of chromosome 5R to be revealed. Since t5RL telocentrics were not detected by the cytological analysis, the results obtained allow us to suggest the presence of small intercalary translocations of the long arm of chromosome 5R in chromosome 5D or in other wheat chromosomes.  相似文献   

18.
Hexaploid triticale (x Triticosecale Wittmack) lines were examined using molecular markers and the hybridization in situ technique. Triticale lines were generated based on wheat varieties differing by the Vrn gene systems and the earing times. Molecular analysis was performed using Xgwm and Xrms microsatellite markers with the known chromosomal localization in the common wheat Triticum aestivum, and rye Secale cereale genomes. Comparative molecular analysis of triticale lines and their parental forms showed that all lines contained A and B genomes of common wheat and also rye homeologous chromosomes. In the three lines the presence of D genome markers, mapped to the chromosomes 2D and 7D, was demonstrated. This was probably the consequence of the translocations of homeologous chromosomes from wheat genomes, which took part during the process of triticale formation. The data obtained by use of genomic in situ hybridization supported the data of molecular genetic analysis. In none of the lines wheat--rye translocations or recombinations were observed. These findings suggest that the change of the period between the seedling appearance and earing time in triticale lines compared to the initial wheat lines, resulted from the inhibitory effect of rye genome on wheat vernalization genes.  相似文献   

19.
The relationship between the chromosomal location of heterochromatin C-bands and of four non-homologous repeated sequence families constituting 8 to 12% of total rye DNA has been investigated in chromosomes of rye (Secale cereale) by in situ hybridisation. Three rye varieties, a set of rye disomic additions to wheat and a triticale were studied. Only centromeric and nucleolar organizer region (NOR) associated C-bands failed to display hybridisation to at least one of the sequences and many telomeric blocks of heterochromatin contained all four repeated sequence families. Both between-variety differences in the chromosomal distribution of repeated sequences, and intravarietal heterozygosities were frequently noted and are probably widespread. — Previously reported deletions of heterochromatin from King II rye chromosomes added to the Holdfast wheat complement were correlated with deletions of some, but not all, of the highly repeated sequence families. A previously unreported loss of some families from King II rye chromosome 4R/7R in a Holdfast wheat genetic background was detected. This loss was not associated with complete deletion of a C-band. A deletion has also probably occurred from the short arm telomere of 4R/7R in the triticale variety Rosner. It is suggested that the families of repeats in rye telomeric heterochromatin which are absent from wheat are selected against in the wheat genetic background.  相似文献   

20.
A PCR-based marker for targeting small rye segments in wheat background   总被引:13,自引:0,他引:13  
We attempted to develop a PCR-based marker that detects various segments of rye chromosome incorporated into wheat. We designed three sets of PCR primers based on the nucleotide sequence data of a rye repetitive sequence previously reported. One of the primer sets amplified a clear ca. 1.4 kb fragment in a rye cultivar but not in any form of wheat, diploid, tetraploid or hexaploid. We used this critical primer set for PCR of various wild species and cultivars of rye, an array of wheat plants carrying different rye chromosomes or small segments from different regions of rye chromosome 1R, and plants carrying parts of the rye B chromosome. The PCR amplified the 1.4 kb fragment in all the plant materials examined. We believe this PCR primer set will be useful as a universal PCR-based marker for the introgression of rye chromosome segments in the wheat genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号