首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A prophylactic vaccine for genital herpes disease remains an elusive goal. We report the results of two studies performed collaboratively in different laboratories that assessed immunogenicity and vaccine efficacy in herpes simplex virus 1 (HSV-1)-seropositive guinea pigs immunized and subsequently challenged intravaginally with HSV-2. In study 1, HSV-2 glycoproteins C (gC2) and D (gD2) were produced in baculovirus and administered intramuscularly as monovalent or bivalent vaccines with CpG and alum. In study 2, gD2 was produced in CHO cells and given intramuscularly with monophosphoryl lipid A (MPL) and alum, or gC2 and gD2 were produced in glycoengineered Pichia pastoris and administered intramuscularly as a bivalent vaccine with Iscomatrix and alum to HSV-1-naive or -seropositive guinea pigs. In both studies, immunization boosted neutralizing antibody responses to HSV-1 and HSV-2. In study 1, immunization with gC2, gD2, or both immunogens significantly reduced the frequency of genital lesions, with the bivalent vaccine showing the greatest protection. In study 2, both vaccines were highly protective against genital disease in naive and HSV-1-seropositive animals. Comparisons between gD2 and gC2/gD2 in study 2 must be interpreted cautiously, because different adjuvants, gD2 doses, and antigen production methods were used; however, significant differences invariably favored the bivalent vaccine. Immunization of naive animals with gC2/gD2 significantly reduced the number of days of vaginal shedding of HSV-2 DNA compared with that for mock-immunized animals. Surprisingly, in both studies, immunization of HSV-1-seropositive animals had little effect on recurrent vaginal shedding of HSV-2 DNA, despite significantly reducing genital disease.  相似文献   

2.
Virion glycoproteins such as glycoprotein D (gD) are believed to be the dominant antigens of herpes simplex virus 2 (HSV-2). We have observed that mice immunized with a live HSV-2 ICP0- mutant virus, HSV-2 0ΔNLS, are 10 to 100 times better protected against genital herpes than mice immunized with a HSV-2 gD subunit vaccine (PLoS ONE 6:e17748). In light of these results, we sought to determine which viral proteins were the dominant antibody-generators (antigens) of the live HSV-2 0ΔNLS vaccine. Western blot analyses indicated the live HSV-2 0ΔNLS vaccine elicited an IgG antibody response against 9 or more viral proteins. Many antibodies were directed against infected-cell proteins of >100 kDa in size, and only 10 ± 5% of antibodies were directed against gD. Immunoprecipitation (IP) of total HSV-2 antigen with 0ΔNLS antiserum pulled down 19 viral proteins. Mass spectrometry suggested 44% of immunoprecipitated viral peptides were derived from two HSV-2 infected cells proteins, RR-1 and ICP8, whereas only 14% of immunoprecipitated peptides were derived from HSV-2’s thirteen glycoproteins. Collectively, the results suggest the immune response to the live HSV-2 0ΔNLS vaccine includes antibodies specific for infected cell proteins, capsid proteins, tegument proteins, and glycoproteins. This increased breadth of antibody-generating proteins may contribute to the live HSV-2 vaccine’s capacity to elicit superior protection against genital herpes relative to a gD subunit vaccine.  相似文献   

3.
Using the T-REx (Invitrogen, California) gene switch technology and a dominant-negative mutant polypeptide of herpes simplex virus 1 (HSV-1)-origin binding protein UL9, we previously constructed a glycoprotein D-expressing replication-defective and dominant-negative HSV-1 recombinant viral vaccine, CJ9-gD, for protection against HSV infection and disease. It was demonstrated that CJ9-gD is avirulent following intracerebral inoculation in mice, cannot establish detectable latent infection following different routes of infection, and offers highly effective protective immunity against primary HSV-1 and HSV-2 infection and disease in mouse and guinea pig models of HSV infections. Given these favorable safety and immunological profiles of CJ9-gD, aiming to maximize levels of HSV-2 glycoprotein D (gD2) expression, we have constructed an ICP0 null mutant-based dominant-negative and replication-defective HSV-2 recombinant, CJ2-gD2, that contains 2 copies of the gD2 gene driven by the tetracycline operator (tetO)-bearing HSV-1 major immediate-early ICP4 promoter. CJ2-gD2 expresses gD2 as efficiently as wild-type HSV-2 infection and can lead to a 150-fold reduction in wild-type HSV-2 viral replication in cells coinfected with CJ2-gD2 and wild-type HSV-2 at the same multiplicity of infection. CJ2-gD2 is avirulent following intracerebral injection and cannot establish a detectable latent infection following subcutaneous (s.c.) immunization. CJ2-gD2 is a more effective vaccine than HSV-1 CJ9-gD and a non-gD2-expressing dominant-negative and replication-defective HSV-2 recombinant in protection against wild-type HSV-2 genital disease. Using recall response, we showed that immunization with CJ2-gD2 elicited strong HSV-2-specific memory CD4(+) and CD8(+) T-cell responses. Collectively, given the demonstrated preclinical immunogenicity and its unique safety profiles, CJ2-gD2 represents a new class of HSV-2 replication-defective recombinant viral vaccines in protection against HSV-2 genital infection and disease.  相似文献   

4.
The most potent antigen among HSV-1 proteins are glycoproteins gB(UL27) and gD(US6). Multiple amino acid sequence alignment of these proteins shows that gD protein is the most specific for HSV-1. Analysis of gD protein epitopes detected the main antigenic determinants not cross-reactive with antigens of other viruses. Virus was isolated and genome DNA was prepared from morphological elements of a patient with herpes simplex infection. US6 gene fragment was cloned in pUC19 vector. Cloning in bacterial expression vectors helped obtain beta-galactosidase-fused recombinant HSV-1 gD protein with 6-histidines affine target for high-performance chromatography purification. ELISA with a set of HSV-1-positive and negative donor sera and a commercial panel of HSV-1 sera (Vektor-Best) showed that recombinant gD can be used as an antigen to HSV-1-specific IgG.  相似文献   

5.
Many candidate vaccines are effective in animal models of genital herpes simplex virus type 2 (HSV-2) infection. Among them, clinical trials showed moderate protection from genital disease with recombinant HSV-2 glycoprotein D (gD2) in alum-monophosphoryl lipid A adjuvant only in HSV women seronegative for both HSV-1 and HSV-2, encouraging development of additional vaccine options. Therefore, we undertook direct comparative studies of the prophylactic and therapeutic efficacies and immunogenicities of three different classes of candidate vaccines given in four regimens to two species of animals: recombinant gD2, a plasmid expressing gD2, and dl5-29, a replication-defective strain of HSV-2 with the essential genes UL5 and UL29 deleted. Both dl5-29 and gD2 were highly effective in attenuating acute and recurrent disease and reducing latent viral load, and both were superior to the plasmid vaccine alone or the plasmid vaccine followed by one dose of dl5-29. dl5-29 was also effective in treating established infections. Moreover, latent dl5-29 virus could not be detected by PCR in sacral ganglia from guinea pigs vaccinated intravaginally. Finally, dl5-29 was superior to gD2 in inducing higher neutralizing antibody titers and the more rapid accumulation of HSV-2-specific CD8+ T cells in trigeminal ganglia after challenge with wild-type virus. Given its efficacy, its defectiveness for latency, and its ability to induce rapid, virus-specific CD8(+)-T-cell responses, the dl5-29 vaccine may be a good candidate for early-phase human trials.  相似文献   

6.
Glycoprotein D (gD) of herpes simplex virus (HSV) protects mice from a lethal challenge by either HSV type 1 (HSV-1; oral) or HSV-2 (genital). We evaluated whether synthetic peptides representing residues 1 through 23 of gD (mature protein) can be used as a potential synthetic herpesvirus vaccine. The immunogenicity of the peptides was demonstrated by the biological reactivity of antipeptide sera in immunoprecipitation and neutralization assays. All sera which immunoprecipitated gD had neutralizing against both HSV-1 and HSV-2. The highest titers were found in animals immunized with the longest peptides. The region of residues 1 through 23 was immunogenic regardless of whether the type 1 or type 2 sequence was presented to the animal. Immunization of mice with gD or synthetic peptides conferred solid protection against a footpad challenge with HSV-2. However, the peptides were not as effective as gD in protection against an intraperitoneal challenge. The results suggested that synthetic vaccines based on gD show promise and should be more rigorously tested in a variety of animal models.  相似文献   

7.
目的:在大肠杆菌中表达1型单纯疱疹病毒(HSV-1)囊膜糖蛋白gD,纯化重组蛋白并对其免疫活性进行鉴定。方法:将HSV-1 gD 基因克隆入原核表达载体pET-28b,利用异丙基-B-D-硫代吡喃半乳糖苷(IPTG)诱导重组质粒转化的大肠杆菌,探讨IPTG浓度、诱导时间、诱导温度对重组蛋白表达的影响;盐酸胍裂解变性包涵体,镍柱亲和层析法纯化gD蛋白,并对纯化后的蛋白进行透析复性;Western blot和ELISA检测gD蛋白的免疫活性。结果:酶切和测序结果表明gD基因克隆入pET-28b载体。该重组质粒转化的大肠杆菌经IPTG诱导后重组蛋白主要以包涵体形式存在,大小约40kDa。gD蛋白诱导表达的最佳条件为0.5mmol/L IPTG于37℃诱导8h。镍柱亲和层析法纯化获得的gD蛋白总量为3.1mg/L,透析复性后获得的gD蛋白总量为1.3mg/L,复性率为41.37%。Western blot及ELISA检测表明表达的gD蛋白具有免疫活性。结论:在大肠杆菌中表达并纯化获得具有免疫活性的HSV-1 gD蛋白,为进一步制备HSV-1诊断试剂和预防疫苗奠定了基础。  相似文献   

8.
Evidence obtained from both animal models and humans suggests that T cells specific for HSV-1 and HSV-2 glycoprotein D (gD) contribute to protective immunity against herpes infection. However, knowledge of gD-specific human T cell responses is limited to CD4+ T cell epitopes, with no CD8+ T cell epitopes identified to date. In this study, we screened the HSV-1 gD amino acid sequence for HLA-A*0201-restricted epitopes using several predictive computational algorithms and identified 10 high probability CD8+ T cell epitopes. Synthetic peptides corresponding to four of these epitopes, each nine to 10 amino acids in length, exhibited high-affinity binding in vitro to purified human HLA-A*0201 molecules. Three of these four peptide epitopes, gD53-61, gD70-78, and gD278-286, significantly stabilized HLA-A*0201 molecules on T2 cell lines and are highly conserved among and between HSV-1 and HSV-2 strains. Consistent with this, in 33 sequentially studied HLA-A*0201-positive, HSV-1-seropositive, and/or HSV-2-seropositive healthy individuals, the most frequent and robust CD8+ T cell responses, assessed by IFN-gamma ELISPOT, CD107a/b cytotoxic degranulation, and tetramer assays, were directed mainly against gD53-61, gD70-78, and gD278-286 epitopes. In addition, CD8+ T cell lines generated by gD53-61, gD70-78, and gD278-286 peptides recognized infected target cells expressing native gD. Lastly, CD8+ T cell responses specific to gD53-61, gD70-78, and gD278-286 epitopes were induced in HLA-A*0201 transgenic mice following ocular or genital infection with either HSV-1 or HSV-2. The functional gD CD8+ T cell epitopes described herein are potentially important components of clinical immunotherapeutic and immunoprophylactic herpes vaccines.  相似文献   

9.
木文从单纯疱疹病毒Ⅰ型(HSV-1)基因组EcoRI H片段中分离出含有糖蛋白D(gD)基因的2.5kb DWA片段,插入带有痘苗病毒天坛株TK基因区段的pJC—2质粒p7.5k启动子的下游,转染TK~-143细胞,获得带有HSV-1 gD基因的重组痘苗病毒。采用HSV-1 gD单克隆抗体免疫胶体金技术进行电镜观察表明,重组痘苗病毒感染的细胞内有特异性HSV-1 gD抗原.重组病毒免疫家兔后6周可产生明显的HSV-1中和抗体。  相似文献   

10.
Lesions resulting from recurrent genital herpes simplex virus (HSV) infection are characterized by infiltration of CD4+ lymphocytes. We have investigated the antigenic specificity of 47 HSV-specific CD4+ T-cell clones recovered from the HSV-2 buttock and thigh lesions of five patients. Clones with proliferative responses to recombinant truncated glycoprotein B (gB) or gD of HSV-2 or purified natural gC of HSV-2 comprised a minority of the total number of HSV-specific clones isolated from lesions. The gC2- and gD2-specific CD4+ clones had cytotoxic activity. The approximate locations of the HSV-2 genes encoding HSV-2 type-specific CD4+ antigens have been determined by using HSV-1 x HSV-2 intertypic recombinant virus and include the approximate map regions 0.30 to 0.46, 0.59 to 0.67, 0.67 to 0.73, and 0.82 to 1.0 units. The antigenic specificity of an HLA DQ2-restricted, HSV-2 type-specific T-cell clone was mapped to amino acids 425 to 444 of VP16 of HSV-2 by sequential use of an intertypic recombinant virus containing VP16 of HSV-2 in an HSV-1 background, recombinant VP16 fusion proteins, and synthetic peptides. Each of the remaining four patients also yielded at least one type-specific T-cell clone reactive with an HSV-2 epitope mapping to approximately 0.67 to 0.73 map units. The antigenic specificities of lesion-derived CD4+ T-cell clones are quite diverse and include at least 10 epitopes. Human T-cell clones reactive with gC and VP16 are reported here for the first time.  相似文献   

11.
Yoon M  Zago A  Shukla D  Spear PG 《Journal of virology》2003,77(17):9221-9231
Multiple cell surface molecules (herpesvirus entry mediator [HVEM], nectin-1, nectin-2, and 3-O-sulfated heparan sulfate) can serve as entry receptors for herpes simplex virus type 1 (HSV-1) or HSV-2 and also as receptors for virus-induced cell fusion. Viral glycoprotein D (gD) is the ligand for these receptors. A previous study showed that HVEM makes contact with HSV-1 gD at regions within amino acids 7 to 15 and 24 to 32 at the N terminus of gD. In the present study, amino acid substitutions and deletions were introduced into the N termini of HSV-1 and HSV-2 gDs to determine the effects on interactions with all of the known human and mouse entry/fusion receptors, including mouse HVEM, for which data on HSV entry or cell fusion were not previously reported. A cell fusion assay was used to assess functional activity of the gD mutants with each entry/fusion receptor. Soluble gD:Fc hybrids carrying each mutation were tested for the ability to bind to cells expressing the entry/fusion receptors. We found that deletions overlapping either or both of the HVEM contact regions, in either HSV-1 or HSV-2 gD, severely reduced cell fusion and binding activity with all of the human and mouse receptors except nectin-1. Amino acid substitutions described previously for HSV-1 (L25P, Q27P, and Q27R) were individually introduced into HSV-2 gD and, for both serotypes, were found to be without effect on cell fusion and the binding activity for nectin-1. Each of these three substitutions in HSV-1 gD enhanced fusion with cells expressing human nectin-2 (ordinarily low for wild-type HSV-1 gD), but the same substitutions in HSV-2 gD were without effect on the already high level of cell fusion observed with the wild-type protein. The Q27P or Q27R substitution in either HSV-1 and HSV-2 gD, but not the L25P substitution, significantly reduced cell fusion and binding activity for both human and mouse HVEM. Each of the three substitutions in HSV-1 gD, as well as the deletions mentioned above, reduced fusion with cells bearing 3-O-sulfated heparan sulfate. Thus, the N terminus of HSV-1 or HSV-2 gD is not necessary for functional interactions with nectin-1 but is necessary for all of the other receptors tested here. The sequence of the N terminus determines whether nectin-2 or 3-O-sulfated heparan sulfate, as well as HVEM, can serve as entry/fusion receptors.  相似文献   

12.
A mouse L cell line which expresses the herpex simplex virus type 1 immediate-early polypeptides ICP4 and ICP47 was cotransfected with a cloned copy of the BglII L fragment of herpes simplex virus type 2, which includes the gene for gD, and the plasmid pSV2neo, which contains the aminoglycosyl 3'-phosphotransferase (agpt) gene conferring resistance to the antibiotic G418. A G418-resistant transformed cell line was isolated which expressed herpes simplex virus type 2 gD at higher levels than were found in infected cells. The intracellular transport and processing of gD was compared in transformed and infected cells. In the transformed Z4/6 cells gD was rapidly processed and transported to the cell surface; in contrast, the processing and cell surface appearance of gD in infected parental Z4 cells occurred at a much slower rate, and gD accumulated in nuclear membrane to a greater extent. Thus, the movement of HSV-2 gD to the cell surface in infected cells is retarded as viral glycoproteins accumulate in the nuclear envelope, probably because they interact with other viral structural components.  相似文献   

13.
We studied the synthesis and processing of the type-common glycoprotein gD in herpes simplex virus type 2 (HSV-2) and compared it structurally to glycoprotein gD of herpes simplex virus type 1 (HSV-1). We demonstrated that in HSV-2, gD undergoes posttranslational processing from a lower-molecular-weight precursor (pgD51) to a higher-molecular-weight product (gD56). Tryptic peptide analysis by cation-exchange chromatography indicated that this processing step altered neither the methionine nor the arginine tryptic peptide profile of gD of HSV-2. Comparative tryptic peptide analysis of gD of HSV-1 and HSV-2 showed that the methionine and arginine tryptic peptide profiles of these two proteins were very similar, but not identical. Some of the resolved peptides coeluted from the cation-exchange column, suggesting that some amino acid sequences of the two proteins might be very similar. However, each protein also appeared to possess several type-specific tryptic peptides. The structural similarity of these two glycoproteins correlates well with their antigenic cross-reactivity since monoprecipitin antibody to gD of HSV-1 also immunoprecipitates gD of HSV-2 and neutralizes the infectivity of both viruses to approximately the same extent.  相似文献   

14.

Background  

CJ9-gD is a novel dominant-negative recombinant herpes simplex virus type 1 (HSV-1) that is completely replication-defective, cannot establish detectable latent infection in vivo, and expresses high levels of the major HSV-1 antigen glycoprotein D immediately following infection. In the present study, CJ9-gD was evaluated as a vaccine against HSV-2 genital infection in guinea pigs.  相似文献   

15.
Three insect cell lines, Sf9, Sf21 and Tn5B1-4, and four different kinds of serum free media (SFM), Sf 900 II, EX-CELL 420, EX-CELL 405 and Express Five, were used to compare the nutrient consumption, byproduct formation, production of recombinant protein and protease activity in suspension cultures. The Sf 900 II SFM was appropriate for the cell growth and protein production of the Sf9 and Sf21 cell lines. When the Tn5B1-4 cell line was grown in the Express Five SFM, the specific growth rate was 1.6 fold higher than those of either the Sf9 or Sf21 cell lines. The glucose and glutamine consumption rates per cells, were 4 and 2.3. times higher than those of the Sf9 cell line, respectively. The overall yield coefficients of the lactate and ammonium ion were 2.8 and 1.5 times higher compared to those of the Sf9 cell line, respectively. The maximum specific β-galactosidase production rate was 4.5. fold that of the Sf9 cell line, a 3 times higher protease activity per cell.  相似文献   

16.
Previously we showed that mice immunized with a vaccinia virus vector expressing the herpes simplex virus type 1 (HSV-1) glycoprotein D (gD) gene (vaccinia/gD) were protected against both lethal and latent infections with HSV-1 for at least 6 weeks after immunization (K. J. Cremer, M. Mackett, C. Wohlenberg, A. L. Notkins, and B. Moss, Science 228:737-740, 1985). In the experiments described here, we examined long-term immunity to HSV following vaccinia/gD vaccination, the effect of revaccination with vaccinia/gD, and the impact of previous immunity to vaccinia virus on immunization with the gD recombinant. Mice immunized with vaccinia/gD showed 100, 100, and 80% protection against lethal infection with HSV-1 at 18, 44, and 60 weeks postimmunization, respectively. Protection against latent trigeminal ganglionic infection was 70, 50, and 31% at 6, 41, and 60 weeks postvaccination, respectively. To study the effect of reimmunization on antibody levels, mice vaccinated with vaccinia/gD were given a second immunization (booster dose) 3 months after the first. These mice developed a 10-fold increase in neutralizing-antibody titer (221 to 2,934) and demonstrated a significant increase in protection against lethal HSV-1 challenge compared with animals that received only one dose of vaccinia/gD. To determine whether preexisting immunity to vaccinia virus inhibited the response to vaccination with vaccinia/gD virus, mice were immunized with a recombinant vaccinia virus vector expressing antigens from either influenza A or hepatitis B virus and were then immunized (2 to 3 months later) with vaccinia/gD. These mice showed reduced titers of neutralizing antibody to HSV-1 and decreased protection against both lethal and latent infections with HSV-1 compared with animals vaccinated only with vaccinia/gD. We conclude that vaccination with vaccinia/gD produces immunity against HSV-1 that lasts over 1 year and that this immunity can be increased by a booster but that prior immunization with a vaccinia recombinant virus expressing a non-HSV gene reduces the levels of neutralizing antibody and protective immunity against HSV-1 challenge.  相似文献   

17.
Although sexually transmitted pathogens are capable of inducing pathogen-specific immune responses, vaginal administration of nonreplicating antigens elicits only weak, nondisseminating immune responses. The present study was undertaken to examine the potential of CpG-containing oligodeoxynucleotide (CpG ODN) for induction of chemokine responses in the genital tract mucosa and also as a vaginal adjuvant in combination with glycoprotein D of herpes simplex virus type 2 (HSV-2) for induction of antigen-specific immune responses. We found that a single intravaginal administration of CpG ODN in mice stimulates a rapid and potent response of CC chemokines macrophage inflammatory protein 1alpha (MIP-1alpha), MIP-1beta, and RANTES as well as of CXC chemokines MIP-2 and IP-10 in the vagina and/or the genital lymph nodes. Importantly, intravaginal vaccination with recombinant gD2 in combination with CpG ODN gave rise to a strong antigen-specific Th1-like immune response in the genital lymph nodes as well as the spleens of the vaccinated mice. Further, such an immunization scheme conferred both systemic and mucosal immunoglobulin G antibody responses as well as protection against an otherwise lethal vaginal challenge with HSV-2. These results illustrate the potential of CpG ODN for induction of potent chemokine responses in the genital tract and also as a vaginal adjuvant for generation of Th1-type mucosal and systemic immune responses towards a nonreplicating antigen derived from a sexually transmitted pathogen. These data have implications for the development of a mucosal vaccine against genital herpes and possibly other sexually transmitted diseases.  相似文献   

18.
S Hinuma  M Hazama  A Mayumi  Y Fujisawa 《FEBS letters》1991,288(1-2):138-142
Interleukin 2 (IL-2) is a lymphokine promoting immune response and therefore has been investigated as an immunological adjuvant. In order to enhance the immunogenicity of recombinant viral protein, herpes simplex virus type 1 (HSV-1) glycoprotein D (gD), we genetically created a fusion protein consisting of gD and human IL-2. The fusion protein, without any other adjuvants, induced high antibody responses and cell-mediated immunity to HSV-1 in mice. Mice immunized with the fusion protein were protected against HSV-1 infection. The results indicate that IL-2-fusing can provide a means for converting a weak immunogenic protein into a high immunogenic antigen, and the strategy would be widely applicable to the other antigens for pathogens.  相似文献   

19.
Herpes simplex virus type 2 (HSV-2) is transmitted through the genital mucosa during sexual encounters. In recent years, HSV-1 has also become commonly associated with primary genital herpes. The mechanism of viral entry of HSV-1 and HSV-2 in the female genital tract is unknown. In order to understand the molecular interactions required for HSV entry into the vaginal epithelium, we examined the expression of herpesvirus entry mediator nectin-1 in the vagina of human and mouse at different stages of their hormonal cycle. Nectin-1 was highly expressed in the epithelium of human vagina throughout the menstrual cycle, whereas the mouse vaginal epithelium expressed nectin-1 only during the stages of the estrous cycle in which mice are susceptible to vaginal HSV infection. Furthermore, the ability of nectin-1 to mediate viral entry following intravaginal inoculation was examined in a mouse model of genital herpes. Vaginal infection with either HSV-1 or HSV-2 was blocked by preincubation of the virus with soluble recombinant nectin-1. Viral entry through the vaginal mucosa was also inhibited by preincubation of HSV-2 with antibody against gD. Together, these results suggest the importance of nectin-1 in mediating viral entry for both HSV-1 and HSV-2 in the genital mucosa in female hosts.  相似文献   

20.
A new polymerase chain reaction (PCR) method employing type-specific primers and probes was applied to 114 clinical specimens obtained from 58 female patients with genital lesions or who had a history of genital herpes. Ten and 15 specimens, respectively, were positive for herpes simplex virus (HSV)-1 and HSV-2 by cell culture. All of 10 culture-confirmed HSV-1 cases and 11 of 15 (73%) culture-confirmed HSV-2 cases were identified by PCR. Although there were several cases with discrepancy between cell culture and PCR for HSV-2, the results suggest that this PCR procedure could be applied to clinical specimens from the female genital tract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号