首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Juvenile (2–4 years old) plants of a taxonomically diverserange of dicotyledonous species were examined following recruitmentfrom seed in recently burnt habitats in S.W. Australia. Obligateseeder species (those succumbing to fire) had on average, analmost threefold greater total plant d. wt and more than a fourfoldgreater shoot: root d. wt ratio than comparably-aged, cohabiting,resprouter species (those capable of surviving fire). Starchwas generally much more concentrated in root dry matter of resproutersthan seeders, and both categories exhibited greater starch storagecapacity in roots than shoots. Members of the Myrtaccae wereexceptional in not showing a greater root starch reserve inresprouter than in seeder species. and in carrying as high,or higher, starch levels in shoots as in roots. Anatomical investigationson roots provided instances of zero starch storage, storage,only in rays or in cortex, in rays and in xylem parenchyma,in rays and in cortex, or in all three locations. High starchratings of resprouter roots related mostly to higher starchgrain packing density at storage sites, but in certain instancesthese also reflected proportionally greater areas of tissuespecifically devoted to storage. Dry matter of shoots of bothseeders and resprouters generally contained higher levels ofN, P, K, Ca and Mg than that of roots, but there was no significantevidence of elements being more concentrated in resproutersthan in seeders. Fire response, seedlings, resprouter, obligate seeder, shoot: root ratio, starch storage, mineral nutrition  相似文献   

2.
Abstract Stirlingia latifolia R. Br. is a proteaceous undershrub that is widespread in open woodlands and heathlands of the south‐west botanical province of Western Australia where it is subject to frequent fires, both natural and the result of fuel‐reduction burns. Shoots are completely destroyed by fire but regenerate rapidly by resprouting numerous new shoots from the root crown. Flowering is strongly triggered by fire with only sparse flowering in fire‐free periods. A study was undertaken to compare regrowth and flowering in populations of S. latifolia burnt in summer or autumn with populations burnt in spring as well as in unburnt population. Post‐fire flowering was recorded in 92% of plants burnt in summer/autumn compared with 73% of plants burnt in spring and less than 3% in populations that had not been burnt for more than 2 years. Plants burnt in summer/autumn resprouted an average of 8.5 shoots from their root crown, of which 93% developed an inflorescence. In contrast, spring‐burnt plants averaged only 5.9 shoots per plant with only 64% of these bearing an inflorescence. Ability to produce flowers was found to be related to plant age, with young individuals producing fewer or no inflorescences following spring burns in comparison with the more prolific flowering of similarly aged individuals following summer/autumn burns. Summer/autumn‐burnt plants also produced significantly longer inflorescence‐bearing shoots bearing a greater numbers of flower heads than those burnt in spring. Possible explanations for these results are given in the present report.  相似文献   

3.
Selected epacrids (92 species in 15 genera) were examined withrespect to fire response type, morphology, root anatomy andstarch storage. Seeders, 75% of the species investigated, possesseda single main stem and a small root system with lateral rootswhich in most cases did not spread beyond the shoot canopy.Resprouter species were generally multi-stemmed with large lignotuberousroot stocks. Certain seeder and resprouter species were intermediatein form and showed small root systems and basally branched mainstems. Amounts of starch in roots of seeders (1.9±0.5mgstarch gd.wt per root) were much less than in resprouters (14.1±3.3)whereas amounts in shoots were similar (1.9±0.5 and 1.6±0.6mgstarch gd.wt per shoot, respectively). Starch storage in rootswas mostly confined to rays of xylem parenchyma and inter-rayxylem parenchyma and the greater storage capacity of resprouterswas generally due to broader rays. Growth zones in root xylemranged from clear, verifiable annual rings, as in many seederspecies, to indistinct growth zones, typical of many resprouterspecies. Shoot:root dry weight ratios were higher in seedersthan resprouters. The study suggests that speciation withinthe Epacridaceae into seeder and resprouter forms involved divergentdifferentiation in terms of morphology, shoot:root dry weightratio root storage of starch. Seeder; starch storage; growth rings; growth zones; south-west Australia; resprouter; Epacridaceae  相似文献   

4.
Nodul{macron}ted alfalfa plants were grown hydroponically. Inorder to quantify N2 fixation and remobilization of N reservesduring regrowth the plants were pulse-chase-labelled with 15N.Starch and ethanol-soluble sugar contents were analysed to examinechanges associated with those of N compounds. Shoot removalcaused a severe decline in N2 fixation and starch reserves within6 d after cutting. The tap root was the major storage site formetabolizable carbohydrate compounds used for regrowth; initiallyits starch content decreased and after 14 d started to recoverreaching 50% of the initial value on day 24. Recovery of N2fixation followed the same pattern as shoot regrowth. Afteran initial decline during the first 10 d following shoot removal,the N2 fixation, leaf area and shoot dry weight increased sorapidly that their levels on day 24 exceeded initial values.Distribution of 15N within the plant clearly showed that a significantamount of endogenous nitrogen in the roots was used by regrowingshoots. The greatest use of N reserves (about 80% of N incrementin the regrowing shoot) occurred during the first 10 d and thencompensated for the low N2 fixation. The distribution of N derivedeither from fixation or from reserves of source organs (taproots and lateral roots) clearly showed that shoots are thestronger sink for nitrogen during regrowth. In non-defoliatedplants, the tap roots and stems were weak sinks for N from reserves.By contrast, relative distribution within the plant of N assimilatedin nodules was unaffected by defoliation treatment. Key words: Medicago sativa L., N2 fixation, N remobilization, N2 partitioning, regrowth  相似文献   

5.
Over the past century there has been a global trend towards tree expansion and densification in rangelands and savannas. This phenomenon is commonly referred to as bush encroachment. In South Africa Acacia karroo is one of the key species responsible for bush encroachment. It has been suggested that the combination of fire and browsing might limit bush encroachment by A. karroo more effectively than either browsing or fire alone. We hypothesized that these repeated disturbances progressively deplete root carbohydrates and compromise resprouting ability. This was tested by burning and then manually defoliating A. karroo once a month for 1 year. Manual defoliation did not inhibit the rapid shoot elongation after topkill of A. karroo saplings. During this initial phase, the growth of the new shoots of A. karroo was dependent more on mobilised root reserves than on photoassimilates from the new shoots. Frequent manual defoliation of resprouting A. karroo saplings prevented the replenishment of starch reserves. We suggest a mechanism for how the interaction of browsing and fire can suppress and perhaps reverse bush encroachment in African savannas. Saplings that have reduced starch reserves at the end of dry season due to browsing will struggle to resprout if they are burnt. Even if they do not die, they will be less able to escape fire damage in the next fire than if they had been able to resprout unimpeded.  相似文献   

6.
Wildy DT  Pate JS 《Annals of botany》2002,90(2):185-197
Resprouting in the oil mallee, Eucalyptus kochii Maiden & Blakely subsp. plenissima Gardner (Brooker), involves generation of new shoots from preformed meristematic foci on the lignotuber. Numbers of such foci escalated from 200 per lignotuber in trees aged 1 year to 3,000 on 4- to 5-year-old trees. Removal of shoot biomass by decapitation 5 cm above ground in summer (February) or spring (October) resulted in initiation of 140-170 new shoots, but approx. 400 shoots were induced to form if crops of new shoots were successively removed until sprouting ceased and rootstocks senesced. Initially, the new shoot biomass of regenerating coppices increased slowly and the root biomass failed to increase appreciably until 1.7-2.5 years after cutting. Newly cut trees showed loss of fine root biomass, and structural roots failed to secondarily thicken to the extent shown by uncut trees. After 2 years, the biomass of shoots of coppiced plants was only one-third that of uncut control trees and shoot:root dry mass ratios of coppiced plants were still low (1.5-2.0) compared with those of the controls (average ratio of 3.1). Spring cutting promoted quicker and greater biomass recovery than summer cutting. Starch in below-ground biomass fell quickly following decapitation and remained low for a 12-18 month period. Utilization of starch reserves in naturally regenerating coppices was estimated to provide only a small proportion of the dry matter accumulated in new shoots. Results are discussed in relation to their impact on coppicing ability of the species under natural conditions or when successively coppiced for shoot biomass production.  相似文献   

7.
Morphological changes of roots and shoots following oxygen deficiencyin the root medium and after partial pruning of the root systemwere analyzed to obtain easily measurable parameters of theadaptive capacity of the root system against stress. Wheat seedlings(Triticum aestivum L. cv. Hatri) were cultivated on nutrientsolution which was either aerated or flushed with nitrogen,or were cultivated on flooded sand. On the third day after grainswelling in two pruning variants, roots 1–3 or 4–8were excised. Root anaerobiosis retarded longitudinal growth and biomass accumulationof the shoot and the seminal roots, and stimulated the developmentof adventitious roots. Partial removal caused a general compensativegrowth of the remaining roots under aerobic conditions. Root pruning plus anaerobiosis exceeded the compensatory capacityof the seedlings and thus caused a strong delay of elongationand biomass accumulation of both roots and shoots, includingdecrease of the root/shoot ratio. Roots became independent ofendosperm reserves on the seventh day under aerobic conditionsthough caryopses were not completely exhausted at this time.Additionally, oxygen deficiency delayed the reserve exhaustionprocess. Triticum aestivum L. cv Hatri, wheat, roots, growth analysis, morphology, anaerobiosis, strees, root pruning, compensatory capacity, caryopsis  相似文献   

8.
A method was used for applying a uniform mechanical impedanceto plant roots using sand packed at different bulk densitieswith depth within each growth cylinder. In a growth experiment,replicate cylinders were packed with sand to give the followingmechanical impedances: 0.25 MPa penetration resistance (negligibleimpedance), 1.40 MPa (moderate impedance) and 2.30 MPa (severeimpedance). Seedlings of Lolium perenne L., Trifolium repensL. and Agrostis capillaris were grown for 23 d in each impedancetreatment and effects on both roots and shoots were studied.Severe mechanical impedance affected both root and shoot growthrates for all three species resulting in smaller leaves andshorter roots. For the grasses, the root-to-shoot ratio at harvestwas the same for all the treatments, but a delay in the initiationof both shoots and roots was observed in the severe mechanicalimpedance treatment. The results are discussed in relation tothe possibility that roots penetrating the impeding treatmentsmay have caused signalling that kept shoot and root growth insynchrony. Differences observed in the response to mechanicalimpedance of T. repens compared to the other two species maybe a function of differences in the physiology between mono-and dicotyledonous species. Key words: Mechanical impedance, Lolium perenne, Trifolium repens, roots, shoots  相似文献   

9.
Aboveground disturbances are common in dynamic riparian environments, and Salix nigra is well adapted with a vigorous resprouting response. Soil moisture stresses are also common, and S. nigra is flood tolerant and drought sensitive. The objective of this study was to quantify nonstructural carbohydrate (NSC) reserves in S. nigra following shoot removal and soil moisture treatments. NSC reserves provide energy for regeneration of shoot tissue until new functional leaves are developed. Three soil moisture treatments: well-watered (W), periodic flooding (F) and drought (D); and three shoot removal treatments: no shoots removed (R0), partial shoot removal (R1), and complete shoot removal (R2) were applied. Plants were harvested when new shoot development was observed (day 13). Statistical significance in the 3 × 3-factorial design was determined in two-factor ANOVA at P < 0.05. Both roots and cuttings were important reservoirs for NSC during resprouting response, with decreases in root (31%) and cutting (14%) biomass in R2 compared to R0. Rapid recovery of photosynthetic surface area (from 15 to 37% of R0) was found in R1. A clear pattern of starch mobilization was found in roots in R0, R1 and R2, with lowest root starch concentration in W, F higher than W, and D higher than F. Shoot starch concentration was lower in F and D compared to W in R0, however, in R1 shoot starch was reduced in W compared to F and D, possibly indicating reduced rates of translocation during soil moisture stress. Evidence of osmotic adjustment was found in roots and shoots with higher total ethanol-soluble carbohydrates (TESC) during soil moisture stress in F and D treatments. Total plant NSC pool was greater in F and D treatments compared to W, and progressively reduced from R0 to R1 to R2. Results indicated negative effects of drought, and to a lesser extent periodic flooding on resprouting response in S. nigra, with implications for reduced survival when exposed to combined stresses of aboveground disturbance and soil moisture.  相似文献   

10.
The remobilization and transport of reserve carbon from a kiwifruit(Actinidia deliciosa)cane to developing axillary shoots wasmodelled using a simple pool structure and mass flow process.Manipulative experiments with mature kiwifruit plants are comparedwith simulation results. The model uses detailed architecturalinformation rather than explicit partitioning functions, achievingcarbon partitioning as emergent behaviour of a spatial organization.The model successfully simulated shoot growth and starch distributionpatterns.Copyright 1999 Annals of Botany Company Carbon reserves, starch reserves, plant architecture,Actinidia deliciosa,kiwifruit.  相似文献   

11.
SAKAI  A.; SAKAI  S.; AKIYAMA  F. 《Annals of botany》1997,79(6):625-630
Saplings ofEuptelea polyandra were studied to determine whethertree species found on unstable hillslopes of temperate, old-growthforests in Japan carry substantial storage materials for sproutingreplacement genets, as is the case with resprouter species offire-prone areas. Concentrations (% d. wt basis) of carbohydrates(starch, sucrose, glucose and fructose) contained in roots,stems and leaves were measured in summer and winter.E. polyandrasaplings were compared with those ofQuercus serrata (a frequentlysprouting tree), and those ofMallotus japonicus andIdesia polycarpa(rarely sprouting trees) in the same forest. Total concentrationsof carbohydrates (the sum of starch, sucrose, glucose and fructose)in roots were lowest inE. polyandra in both summer and winter.In addition,E. polyandra had a lower ratio of root biomass tototal plant biomass thanQ. serrata , but similar to that ofthe non-sprouting species,M. japonicus andI. polycarpa . Onthe other hand, the total concentration of carbohydrates inthe above-ground parts were similar in the four species in bothsummer and winter. These results indicate thatE. polyandra hadless long-term storage resources to implement sprouting, inspite of its apparent effectiveness in sprouting. We proposehypotheses to explain the reason whyE. polyandra stores a relativelysmall amount of resources for sprouting. Carbohydrate concentration; Euptelea polyandra Sieb. et Zacc; ground-surface disturbance; Idesia polycarpa Maxim; Mallotus japonicus (Thunb.) Muell. Arg.; Quercus serrata Thunb.; resprouter; root dry weight ratio; soluble sugars; sprouting; starch  相似文献   

12.
13.
Abscisic acid (ABA) moving from roots to shoots in the transpirationstream is a potential hormonal message integrating perceptionof a root stress with adaptive changes in the shoot. A twinroot system was used to study ways of estimating effects ofdroughting the upper roots of Ricinus communis L. on abscisicacid (ABA) transport to the shoot in the transpiration stream.Droughted plants transpired more slowly than controls. Droughtingalso increased concentrations of ABA up to I I-fold in sap inducedto flow from the roots of freshly decapitated plants at ratesof whole plant transpiration. However, because of dilution effectsarising from the different sap flows in control and droughtedplants, these changes in ABA concentration in the xylem sapdid not accurately reflect amounts of ABA transported. To overcomethis problem, delivery rates were calculated by multiplyingconcentration with sap flow rate to generate ABA delivery interms of µmol s–1 per plant. Droughting for 24 hor more increased ABA delivery from roots to shoots by 5-fold.Since droughting can alter the relative sizes of the roots andshoots and also the root:shoot ratio these delivery rates wererefined in several ways to reflect both the amount of root generatingthe ABA message and the size of the recipient shoot system. Key words: Abscisic acid, Ricinus communis L., soil drying, xylem sap  相似文献   

14.
Root–shoot interaction in the tea plant, in relation toturnover of root reserves, following pruning and manuring, wereinvestigated by ring barking the roots or severing mature rootsin both unpruned and pruned plants. Translocation of leaf assimilatesto the root system appears to be dependent on a feeder rootstimulus, and nitrogen assimilation by the root system seemsto depend on replenishment of root reserves by leaf activity,both of which were interrupted by ring barking. Camellia sinensis, root–shoot interaction, tea, root reserves, translocation  相似文献   

15.
To test the resource remobilization hypothesis, i.e. the hypothesisthat some trees sprout from root-collars or from the lower partof trunks using resources obtained from above-ground parts ratherthan from resources reserved in their roots, we conducted cuttingexperiments forEuptelea polyandra, a frequently sprouting treespecies with little carbohydrate reserves in its roots,Quercusserrata,a frequently sprouting tree species with large reservesin the roots, andMallotus japonicus, a rarely sprouting treespecies. Trees of each species were cut down in winter leavingtwo kinds of stumps, those approx. 1.5 m in height and thosecut off near the ground. The number and total dry weight ofnewly sprouted shoots per stump were compared between the twotreatments and among the three species at the end of the followinggrowing season. InE. polyandra,both the number and total dryweight of sprouts per stump were very small for both treatmentsand were similar to, or less than, those ofM. japonicus. Onthe other hand,Q. serratasprouted abundantly in both treatments.These results indicate thatE. polyandracannot sprout sufficientlywithout a considerably large volume of above-ground parts orthat additional structures such as foliage and branches maybe necessary for sprouting. We conclude that the resource remobilizationhypothesis is supported for this species.Copyright 1998 Annalsof Botany Company Euptelea polyandraSieb. et Zacc,Quercus serrataThunb,Mallotus japonicus(Thunb.) Muell. Arg., tree sprouting, cutting experiment, resprouter, resource movement, carbohydrate allocation, ground-surface disturbance, root stock, resource remobilization hypothesis.  相似文献   

16.
The effect of concurrent salinity (0-60 mM NaCl) and rootzonehypoxia (flooding for up to 15 d) on shoot and root growth andshoot ion concentrations of six species of Trifolium (T. subterraneumL., T. fragiferum L., T. michelianum Savi., T. isthmocarpumBot., T. purpureum Lois., and T. repens L.), was studied intwo greenhouse experiments. There was a significant salinityx flooding effect for shoot yield but no significant salinityx flooding x species interaction although individual speciesdiffered significantly (P < 0·001) in their growthresponse to the saline or flooded conditions separately. Concentrationsof Na and Cl in the shoots of all species increased with increasingperiods of saline flooding and there was a significant salinityx flooding interaction. Sodium and Cl concentrations were significantlyhigher (P < 0·001) in T. purpureum, the species inwhich shoot growth was most depressed by saline flooding, thanother species. In T. michelianum, T. fragiferum and T. repens,fresh and dry weight of roots increased with flooding underboth saline and non-saline conditions while in T. subterraneumroot growth decreased. A significant proportion of the increasedroot growth in the first three species occurred as new adventitiousroots. These roots had higher percentages of internal gas spaceswithin the root tissue even in the presence of salinity comparedwith roots from non-flooded conditions. There were also significantlymore gas spaces in the total root tissue in T. fragiferum andT. repens under saline-flooding than in roots of T. subterraneum.Electron micrographs of the root cross sections illustratedthe presence of these gas spaces or aerenchyma. Trifolium fragiferum, T. repens and T. michelianum are morelikely to be suited to growth in soils prone to high salinityand to flooding than are T. subterraneum, T. purpureum and T.ishmocarpum.Copyright 1993, 1999 Academic Press Trifolium subterraneum, Trifolium fragiferum, Trifolium michelianum, Trifolium isthmocarpum, Trifolium purpureum, Trifolium repens, salinity, flooding, hypoxia, adventitious roots, aerenchyma, subterranean clover, white clover, strawberry clover, purple clover, balansa clover  相似文献   

17.
The influence of varied supply of phosphorus (10 and 250 mmolP m–3) potassium (50 and 2010 mmol K m–3) and magnesium(20 and 1000 mmol Mg m–3) on the partitioning of dry matterand carbohydrates (reducing sugars, sucrose and starch) betweenshoots and roots was studied in bean (Phaseolus vulgaris) plantsgrown in nutrient solution over a 12 d period. Shoot and rootgrowth were quite differently affected by low supply of P, K,and Mg. The shoot/root dry weight ratios were 4.9 in the control(sufficient plants), 1.8 in P-deficient, 6.9 in K-deficientand 10.2 in Mg-deficient plants. In primary (source) leaves,but not in trifoliate leaves, concentrations of reducing sugars,sucrose and starch were also differently affected by low nutrientsupply. In primary leaves under K deficiency and, particularlyMg deficiency, the concentrations of sucrose and reducing sugarswere much higher than in control and P-deficient plants. Magnesiumdeficiency also distinctly increased the starch concentrationin the primary leaves. In contrast, in roots, the lowest concenfrationsof sucrose, reducing sugars and starch were found in Mg-deficientplants, whereas the concentrations of sucrose and starch wereparticularly high in P-deficient plants. There was a close relationshipbetween shoot/root dry weight ratios and relative distributionof total carbohydrates (sugars and starch) in shoot and roots.Of the total amounts of carbohyd rates per plant, the followingproportions were parti tioned to the roots: 22.7% in P-deficient,15.7% in control, 3.4% in K-deficient and 0.8% in Mg-deficientplants. The results indicate a distinct role of Mg and K in the exportof photosynthates from leaves to roots and suggest that alterationin photosynthate partitioning plays a major role in the differencesin dry matter distribution between shoots and roots of plantssuffering from mineral nutrient deficiency. Key words: Bean, carbohydrates, magnesium nutrition, phosphorus nutrition, potassium nutrition, shoot/root growth  相似文献   

18.
Histochemical determinations for storage of carbohydrates in rhizomes, roots, and young shoots of Typha latifolia L. (Typhaceae) were conducted during the overwintering period from November to April. Early winter analysis showed that rhizomes and roots contained large amounts of starch (45.03% and 22.80% dry weight, respectively). The major storage tissue was parenchyma of the rhizome central core. From winter into spring a gradual decrease in storage starch in the rhizome and root occurred concurrently with starch accumulation near zones of rapid development in young shoots (buds), but the rhizome retained much starch (27.40% dry weight) into the start of its 2nd yr.  相似文献   

19.
KORDAN  H. A. 《Annals of botany》1979,43(2):173-177
Cruciferous seedlings germinated on glass-distilled water andon barbital manifested normal root and shoot geotropisms whereastwisted roots and shoots were evident in seedlings germinatedon amobarbital and secobarbital, the roots often being completelysuspended in the air. The marked difference in germination anddevelopment behaviour of cress and white mustard seedlings germinatedon barbital compared with that on amobarbital and secobarbitalindicate that the Meyer-Overton principle of drug potency andlipid solubility was operative in both species of germinatingseedlings. Lepidium sativum L., Sinapsis alba L., seed germination, geotropism, barbiturates  相似文献   

20.
Seasonal biomass and starch allocation patterns were determined from natural populations of Myriophyllum aquaticum that were sampled monthly from January 2006 to December 2007 in Mississippi. Water temperature, water depth, light irradiance, light transmittance, pH, and conductivity were also recorded during biomass harvests. Overall, few significant relationships were observed between the environmental factors tested and seasonal biomass. Submersed shoot biomass was negatively related (p < 0.01) with water temperature. Stolons accounted for 40–95% of total biomass followed by emergent shoot, submersed shoot, and root biomass. Percent starch in plant tissues was positively related to water temperature. Starch allocation was greatest in stolons where up to 16.3% of total starch was stored. Submersed shoots stored 0.6–11.0% of total starch followed by emergent shoots (0.4–7%). The roots of M. aquaticum stored less than 3.8% of total starch throughout the study period. Reduced biomass and starch storage occurred from October to March in both 2006 and 2007. Management strategies for this species could utilize an integrated approach to exploit times of low energy reserves (fall and winter), or to remove emergent shoots to gain access to the stolons and other submersed tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号