首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Persistence of infectious HIV on follicular dendritic cells   总被引:11,自引:0,他引:11  
Follicular dendritic cells (FDCs) trap Ags and retain them in their native state for many months. Shortly after infection, HIV particles are trapped on FDCs and can be observed until the follicular network is destroyed. We sought to determine whether FDCs could maintain trapped virus in an infectious state for long periods of time. Because virus replication would replenish the HIV reservoir and thus falsely prolong recovery of infectious virus, we used a nonpermissive murine model to examine maintenance of HIV infectivity in vivo. We also examined human FDCs in vitro to determine whether they could maintain HIV infectivity. FDC-trapped virus remained infectious in vivo at all time points examined over a 9-mo period. Remarkably, as few as 100 FDCs were sufficient to transmit infection throughout the 9-mo period. Human FDCs maintained HIV infectivity for at least 25 days in vitro, whereas virus without FDCs lost infectivity after only a few days. These data indicate that HIV retained on FDCs can be long lived even in the absence of viral replication and suggest that FDCs stabilize and protect HIV, thus providing a long-term reservoir of infectious virus. These trapped stores of HIV may be replenished with replicating virus that persists even under highly active antiretroviral therapy and would likely be capable of causing infection on cessation of drug therapy.  相似文献   

2.
3.
The green fluorescent protein (GFP) is a powerful genetic marking tool that has enabled virologists to monitor and track viral proteins during HIV infection. Expression-optimized Gag-GFP constructs have been used to study virus-like particle (VLP) assembly and localization in cell types that are easily transfected. The development of HIV-1 variants carrying GFP within the context of the viral genome has facilitated the study of infection and has been particularly useful in monitoring the transfer of virus between cells following virological synapse formation. HIV Gag-iGFP, a viral clone that contains GFP inserted between the matrix (MA) and capsid (CA) domains of Gag, is the first replication competent molecular clone that generates fluorescent infectious particles. Here, we discuss some methods that exploit HIV Gag-iGFP to quantify cell-to-cell transmission of virus by flow cytometry and to track the proteins during assembly and transmission using live-cell imaging.  相似文献   

4.
Follicular dendritic cells (FDCs) represent a major reservoir of HIV, and active infection occurs surrounding these cells, suggesting that this microenvironment is highly conducive to virus transmission. Because CD4 T cells around FDCs in germinal centers express the HIV coreceptor, CXCR4, whereas CD4 lymphocytes in many other sites do not, it prompted the hypothesis that FDCs may increase CXCR4 expression on CD4 T cells, thereby facilitating infection. To test this, HIV receptor/coreceptor expression was determined on CD4 T cells cultured with or without FDCs, and its consequence to infection was assessed by measuring virus binding and entry. FDCs had little effect on CCR5 or CD4 expression but increased CXCR4 expression on CD4 T cells. FDC-mediated up-regulation of CXCR4 on CD4 T cells occurred by 24 h and was sustained for at least 96 h in vitro, and FDC-CD4 T cell contact was necessary. Importantly, increased CXCR4 expression directly correlated with increased binding and entry of HIV-1 X4 isolates. Furthermore, CD4(+)CD57(+) germinal center T cells expressed high levels of CXCR4 and supported enhanced entry of X4 HIV compared with other CD4 T cells from the same tissue. Thus, in addition to serving as a reservoir of infectious virus, FDCs render surrounding germinal center T cells highly susceptible to infection with X4 isolates of HIV-1.  相似文献   

5.
Large quantities of HIV are found trapped on the surface of follicular dendritic cells (FDCs), and virus persists on these cells until they ultimately die. We recently found that FDCs maintain HIV infectivity for long periods in vivo and in vitro. Because FDCs trap Ags (and virus) in the form of immune complexes and are rich in FcgammaRs, we reasoned that Ab and FcgammaRs may be required for FDC-mediated maintenance of HIV infectivity. To investigate this hypothesis, HIV immune complexes were formed in vitro and incubated for increasing times with or without FDCs, after which the remaining infectious virus was determined by HIV-p24 production in rescue cultures. FDCs maintained HIV infectivity in vitro in a dose-dependent manner but required the presence of specific Ab for this activity regardless of whether laboratory-adapted or primary X4 and R5 isolates were tested. In addition, Abs against either virally or host-encoded proteins on the virion permitted FDC-mediated maintenance of HIV infectivity. We found that the addition of FDCs to HIV immune complexes at the onset of culture gave optimal maintenance of infectivity. Moreover, blocking FDC-FcgammaRs or killing the FDCs dramatically reduced their ability to preserve virus infectivity. Finally, FDCs appeared to decrease the spontaneous release of HIV-1 gp120, suggesting that FDC-virus interactions stabilize the virus particle, thus contributing to the maintenance of infectivity. Therefore, optimal maintenance of HIV infectivity requires both Ab against particle-associated determinants and FDC-FcgammaRs.  相似文献   

6.
7.
Human immunodeficiency virus type 1 (HIV-1) replicates primarily in lymphoid tissues where it has ready access to activated immune competent cells. We used one of the major pathways of immune activation, namely, CD40-CD40L interactions, to study the infectability of B lymphocytes isolated from peripheral blood mononuclear cells. Highly enriched populations of B lymphocytes generated in the presence of interleukin-4 and oligomeric soluble CD40L upregulated costimulatory and activation markers, as well as HIV-1 receptors CD4 and CXCR4, but not CCR5. By using single-round competent luciferase viruses complemented with either amphotropic or HIV-derived envelopes, we found a direct correlation between upregulation of HIV-1 receptors and the susceptibility of the B lymphocytes to infection with dual-tropic and T-tropic strains of HIV-1; in contrast, cells were resistant to M-tropic strains of HIV-1. HIV-1 envelope-mediated infection was completely abolished with either an anti-CD4 monoclonal antibody or a peptide known to directly block CXCR4 usage and partially blocked with stromal cell-derived factor 1, all of which had no effect on the entry of virus pseudotyped with amphotropic envelope. Full virus replication kinetics confirmed that infection depends on CXCR4 usage. Furthermore, productive cycles of virus replication occurred rapidly yet under most conditions, without the appearance of syncytia. Thus, an activated immunological environment may induce the expression of HIV-1 receptors on B lymphocytes, priming them for infection with selective strains of HIV-1 and allowing them to serve as a potential viral reservoir.  相似文献   

8.
Interruption of suppressive highly active antiretroviral therapy (HAART) in HIV-infected patients leads to increased HIV replication and viral rebound in peripheral blood. Effects of therapy interruption on gut-associated lymphoid tissue (GALT) have not been well investigated. We evaluated longitudinal changes in viral replication and emergence of viral variants in the context of T cell homeostasis and gene expression in GALT of three HIV-positive patients who initiated HAART during primary HIV infection but opted to interrupt therapy thereafter. Longitudinal viral sequence analysis revealed that a stable proviral reservoir was established in GALT during primary HIV infection that persisted through early HAART and post-therapy interruption. Proviral variants in GALT and peripheral blood mononuclear cells (PBMCs) displayed low levels of genomic diversity at all times. A rapid increase in viral loads with a modest decline of CD4(+) T cells in peripheral blood was observed, while gut mucosal CD4(+) T cell loss was severe following HAART interruption. This was accompanied by increased mucosal gene expression regulating interferon (IFN)-mediated antiviral responses and immune activation, a profile similar to those found in HAART-naive HIV-infected patients. Sequence analysis of rebound virus suggested that GALT was not the major contributor to the postinterruption plasma viremia nor were GALT HIV reservoirs rapidly replaced by HIV rebound variants. Our data suggest an early establishment and persistence of viral reservoirs in GALT with minimal diversity. Early detection of and therapy for HIV infection may be beneficial in controlling viral evolution and limiting establishment of diverse viral reservoirs in the mucosal compartment.  相似文献   

9.
Integration of viral DNA into the host genome is a central event in the replication cycle and the pathogenesis of retroviruses, including HIV. Although most cells infected with HIV are rapidly eliminated in vivo, HIV also infects long-lived cells that persist during combination antiretroviral therapy (cART). Cells with replication competent HIV proviruses form a reservoir that persists despite cART and such reservoirs are at the center of efforts to eradicate or control infection without cART. The mechanisms of persistence of these chronically infected long-lived cells is uncertain, but recent research has demonstrated that the presence of the HIV provirus has enduring effects on infected cells. Cells with integrated proviruses may persist for many years, undergo clonal expansion, and produce replication competent HIV. Even proviruses with defective genomes can produce HIV RNA and may contribute to ongoing HIV pathogenesis. New analyses of HIV infected cells suggest that over time on cART, there is a shift in the composition of the population of HIV infected cells, with the infected cells that persist over prolonged periods having proviruses integrated in genes associated with regulation of cell growth. In several cases, strong evidence indicates the presence of the provirus in specific genes may determine persistence, proliferation, or both. These data have raised the intriguing possibility that after cART is introduced, a selection process enriches for cells with proviruses integrated in genes associated with cell growth regulation. The dynamic nature of populations of cells infected with HIV during cART is not well understood, but is likely to have a profound influence on the composition of the HIV reservoir with critical consequences for HIV eradication and control strategies. As such, integration studies will shed light on understanding viral persistence and inform eradication and control strategies. Here we review the process of HIV integration, the role that integration plays in persistence, clonal expansion of the HIV reservoir, and highlight current challenges and outstanding questions for future research.  相似文献   

10.
A latent reservoir for human immunodeficiency virus type 1 (HIV-1) consisting of integrated provirus in resting memory CD4+ T cells prevents viral eradication in patients on highly active antiretroviral therapy (HAART). It is difficult to analyze the nature and dynamics of this reservoir in untreated patients and in patients failing therapy, because it is obscured by an excess of unintegrated viral DNA that constitutes the majority of viral species in resting CD4+ T cells from viremic patients. Therefore, we developed a novel culture assay that stimulates virus production from latent, integrated HIV-1 in resting CD4+ T cells in the presence of antiretroviral drugs that prevent the replication of unintegrated virus. Following activation, resting CD4+ T cells with integrated HIV-1 DNA produced virus particles for several days, with peak production at day 5. Using this assay, HIV-1 pol sequences from the resting CD4+ T cells of viremic patients were found to be genetically distinct from contemporaneous plasma virus. Despite the predominance of a relatively homogeneous population of drug-resistant viruses in the plasma of patients failing HAART, resting CD4+ T cells harbored a diverse array of wild-type and archival drug-resistant viruses that were less fit than plasma virus in the context of current therapy. These results provide the first direct evidence that resting CD4+ T cells serve as a stable reservoir for HIV-1 even in the setting of high levels of viremia. The ability to analyze archival species in viremic patients may have clinical utility in detecting drug-resistant variants not present in the plasma.  相似文献   

11.
12.
Lentiviruses have long been considered host-specific pathogens, but several recent observations demonstrated their capacity to conquer new hosts from different species, genera, and families. From these cross-species infections emerged new animal and human infectious diseases. The successful colonization and adaptation of a lentivirus to a nonnatural host depends on unspecific and specific host barriers. Some of those barriers exert a relative control of viral replication (i.e., cytotoxic T-lymphocyte response, viral inhibitory factors), but none of them was found able to totally clear the infection once the retrovirus is fully adapted in its host. In this study we examined the evolution of the host-lentivirus interactions occurring in an experimental animal model of cross-species infection in order to analyze the efficiency of those barriers in preventing the establishment of a persistent infection. Five newborn calves were inoculated with caprine arthritis-encephalitis virus (CAEV), and the evolution of infection was studied for more than 12 months. All the animals seroconverted in the first 0.75 to 1 month following the inoculation and remained seropositive for the remaining time of the experiment. Viral infection was productive during 4 months with isolation of replication competent virus from the blood cells and organs of the early euthanized animals. After 4 months of infection, neither replication-competent virus nor virus genome could be detected in blood cells or in the classical target organs, even after an experimental immunosuppression. No evidence of in vitro restriction of CAEV replication was observed in cells from tissues explanted from organs of these calves. These data provide the demonstration of a natural clearance of lentivirus infection following experimental inoculation of a nonnatural host, enabling perspectives of development of new potential vaccine strategies to fight against lentivirus infections.  相似文献   

13.
14.
15.
In HIV-infected patients, large quantities of HIV are associated with follicular dendritic cells (FDCs) in lymphoid tissue. During antiretroviral therapy, most of this virus disappears after six months of treatment, suggesting that FDC-associated virus has little influence on the eventual outcome of long-term therapy. However, a recent theoretical study using a stochastic model for the interaction of HIV with FDCs indicated that some virus may be retained on FDCs for years, where it can potentially reignite infection if treatment is interrupted. In that study, an approximate expression was used to estimate the time an individual virion remains on FDCs during therapy. Here, we determine the conditions under which this approximation is valid, and we develop expressions for the time a virion spends in any bound state and for the effect of rebinding on retention. We find that rebinding, which is influenced by diffusion, may play a major role in retention of HIV on FDCs. We also consider the possibility that HIV is retained on B cells during therapy, which like FDCs also interact with HIV. We find that virus associated with B cells is unlikely to persist during therapy.  相似文献   

16.
17.
18.
Virulent, wild-type equine infectious anemia virus (EIAV) is restricted in one or more early steps in replication in equine skin fibroblast cells compared with cell culture-adapted virus, which is fully competent for replication in this cell type. We compared the sequences of wild-type EIAV and a full-length infectious proviral clone of the cell culture-adapted EIAV and found that the genomes were relatively well conserved with the exception of the envelope gene region, which showed extensive sequence differences. We therefore constructed several wild-type and cell culture-adapted virus chimeras to examine the role of the envelope gene in replication in different cell types in vitro. Unlike wild-type virus, which is restricted by an early event(s) for replication in equine dermis cells, the wild-type outer envelope gene chimeras are replication competent in this cell type. We conclude that even though there are extensive sequence differences between wild-type and cell culture-adapted viruses in the surface envelope gene region, this domain is not a determinant of the differing in vitro cell tropisms.  相似文献   

19.
Follicular dendritic cells (FDCs) increase HIV replication and virus production in lymphocytes by increasing the activation of NF-κB in infected cells. Because α-1-antitrypsin (AAT) decreases HIV replication in PBMCs and monocytic cells and decreases NF-κB activity, we postulated that AAT might also block FDC-mediated HIV replication. Primary CD4(+) T cells were infected with HIV and cultured with FDCs or their supernatant with or without AAT, and ensuing viral RNA and p24 production were monitored. NF-κB activation in the infected cells was also assessed. Virus production was increased in the presence of FDC supernatant, but the addition of AAT at concentrations >0.5 mg/ml inhibited virus replication. AAT blocked the nuclear translocation of NF-κB p50/p65 despite an unexpected elevation in associated phosphorylated and ubiquitinated IκBα (Ub-IκBα). In the presence of AAT, degradation of cytoplasmic IκBα was dramatically inhibited compared with control cultures. AAT did not inhibit the proteasome; however, it altered the pattern of ubiquitination of IκBα. AAT decreased IκBα polyubiquitination linked through ubiquitin lysine residue 48 and increased ubiquitination linked through lysine residue 63. Moreover, lysine reside 63-linked Ub-IκBα degradation was substantially slower than lysine residue 48-linked Ub-IκBα in the presence of AAT, correlating altered ubiquitination with a prolonged IκBα t(1/2). Because AAT is naturally occurring and available clinically, examination of its use as an inhibitory agent in HIV-infected subjects may be informative and lead to the development of similar agents that inhibit HIV replication using a novel mechanism.  相似文献   

20.

Background

Extensive studies of primary infection are crucial to our understanding of the course of HIV disease. In SIV-infected macaques, a model closely mimicking HIV pathogenesis, we used a combination of three markers -- viral RNA, 2LTR circles and viral DNA -- to evaluate viral replication and dissemination simultaneously in blood, secondary lymphoid tissues, and the gut during primary and chronic infections. Subsequent viral compartmentalization in the main target cells of the virus in peripheral blood during the chronic phase of infection was evaluated by cell sorting and viral quantification with the three markers studied.

Results

The evolutions of viral RNA, 2LTR circles and DNA levels were correlated in a given tissue during primary and early chronic infection. The decrease in plasma viral load principally reflects a large decrease in viral replication in gut-associated lymphoid tissue (GALT), with viral RNA and DNA levels remaining stable in the spleen and peripheral lymph nodes. Later, during chronic infection, a progressive depletion of central memory CD4+ T cells from the peripheral blood was observed, accompanied by high levels of viral replication in the cells of this subtype. The virus was also found to replicate at this point in the infection in naive CD4+ T cells. Viral RNA was frequently detected in monocytes, but no SIV replication appeared to occur in these cells, as no viral DNA or 2LTR circles were detected.

Conclusion

We demonstrated the persistence of viral replication and dissemination, mostly in secondary lymphoid tissues, during primary and early chronic infection. During chronic infection, the central memory CD4+ T cells were the major site of viral replication in peripheral blood, but viral replication also occurred in naive CD4+ T cells. The role of monocytes seemed to be limited to carrying the virus as a cargo because there was an observed lack of replication in these cells. These data may have important implications for the targeting of HIV treatment to these diverse compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号