共查询到20条相似文献,搜索用时 0 毫秒
1.
Cell entry by paramyxoviruses requires fusion between viral and cellular membranes. Paramyxovirus infection also gives rise to the formation of multinuclear, fused cells (syncytia). Both types of fusion are mediated by the viral fusion (F) protein, which requires proteolytic processing at a basic cleavage site in order to be active for fusion. In common with most paramyxoviruses, fusion mediated by Sendai virus F protein (F(SeV)) requires coexpression of the homologous attachment (hemagglutinin-neuraminidase [HN]) protein, which binds to cell surface sialic acid receptors. In contrast, respiratory syncytial virus fusion protein (F(RSV)) is capable of fusing membranes in the absence of the viral attachment (G) protein. Moreover, F(RSV) is unique among paramyxovirus fusion proteins since F(RSV) possesses two multibasic cleavage sites, which are separated by an intervening region of 27 amino acids. We have previously shown that insertion of both F(RSV) cleavage sites in F(SeV) decreases dependency on the HN attachment protein for syncytium formation in transfected cells. We now describe recombinant Sendai viruses (rSeV) that express mutant F proteins containing one or both F(RSV) cleavage sites. All cleavage-site mutant viruses displayed reduced thermostability, with double-cleavage-site mutants exhibiting a hyperfusogenic phenotype in infected cells. Furthermore, insertion of both F(RSV) cleavage sites in F(SeV) reduced dependency on the interaction of HN with sialic acid for infection, thus mimicking the unique ability of RSV to fuse and infect cells in the absence of a separate attachment protein. 相似文献
2.
A chimeric respiratory syncytial virus fusion protein functionally replaces the F and HN glycoproteins in recombinant Sendai virus 下载免费PDF全文
Zimmer G Bossow S Kolesnikova L Hinz M Neubert WJ Herrler G 《Journal of virology》2005,79(16):10467-10477
Entry of most paramyxoviruses is accomplished by separate attachment and fusion proteins that function in a cooperative manner. Because of this close interdependence, it was not possible with most paramyxoviruses to replace either of the two protagonists by envelope glycoproteins from related paramyxoviruses. By using reverse genetics of Sendai virus (SeV), we demonstrate that chimeric respiratory syncytial virus (RSV) fusion proteins containing either the cytoplasmic domain of the SeV fusion protein or in addition the transmembrane domain were efficiently incorporated into SeV particles provided the homotypic SeV-F was deleted. In the presence of SeV-F, the chimeric glycoproteins were incorporated with significantly lower efficiency, indicating that determinants in the SeV-F ectodomain exist that contribute to glycoprotein uptake. Recombinant SeV in which the homotypic fusion protein was replaced with chimeric RSV fusion protein replicated in a trypsin-independent manner and was neutralized by antibodies directed to RSV-F. However, replication of this virus also relied on the hemagglutinin-neuraminidase (HN) as pretreatment of cells with neuraminidase significantly reduced the infection rate. Finally, recombinant SeV was generated with chimeric RSV-F as the only envelope glycoprotein. This virus was not neutralized by antibodies to SeV and did not use sialic acids for attachment. It replicated more slowly than hybrid virus containing HN and produced lower virus titers. Thus, on the one hand RSV-F can mediate infection in an autonomous way while on the other hand it accepts support by a heterologous attachment protein. 相似文献
3.
N-glycans of F protein differentially affect fusion activity of human respiratory syncytial virus 下载免费PDF全文
The human respiratory syncytial virus (Long strain) fusion protein contains six potential N-glycosylation sites: N27, N70, N116, N120, N126, and N500. Site-directed mutagenesis of these positions revealed that the mature fusion protein contains three N-linked oligosaccharides, attached to N27, N70, and N500. By introducing these mutations into the F gene in different combinations, four more mutants were generated. All mutants, including a triple mutant devoid of any N-linked oligosaccharide, were efficiently transported to the plasma membrane, as determined by flow cytometry and cell surface biotinylation. None of the glycosylation mutations interfered with proteolytic activation of the fusion protein. Despite similar levels of cell surface expression, the glycosylation mutants affected fusion activity in different ways. While the N27Q mutation did not have an effect on syncytium formation, loss of the N70-glycan caused a fusion activity increase of 40%. Elimination of both N-glycans (N27/70Q mutant) reduced the fusion activity by about 50%. A more pronounced reduction of the fusion activity of about 90% was observed with the mutants N500Q, N27/500Q, and N70/500Q. Almost no fusion activity was detected with the triple mutant N27/70/500Q. These data indicate that N-glycosylation of the F2 subunit at N27 and N70 is of minor importance for the fusion activity of the F protein. The single N-glycan of the F1 subunit attached to N500, however, is required for efficient syncytium formation. 相似文献
4.
Lateral mobility of both envelope proteins (F and HN) of Sendai virus in the cell membrane is essential for cell-cell fusion 总被引:9,自引:0,他引:9
Y I Henis Y Herman-Barhom B Aroeti O Gutman 《The Journal of biological chemistry》1989,264(29):17119-17125
Fluorescence photobleaching recovery was employed to study the effects of specific immobilization of Sendai virus envelope glycoproteins (F, the fusion protein, and HN, the hemagglutinin-neuraminidase) on the virally mediated fusion of human erythrocytes. Lateral immobilization of varying fractions of F and/or HN (after virus adsorption and hemagglutination, but before fusion) was achieved by cross-linking them with succinyl concanavalin A (inhibiting both F and HN) or with specific rabbit IgG directed against either F or HN. Alternatively, agglutinated cells were treated with low concentrations of the above proteins (inducing only minor inhibition of either mobility or fusion), and immobilization of F and/or HN was induced by cross-linking with a secondary antibody; this protocol ensured a minimal contribution of direct binding to the viral proteins to the inhibition of fusion. Our results demonstrate that lateral immobilization of either F or HN results in a strong inhibition of cell-cell fusion and a much weaker inhibition of virus-cell fusion. The level of cell-cell fusion was directly correlated with the level of laterally mobile viral glycoproteins in the cell membrane (either F or HN). We conclude that lateral mobility of both F and HN in the red cell membrane is essential for cell-cell fusion and that not only F but also HN has a role in this fusion event. The possible reasons for the different dependence of cell-cell and virus-cell fusion on viral glycoprotein mobility are discussed. 相似文献
5.
The fusion protein of respiratory syncytial virus (RSV-F) is responsible for fusion of virion with host cells and infection of neighbouring cells through the formation of syncytia. A three-dimensional model structure of RSV-F was derived by homology modelling from the structure of the equivalent protein in Newcastle disease virus (NDV). Despite very low sequence homology between the two structures, most features of the model appear to have high credibility, although a few small regions in RSV-F whose secondary structure is predicted to be different to that in NDV are likely to be poorly modelled. The organization of individual residues identified in escape mutants against monoclonal antibodies correlates well with known antigenic sites. The location of residues involved in point mutations in several drug-resistant variants is also examined. 相似文献
6.
Monoclonal antibodies to respiratory syncytial virus proteins: identification of the fusion protein. 总被引:17,自引:21,他引:17 下载免费PDF全文
Six monoclonal antibodies directed against respiratory syncytial virus proteins were produced. Each was characterized by immunoprecipitation and indirect immunofluorescence. One was directed against the nucleocapsid protein. NP 44, two were directed against a 37,000-dalton protein, two were directed against the major envelope glycoprotein, GP 90, and one was directed against the 70,000-dalton envelope protein, VP 70. Indirect immunofluorescence stain patterns of infected HEp-2 cells defined GP 90 and VP 70 as viral proteins expressed on the cell surface, whereas NP 44 and the 37,000-dalton protein were detected as intracytoplasmic inclusions. One of the anti-GP 90 antibodies neutralized virus only in the presence of complement but did not inhibit cell-cell fusion. The anti-VP 70 antibody neutralized virus without complement and inhibited cell-cell fusion of previously infected HEp-2 cells, thus identifying VP 70 as the fusion protein. 相似文献
7.
Entry into the host cell by enveloped viruses is mediated by fusion (F) or transmembrane glycoproteins. Many of these proteins share a fold comprising a trimer of antiparallel coiled-coil heterodimers, where the heterodimers are formed by two discontinuous heptad repeat motifs within the proteolytically processed chain. The F protein of human respiratory syncytial virus (RSV; the major cause of lower respiratory tract infections in infants) contains two corresponding regions that are predicted to form coiled coils (HR1 and HR2), together with a third predicted heptad repeat (HR3) located in a nonhomologous position. In order to probe the structures of these three domains and ascertain the nature of the interactions between them, we have studied the isolated HR1, HR2, and HR3 domains of RSV F by using a range of biophysical techniques, including circular dichroism, nuclear magnetic resonance spectroscopy, and sedimentation equilibrium. HR1 forms a symmetrical, trimeric coiled coil in solution (K(3) approximately 2.2 x 10(11) M(-2)) which interacts with HR2 to form a 3:3 hexamer. The HR1-HR2 interaction domains have been mapped using limited proteolysis, reversed-phase high-performance liquid chromatography, and electrospray-mass spectrometry. HR2 in isolation exists as a largely unstructured monomer, although it exhibits a tendency to form aggregates with beta-sheet-like characteristics. Only a small increase in alpha-helical content was observed upon the formation of the hexamer. This suggests that the RSV F glycoprotein contains a domain that closely resembles the core structure of the simian parainfluenza virus 5 fusion protein (K. A. Baker, R. E. Dutch, R. A. Lamb, and T. S. Jardetzky, Mol. Cell 3:309-319, 1999). Finally, HR3 forms weak alpha-helical homodimers that do not appear to interact with HR1, HR2, or the HR1-HR2 complex. The results of these studies support the idea that viral fusion proteins have a common core architecture. 相似文献
8.
The F (fusion) protein of the respiratory syncytial viruses is synthesized as an inactive precursor F(0) that is proteolytically processed at the multibasic sequence KKRKRR(136) into the subunits F(1) and F(2) by the cellular protease furin. This maturation process is essential for the F protein to gain fusion competence. We observed that proteolytic cleavage additionally occurs at another basic motif, RARR(109), that also meets the requirements for furin recognition. Cleavage at both sites leads to the removal from the polypeptide chain of a glycosylated peptide of 27 amino acids. When the sequence RARR(109) was changed to NANR(109) or to RANN(109) by site-directed mutagenesis, cleavage by furin was completely prevented. Although the mutants were still processed at position Arg(136), they did not show any syncytia formation. Proteolytic cleavage of the modified motifs was achieved by treatment of transfected cells with trypsin converting the F mutants into their fusogenic forms. Our findings indicate that both furin consensus sequences have to be cleaved in order to activate the fusion protein. 相似文献
9.
HLA class I-restricted cytotoxic T-cell epitopes of the respiratory syncytial virus fusion protein 总被引:3,自引:0,他引:3 下载免费PDF全文
Brandenburg AH de Waal L Timmerman HH Hoogerhout P de Swart RL Osterhaus AD 《Journal of virology》2000,74(21):10240-10244
Virus-specific cytotoxic T lymphocytes (CTL) play a major role in the clearance of respiratory syncytial virus (RSV) infection. We have generated cytotoxic T-cell clones (TCC) from two infants who had just recovered from severe RSV infection. These TCC were functionally characterized and used to identify HLA class I (B57 and C12)-restricted CTL epitopes of RSV. 相似文献
10.
Protein kinase C-alpha activity is required for respiratory syncytial virus fusion to human bronchial epithelial cells 下载免费PDF全文
Respiratory syncytial virus (RSV) infection activates protein kinase C (PKC), but the precise PKC isoform(s) involved and its role(s) remain to be elucidated. On the basis of the activation kinetics of different signaling pathways and the effect of various PKC inhibitors, it was reasoned that PKC activation is important in the early stages of RSV infection, especially RSV fusion and/or replication. Herein, the role of PKC-alpha during the early stages of RSV infection in normal human bronchial epithelial cells is determined. The results show that the blocking of PKC-alpha activation by classical inhibitors, pseudosubstrate peptides, or the overexpression of dominant-negative mutants of PKC-alpha in these cells leads to significantly decreased RSV infection. RSV induces phosphorylation, activation, and cytoplasm-to-membrane translocation of PKC-alpha. Also, PKC-alpha colocalizes with virus particles and is required for RSV fusion to the cell membrane. Thus, PKC-alpha could provide a new pharmacological target for controlling RSV infection. 相似文献
11.
Newcastle disease virus (NDV)-induced membrane fusion requires an interaction between the hemagglutinin-neuraminidase (HN) attachment and the fusion (F) proteins, triggered by HN's binding to receptors. NDV HN has two sialic acid binding sites: site I, which also mediates neuraminidase activity, and site II, which straddles the membrane-distal end of the dimer interface. By characterizing the effect on receptor binding avidity and F-interactive capability of HN dimer interface mutations, we present evidence consistent with (i) receptor engagement by site I triggering the interaction with F and (ii) site II functioning to maintain high-avidity receptor binding during the fusion process. 相似文献
12.
Molecular evolution and circulation patterns of human respiratory syncytial virus subgroup a: positively selected sites in the attachment g glycoprotein 总被引:6,自引:0,他引:6 下载免费PDF全文
Human respiratory syncytial virus (HRSV) is the most common etiological agent of acute lower respiratory tract disease in infants and can cause repeated infections throughout life. In this study, we have analyzed nucleotide sequences encompassing 629 bp at the carboxy terminus of the G glycoprotein gene for HRSV subgroup A strains isolated over 47 years, including 112 Belgian strains isolated over 19 consecutive years (1984 to 2002). By using a maximum likelihood method, we have tested the presence of diversifying selection and identified 13 positively selected sites with a posterior probability above 0.5. The sites under positive selection correspond to sites of O glycosylation or to amino acids that were previously described as monoclonal antibody-induced in vitro escape mutants. Our findings suggest that the evolution of subgroup A HRSV G glycoprotein is driven by immune pressure operating in certain codon positions located mainly in the second hypervariable region of the ectodomain. Phylogenetic analysis revealed the prolonged cocirculation of two subgroup A lineages among the Belgian population and the possible extinction of three other lineages. The evolutionary rate of HRSV subgroup A isolates was estimated to be 1.83 x 10(-3) nucleotide substitutions/site/year, projecting the most recent common ancestor back to the early 1940s. 相似文献
13.
Association of ganglioside-protein conjugates into cell and Sendai virus. Requirement for the HN subunit in viral fusion 总被引:7,自引:0,他引:7
We have prepared several electron and light microscopic labels of epidermal growth factor (EGF) to analyse the morphologic features of its binding and internalization by cultured cells. These include a ferritin conjugate of EGF, a covalent conjugate of EGF and horseradish peroxidase (EGF-HRP), a colloidal gold marker system using EGF-HRP as a primary antigen, and a covalent complex of EGF with rhodamine-labelled lactalbumin. All of the light and electron microscopic labels showed similar patterns of binding. EGF initially bound to diffusely distributed cell surface receptors at 4 degrees C. The EGF-receptor complexes clustered into clathrin-coated pits on the cell surface only when the temperature was raised to 37 degrees C. In KB and Swiss 3T3 cells, this was followed by rapid internationalization into receptosomes, compartmentalization into the Golgi system, clustering in the clathrin-coated regions of the Golgi, and finally delivery into lysosomes from the Golgi. This general pathway was seen in Swiss 3T3 cells which have a low number of EGF receptors, KB cells which have a moderate number of receptors and A431 cells that have a high number of receptors. However, the ruffling activity induced in A431 cells by EGF produced some internalization through macropinosomes, making the pathway of entry more difficult to evaluate. Double label experiments showed that EGF is internalized together with alpha 2-macroglobulin and adenovirus particles. These data clarify the route of entry of EGF in different cell types using multiple labels, and shows that it enters cells through the same coated pit entry pathway as most other ligands previously examined. 相似文献
14.
Genetic variability and molecular evolution of the human respiratory syncytial virus subgroup B attachment G protein 总被引:6,自引:0,他引:6 下载免费PDF全文
Human respiratory syncytial virus (HRSV) is the most important cause of acute respiratory disease in infants. Two major subgroups (A and B) have been identified based on antigenic differences in the attachment G protein. Antigenic variation between and within the subgroups may contribute to reinfections with these viruses by evading the host immune responses. To investigate the circulation patterns and mechanisms by which HRSV-B viruses evolve, we analyzed the G protein genetic variability of subgroup B sequences isolated over a 45-year period, including 196 Belgian strains obtained over 22 epidemic seasons (1982 to 2004). Our study revealed that the HRSV-B evolutionary rate (1.95 x 10(-3) nucleotide substitutions/site/year) is similar to that previously estimated for HRSV-A (1.83 x 10(-3) nucleotide substitutions/site/year). However, natural HRSV-B isolates appear to accommodate more drastic changes in their attachment G proteins. The most recent common ancestor of the currently circulating subgroup B strains was estimated to date back to around the year 1949. The divergence between the two major subgroups was calculated to have occurred approximately 350 years ago. Furthermore, we have identified 12 positively selected sites in the G protein ectodomain, suggesting that immune-driven selective pressure operates in certain codon positions. HRSV-A and -B strains have similar phylodynamic patterns: both subgroups are characterized by global spatiotemporal strain dynamics, where the high infectiousness of HRSV permits the rapid geographic spread of novel strain variants. 相似文献
15.
A murine monoclonal antibody (MAb), 2D8, was used in immunofluorescence reactions to detect respiratory syncytial virus (RSV) antigen in clinical specimens. Nasopharyngeal epithelial cells from 63 of 66 children with RSV infections reacted with this MAb. The MAb was further characterized and was demonstrated to recognize a conformational epitope on the dimer of the fusion protein of RSV. No reaction was detected with the MAb, 2D8, on Western blots of antigen prepared from RSV-infected HEp-2 cells under reducing conditions. Under non-reducing conditions, 2D8 reacted with a 145-170 K protein; this reactivity was lost when the antigen preparation was heated to 100 degrees C. 2D8 reacted with purified F glycoprotein of RSV Long in an ELISA, neutralized infectivity of RSV by >50% at a dilution of 1:500, and was able to inhibit cell-to-cell fusion of RSV-infected cells. In a competitive ELISA, the epitope detected by 2D8 was localized to antigenic site A. The conformational epitope detected by 2D8 required protein dimerization and glycosylation for full reactivity. This report extends previous characterizations of the F protein in its native state in that the MAb defines a conformational epitope on the fusion protein dimer that is expressed in natural infections and elicits antibody that can neutralize virus infectivity and inhibit cell-to-cell fusion. In addition to its application as a diagnostic reagent, this MAb can be of use in testing preparations of RSV or purified F protein in which the purification or extraction processes could have destroyed conformational epitopes. 相似文献
16.
Sendai virus M protein binds independently to either the F or the HN glycoprotein in vivo. 总被引:2,自引:10,他引:2 下载免费PDF全文
We have analyzed the mechanism by which M protein interacts with components of the viral envelope during Sendai virus assembly. Using recombinant vaccinia viruses to selectively express combinations of Sendai virus F, HN, and M proteins, we have successfully reconstituted M protein-glycoprotein interaction in vivo and determined the molecular interactions which are necessary and sufficient to promote M protein-membrane binding. Our results showed that M protein accumulates on cellular membranes via a direct interaction with both F and HN proteins. Specifically, our data demonstrated that a small fraction (8 to 16%) of M protein becomes membrane associated in the absence of Sendai virus glycoproteins, while > 75% becomes membrane bound in the presence of both F and HN proteins. Selective expression of M protein together with either F or HN protein showed that each viral glycoprotein is individually sufficient to promote efficient (56 to 73%) M protein-membrane binding. Finally, we observed that M protein associates with cellular membranes in a time-dependent manner, implying a need for either maturation or transport before binding to glycoproteins. 相似文献
17.
Immunogenicity of recombinant measles vaccine expressing fusion protein of respiratory syncytial virus in cynomolgus monkeys 下载免费PDF全文
18.
Nucleotide sequence analysis and expression from recombinant vectors demonstrate that the attachment protein G of bovine respiratory syncytial virus is distinct from that of human respiratory syncytial virus 总被引:3,自引:3,他引:3 下载免费PDF全文
Bovine respiratory syncytial (BRS) virus causes a severe lower respiratory tract disease in calves similar to the disease in children caused by human respiratory syncytial (HRS) virus. While there is antigenic cross-reactivity among the other major viral structural proteins, the major glycoprotein, G, of BRS virus and that of HRS virus are antigenically distinct. The G glycoprotein has been implicated as the attachment protein for HRS virus. We have carried out a molecular comparison of the glycoprotein G of BRS virus with the HRS virus counterparts. cDNA clones corresponding to the BRS virus G glycoprotein mRNA were isolated and analyzed by dideoxynucleotide sequencing. The BRS virus G mRNA contained 838 nucleotides exclusive of poly(A) and had a major open reading frame coding for a polypeptide of 257 amino acid residues. The deduced amino acid sequence of the BRS virus G polypeptide showed only 29 to 30% amino acid identity with the G protein of either the subgroup A or B HRS virus. However, despite this low level of identity, there were strong similarities in the predicted hydropathy profiles of the BRS virus and HRS virus G proteins. A cDNA molecule containing the complete BRS virus G major open reading frame was inserted into the thymidine kinase gene of vaccinia virus by homologous recombination, and a recombinant virus containing the BRS virus G protein gene was isolated. This recombinant virus expressed the BRS virus G protein, as demonstrated by Western immunoblot analysis and immunofluorescence of infected cells. The BRS virus G protein expressed from the recombinant vector was transported to and expressed on the surface of infected cells. Antisera to the BRS virus G protein made by using the recombinant vector to immunize animals recognized the BRS virus attachment protein but not the HRS virus G protein and vice versa, confirming the lack of antigenic cross-reactivity between the BRS and HRS virus attachment proteins. On the basis of the data presented here, we conclude that BRS virus should be classified within the genus Pneumovirus in a group separate from HRS virus and that it is no more closely related to HRS virus subgroup A than it is to HRS virus subgroup B. 相似文献
19.
A single amino acid change in the Newcastle disease virus fusion protein alters the requirement for HN protein in fusion 总被引:4,自引:0,他引:4 下载免费PDF全文
The role of a leucine heptad repeat motif between amino acids 268 and 289 in the structure and function of the Newcastle disease virus (NDV) F protein was explored by introducing single point mutations into the F gene cDNA. The mutations affected either folding of the protein or the fusion activity of the protein. Two mutations, L275A and L282A, likely interfered with folding of the molecule since these proteins were not proteolytically cleaved, were minimally expressed at the cell surface, and formed aggregates. L268A mutant protein was cleaved and expressed at the cell surface although the protein migrated slightly slower than wild type on polyacrylamide gels, suggesting an alteration in conformation or processing. L268A protein was fusion inactive in the presence or absence of HN protein expression. Mutant L289A protein was expressed at the cell surface and proteolytically cleaved at better than wild-type levels. Most importantly, this protein mediated syncytium formation in the absence of HN protein expression although HN protein enhanced fusion activity. These results show that a single amino acid change in the F(1) portion of the NDV F protein can alter the stringent requirement for HN protein expression in syncytium formation. 相似文献
20.
The Sendai virus "C-proteins" (C', C, Y1 and Y2) are a nested set of non-structural proteins. The shorter Y proteins arise in vivo both by de novo translation initiation and by proteolytic processing of C'. In this paper, we demonstrate that C' but not C (differing only by 11 N-terminal amino acid) serves as an efficient substrate for intracellular processing. However, processing can be mimicked in vitro by the addition of endopeptidases. Under conditions of limited proteolysis we observed that in a fraction of the C' protein the Y region exists as a proteinase resistant core. This core was conserved in the C protein. We propose that C' functions as a Pro-protein delivering the Y module to a specific intracellular location. 相似文献