首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inactivation of tumor suppressor protein retinoblastoma (Rb) is important mechanism for the G1/S transition during cell cycle progression. Human breast cancer cells T47D release great amount of nitric oxide (NO), but its relation to tumor suppressor Rb is unknown. In this study, it is shown that NO induces phosphorylation and inactivation of Rb tumor suppressor protein, increasing G2/M phase and cell proliferation of breast cancer cells T47D. NO did not induce changes in p53 ser-15 phosphorylation, the most phosphorylated site of p53 during its activation. These data indicate that NO induces cell proliferation through the Rb pathway. NO phosphorylates and inactivates tumor suppressor protein Rb inducing mitosis by the p53 independent pathway in breast cancer cell.  相似文献   

2.
3.
The p53 tumor suppressor gene is critically involved in cell cycle regulation, DNA repair, and programmed cell death. Several lines of evidence suggest that p53 death signals lead to caspase activation; however, the mechanism of caspase activation by p53 still is unclear. Expressing wild type p53 by means of an adenoviral expression vector, we were able to induce apoptotic cell death, as characterized by morphological changes, phosphatidylserine externalization, and internucleosomal DNA fragmentation, in p53(null) Saos-2 cells. This cell death was accompanied by caspase activation as well as by cleavage of caspase substrates and was preceded by mitochondrial cytochrome c release. The addition of the broad-spectrum caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD-fmk) directly after transduction almost completely prevented p53-induced apoptotic cell death but did not inhibit mitochondrial cytochrome c release. In contrast, N-acetylcysteine, even at high concentrations, could not prevent induction of programmed cell death by p53 expression. Cytosolic extracts from Saos-2 cells transduced with p53, but not from Saos-2 cells transduced with the empty adenoviral vector, contained a cytochrome c-releasing activity in vitro, which was still active in the presence of zVAD-fmk. When Bax was immunodepleted from the cytosolic extracts of p53-expressing cells before incubation with isolated mitochondria, the in vitro cytochrome c release was abolished. Thus, we could demonstrate in cells and in vitro that p53 activates the apoptotic machinery through induction of the release of cytochrome c from the mitochondrial intermembrane space. Furthermore, we provide in vitro evidence for the requirement of cytosolic Bax for this cytochrome c-releasing activity of p53 in Saos-2 cells.  相似文献   

4.
The tumor suppressor p53 is a multifunctional protein whose main duty is to preserve the integrety of the genome. This function of wild-type p53 as “guardian of the genome” is achieved at different levels, as a cell cycle checkpoint protein, halting the cell cycle upon DNA damage, and via a direct involvement in processes of DNA repair. Alternatively, p53 can induce apoptosis. Mutations in the p53 gene occur in about 50% of all human tumors and eliminate the tumor suppressor functions of p53. However, many mutant p53 proteins have not simply lost tumor suppressor functions but have gained oncogenic properties which contribute to the progression of tumor cells to a more malignant phenotype. The molecular basis for this gain of function of mutant p53 is still unknown. However, mutant (mut) p53 specifically binds to nuclear matrix attachment region (MAR) DNA elements. MAR elements constitute important higher order regulatory elements of chromatin structure and function. By binding to these elements, mut p53 could modulate important cellular processes, like gene expression, replication, and recombination, resulting in phenotypic alterations of the tumor cells. Mut p53 thus could be the first representative of a new class of oncogenes, which exert their functions via long-range alterations or perturbation of chromatin structure and function. © 1996 Wiley-Liss, Inc.  相似文献   

5.
p53是一种重要的肿瘤抑制因子,是迄今发现与人类肿瘤相关性最高的分子之一。超过50%的人类肿瘤含有p53基因突变。因此,p53是肿瘤治疗中的重要分子靶点。p53依赖的细胞凋亡是其抑制肿瘤的重要机制之一。然而,最近研究发现,p53不仅参与细胞凋亡,还与程序性细胞坏死、细胞自噬以及铁诱导的细胞死亡等细胞死亡途径相关。促使肿瘤细胞死亡是肿瘤治疗的重要目标。因此,进一步了解p53与细胞死亡之间的关系,将有助于探索以p53为靶点的肿瘤治疗和p53相关肿瘤细胞耐药机制。  相似文献   

6.
7.
8.
Epigenetic alteration of tumor suppressor genes by promoter hypermethylation has played a key role in tumorigenesis, which is an important mechanism as indispensable as gene deletion and mutation. LRRC3B is a potential tumor suppressor gene newly discovered; however, the specific biologic function is still unknown. In the present study, we tested the expression levels of LRRC3B by methods associated with immunohistochemistry, Real-Time PCR, and methylation-specific polymerase chain reaction. Results showed that the expression levels were significantly low irrespective of methylation status, suggesting that there were other factors involved in this process. However, the expression profile of LRRC3B had a significant relationship with tissue grade, irrespective of the expressions of PR, CERB-2, VEGF, and Ki67 except in cases of p53 and ER, leading us to a conclusion that the abnormal expression of LRRC3B could serve as a useful marker for diagnosis and prognosis in breast carcinomas.  相似文献   

9.
BACKGROUND: p51 (p73L/p63/p40/KET), a recently isolated novel p53 homologue, binds to p53-responsive elements to upregulate some p53 target genes and has been suggested to share partially overlapping functions with p53. p51 may be a promising candidate target molecule for anti-cancer therapy. METHODS: In this study, we adenovirally transduced p51A cDNA into human lung, gastric and pancreatic cancer cells and analyzed the intracellular function of p51 in anti-oncogenesis in vitro and in vivo. RESULTS: Overexpression of p51A revealed an anti-proliferative effect in vitro in all the cancer cells examined in this study. The anchorage-dependent and -independent cell growth of EBC1 cells carrying mutations in both p51 and p53 was suppressed and significant apoptosis following adenoviral transduction with p51 and/or p53 was seen. This growth suppression was cooperatively enhanced by the combined infection with adenoviral vectors encoding both p51 and p53. Furthermore, p51 activated several, but not all, p53-inducible genes, indicating that the mechanisms controlling p51- and p53-mediated tumor suppression differed. CONCLUSIONS: Our observations indicate that, although p51 exhibited reduced anti-oncogenetic effects compared with p53, it cooperatively enhanced the anti-tumor effects of p53. Our results suggest that p51 functions as a tumor suppressor in human cancer cells in vitro and in vivo and may be useful as a potential tool for cancer gene therapy.  相似文献   

10.
LRRC4 is a tumor suppressor of glioma, and it is epigenetically inactivated commonly in glioma. Our previous study has shown that induction of LRRC4 expression inhibits the proliferation of glioma cells. However, little is known about the mechanisms underlying the action of LRRC4 in glioma cells. We employed two-dimensional fluorescence differential gel electrophoresis (2-D DIGE) and MALDI -TOF/TOF-MS/MS to identify 11 differentially expressed proteins, including the significantly down-regulated STMN1 expression in the LRRC4-expressing U251 glioma cells. The levels of STMN1 expression appeared to be positively associated with the pathogenic degrees of human glioma. Furthermore, induction of LRRC4 over-expression inhibited the STMN1 expression and U251 cell proliferation in vitro, and the glioma growth in vivo. In addition, induction of LRRC4 or knockdown of STMN1 expression induced cell cycle arrest in U251 cells, which was associated with modulating the p21, cyclin D1, and cyclin B expression, and the ERK phosphorylation, and inhibiting the CDK5 and cdc2 kinase activities, but increasing the microtubulin polymerization in U251 cells. LRRC4, at least partially by down-regulating the STMN1expression, acts as a major glioma suppressor, induces cell cycle arrest and modulates the dynamic process of microtubulin, leading to the inhibition of glioma cell proliferation and growth. Potentially, modulation of LRRC4 or STMN1 expression may be useful for design of new therapies for the intervention of glioma.  相似文献   

11.
The mutation and/or deletion of tumor suppressor genes have been postulated to play a major role in the genesis and the progression of gliomas. In this study, the functional expression and efficacy in tumor suppression of 3 tumor suppressor genes (p53, p21, and p16) were tested and compared in a rat GBM cell line (RT-2) after retrovirus mediated gene delivery in vitro and in vivo. Significant reductions in tumor cell growth rate were found in p16 and p21 infected cells (60 +/- 12% vs 66 +/- 15%) compared to p53 (35 +/- 9%). In vitro colony formation assay also showed significant reductions after p16 and p21 gene delivery (98 +/- 5% vs 91 +/- 10%) compared to p53 (50 +/- 18%). In addition, the tumor suppression efficacy were investigated and compared in vivo. Retroviral mediated p16 and p21 gene deliveries in glioblastomas resulted in more than 90% reductions in tumor growth (92 +/- 26% vs 90 +/- 22%) compared to p53 (62 +/- 18%). Tumor suppressor gene insertions in situ further prolonged animal survival. Overall p16 and p21 genes showed more powerful tumor suppressor effects than p53. The results were not surprising, as p16 and p21 are more downstream in the cell cycle regulatory pathway compared to p53. Moreover, the mechanism involved in each of their suppressor effects is different. This study demonstrates the feasibility of using tumor suppressor genes in regulating the growth of glioma in vitro and in situ.  相似文献   

12.
13.
The p53-mediated pathway cell cycle arrest and apoptosis is central to cancer and an important point of focus for therapeutics development. The p14ARF ("ARF") tumor suppressor induces the p53 pathway in response to oncogene activation or DNA damage. However, ARF is predominantly nucleolar in localization and engages in several interactions with nucleolar proteins, whereas p53 is nucleoplasmic. This raises the question as to how ARF initiates its involvement in the p53 pathway. We have found that UV irradiation of cells disrupts the interaction of ARF with two of its nucleolar binding partners, B23(NPM, nucleophosmin, NO38, numatrin) and topoisomerase I, and promotes an immediate and transient subnuclear redistribution of ARF to the nucleoplasm, where it can engage the p53 pathway (Lee et al, Cancer Research 65:9834-42; 2005). The results support a model in which the nucleolus serves as a p53 upstream sensor of cellular stress, and add to a growing body of evidence that nucleolar sequestration of ARF prevents activation of p53. The results also have therapeutic implications for therapies based on exploiting p53 and other cellular stress response pathways to suppress cancer.  相似文献   

14.
In unstressed cells, the p53 tumor suppressor is highly unstable. DNA damage and other forms of cellular stress rapidly stabilize and activate p53. This process is regulated by a complex array of post-translational modifications that are dynamically deposited onto p53. Recent studies show that these modifications orchestrate p53-mediated processes such as cell cycle arrest and apoptosis. Cancer cells carry inherent genetic damage, but avoid arrest and apoptosis by inactivating p53. Defining the enzymatic machinery that regulates the stress-induced modification of p53 at single-residue resolution is critical to our understanding of the biochemical mechanisms that control this critical tumor suppressor. Specifically, acetylation of p53 at lysine 120, a DNA-binding domain residue mutated in human cancer, is essential for triggering apoptosis. Given the oncogenic properties of deacetylases and the success of deacetylase inhibitors as anticancer agents, we investigated the regulation of Lys(120) deacetylation using pharmacologic and genetic approaches. This analysis revealed that histone deacetylase 1 is predominantly responsible for the deacetylation of Lys(120). Furthermore, treatment with the clinical-grade histone deacetylase inhibitor entinostat enhances Lys(120) acetylation, an event that is mechanistically linked to its apoptotic effect. These data expand our understanding of the mechanisms controlling p53 function and suggest that regulation of p53 modification status at single-residue resolution by targeted therapeutics can selectively alter p53 pathway function. This knowledge may impact the rational application of deacetylase inhibitors in the treatment of human cancer.  相似文献   

15.
Overexpression of the tumor suppressor gene, wild-type p53 (wtp53), using adenoviral vectors (Adp53) has been suggested to kill cancer cells by hydroperoxide-mediated oxidative stress [1,2] and nutrient distress induced by the glucose analog, 2-deoxyglucose (2DG), has been suggested to enhance tumor cell killing by agents that induce oxidative stress via disrupting hydroperoxide metabolism [3,4]. In the current study clonogenic cell killing of PC-3 and DU-145 human prostate cancer cells (lacking functional p53) mediated by 4 h exposure to 50 plaque forming units (pfus)/cell of Adp53 (that caused the enforced overexpression of wtp53) was significantly enhanced by treatment with 2DG. Accumulation of glutathione disulfide was found to be significantly greater in both cell lines treated with 2DG+Adp53 and both cell lines treated with 2DG+Adp53 showed a approximately 2-fold increases in dihydroethidine (DHE) and 5-(and-6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate (CDCFH(2)) oxidation, indicative of increased steady-state levels of O(2)(.-) and hydroperoxides, respectively. Finally, overexpression of catalase or glutathione peroxidase using adenoviral vectors partially, but significantly, protected DU-145 cells from the toxicity induced by 2DG+Adp53 treatment. These results show that treatment of human prostate cancer cells with the combination of 2DG (a nutrient stress) and overexpression of the tumor suppressor gene, wtp53, enhances clonogenic cell killing by a mechanism that involves oxidative stress as well as allowing for the speculation that inhibitors of glucose and hydroperoxide metabolism can be used in combination with Adp53 gene therapy to enhance therapeutic responses.  相似文献   

16.
17.
18.
Despite the recent introduction of real-time PCR methods and cDNA microarrays, competitive PCR techniques continue to play an important role in nucleic acid quantification because of the significantly lower cost of equipment and consumables. In this study, we developed a construct, termed tumor suppressor-internal standard (TS-IS) that produced polycompetitive RNA templates as an internal standard to quantify cellular RNA concentration of tumor suppressor genes. This construct is composed of not only sets of primers for detecting the expression of several tumor suppressor genes (such as pRB, p16(INK4A) 15(INK4B), p14(ARF) p53, and p21(WAF1)), but also HPRT as an endogenous marker. Using an internal standard RNA that was synthesized from the TS-IS construct, we were able to establish optimized conditions for the quantification of tumor suppressor genes with minimal amounts (50 ng) of cellular RNA. In addition, the usefulness of this method was confirmed by analyzing the expression levels of tumor suppressor genes in fourteen hepatoma cell lines as a model. The TS-IS assay that we used was inexpensive and a widely applicable method that permitted the reliable and accurate quantification of tumor suppressor genes.  相似文献   

19.
The tumor suppressor protein p53 is induced upon DNA damage essentially by post-translational regulatory mechanisms, which lead to a substantial increase of p53 levels. To exploit this essential property of p53, we developed a novel reporter system for monitoring accumulation and subcellular translocation of p53 protein, which is able to function as a simple test for detecting mutagenic and genotoxic stress in human cells. For this purpose, we constructed a plasmid with a specific translational TP53::EGFP gene fusion and selected stable transfected clones in the human cell line HEK293, in which p53 is functionally stabilized due to the expression of the transgenic adenoviral E1A oncoproteins. HEK293-TP53::EGFP clones may be used as a living cell system for monitoring not only of the induction of p53 protein in the cell, but also of its subcellular localization. Using this human reporter cell system, we examined levels of p53 by fluorescence microscopy and by FACS analysis following treatment with several classes of genotoxic and carcinogenic compounds. All tested DNA damaging agents caused a significant increase of intracellular p53-EGFP levels in a concentration-dependent manner. On the other hand, non-genotoxic carcinogens and stress conditions that cannot damage DNA were not able to induce p53-EGFP accumulation. The induction effect caused by genotoxic stress was found to be dependent on the endogenous p53 status, because it was not observed in p53-deficient cell lines. This corroborates the notion that p53 may be used as an universal sensor for genotoxic stress and demonstrates the usefulness of HEK293-p53-EGFP cells as a reporter system for identification of mutagens and genotoxic carcinogens in human cells by means of visualizing and monitoring intracellular p53 levels and localization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号