首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Summary The juvenile hormone esterase (JHE) titer was measured during the last larval instar of 11 species of Lepidoptera (Pieris rapae, Junonia coenia, Danaus plexippus, Hemileuca nevadensis, Pectinophora gossypiella, Spodoptera exigua, Orgyia vetusta, Ephestia elutella, Galleria mellonella, Manduca sexta andEstigmene acrea). All species had a peak of JHE at or near the time of wandering. The peak activity at this time ranged from 0.8 to 388 nmoles JH III cleaved/min·ml. All species exceptJ. coenia had a second peak of JHE during the late prepupal stage. The height of the second peak ranged from 0.4 to 98.4 nmoles/min·ml. However, there was no apparent correlation between size of the first and second JHE activity peaks for the lepidopteran species examined. There was an apparent relationship between the height of the first and second JHE peaks and reports on titer of JH just prior to these peaks. These data support, with some qualifications, the extension of developmental information obtained on several well studied species to a variety of Lepidoptera.Abbreviations JH juvenile hormone - JHE juvenile hormone esierase - PTTH prothoracotropic hormone - R o -10-3108 1-(4-ethylphenoxy)-6,7-epoxy-3-ethyl-7-methylnonane  相似文献   

2.
The concentration of the juvenile hormone-binding protein (JHB) in hemolymph was determined throughout the last nymphal instar. It was found to be 3.9 μM at the molt to the instar, rising to 13 μM by mid-instar, and dropping to 6.7μM the day before emergence. Endocrine control of its production during the last nymphal instar could not be established. The apparent juvenile hormone esterase (JHF) activity was low at the molt to the last instar, but rose about fivefold by mid-instar, and then modestly declined. On the day of emergence, JHF activity rose to the highest level observed. A four- to fivefold increase in absolute JHF activity was determined during the first half of the last nymphal instar. This increase is not regulated by JH. Removal of the JHB from hemolymph samples by precipitation with a polyclonal specific antibody increased the JHF activity up to 1,000-fold. Thus, changes in the concentrations of JHB can affect the apparent activity of JHE, which is unrelated to the production or degradation of the JHF.  相似文献   

3.
4.
《Insect Biochemistry》1991,21(6):583-595
A major peak of juvenile hormone esterase (JHE) activity approaching 330 nmol JH III hydrolyzed/min/ml of hemolymph was observed during the last larval growth stage in Lymantria dispar. A smaller peak of JHE occurred 3–5 days after pupation. The gypsy moth JHE was purified from larval hemolymph using a classical approach. A specific activity of 766 units per mg of protein and a Km of 3.6 × 10−7 M for racemic JH III and the (10R, 11S) enantiomer of JH II was determined for the purified enzyme. The 62 kDa esterase was insensitive to inhibition by O,O-diisopropyl phosphorofluoridate (DFP), or by phenylmethylsulfonyl fluoride (PMSF). Two forms of JHE isolated by RP-HPLC were indistinguishable by HPLC tryptic peptide mapping and share an identical N-terminal amino acid sequence. Polyclonal antisera raised against gypsy moth enzyme cross-reacted with JHE from Trichoplusia ni but not with JHE from Manduca sexta. A weak cross-reactivity was observed with JHE from Heliothis virescens. Forty amino acid residues of the N-terminus were placed in sequence. The N-terminal sequence of JHE from L. dispar showed little homology to the sequence of JHE from H. virescens. The immunological and structural data support the conclusion that markedly different esterases, which catalyze the hydrolysis of juvenile hormone, are present in the hemolymph of different Lepidoptera.  相似文献   

5.
6.
Juvenile hormone esterase (JHE) from the serum of the cricket, Gryllus assimilis, was purified to homogeneity in a four-step procedure involving polyethylene glycol precipitation, hydrophobic interaction FPLC, and ion exchange FPLC. This procedure could be completed in 4 days and resulted in a greater than 900-fold purification with greater than 30% recovery. The purified enzyme exhibited a single band on a silver-stained SDS PAGE gel and had an apparent subunit molecular mass of 52 kDa. The native subunit molecular mass, determined by gel permeation FPLC, was 98 kDa, indicating that JHE from Gryllus assimilis is a dimer of two identical or similar subunits. The turnover number of the purified enzyme (1.41 s(-1)), K(M(JH-III)) (84 +/- 12 nM) of nearly-purified enzyme, and k(cat)/K(M) (1.67 x 10(7) s(-1) M(-1)) were similar to values reported for other well-established lepidopteran and dipteran JHEs. JHE from Gryllus assimilis was strongly inhibited by the JHE transition-state analogue OTFP (octylthio-1,1,1-trifluoro-2-propanone; I(50) = 10(-7) M) and by DFP (diisopropyl fluorophosphate; I(50) = 10(-7) M). The shapes of the inhibition profiles suggest the existence of multiple binding sites for these inhibitors or multiple JHEs that differ in inhibition. Isoelectric focusing separated the purified protein into 4 isoforms with pIs ranging from 4.7-4.9. N-terminal amino acid sequences (11-20 amino acids) of the isoforms differed from each other in 1-4 positions, suggesting that the isoforms are products of the same or similar genes. Homogeneously purified JHE hydrolyzed alpha-napthyl esters, did not exhibit any detectable acetylcholinesterase, acid phosphatase, or aminopeptidase activity, and exhibited only very weak alkaline phosphatase activity. JHE exhibited a low (11 microM) K(M) for long-chain alpha-naphthyl esters, indicating that JHE may have physiological roles other than the hydrolysis of JH-III. Purification of JHE represents a key step in our attempts to identify the molecular causes of genetically-based variation in JHE activity in G. assimilis. This represents the first homogeneous purification of JHE from a hemimetabolous insect.  相似文献   

7.
Cross-immunoreactivity of juvenile hormone esterase (JHE) from different species was tested using anti-JHE (Trichoplusia ni) (Noctuidae) polyclonal antibody. Partial cross-reactivity was observed between JHE from Hyphantria cunea, Isia isabella (Arctuidae) and Spodoptera exigua (Noctuidae) in immunoblot analysis. Soluble antigen-antibody complex formation was observed between anti-JHE (T. ni) and antigen(s) from Heliothis virescens (Noctuidae) during immunotitration of antigen(s). Using an ELISA method the highest cross-reactivity was observed for both species from Arctuidae and lower cross-reactivity for antigen(s) from H. virescens.  相似文献   

8.
External stressors disrupt physiological homeostasis; in insects, the response to stress may result in delayed development as the animal attempts to restore homeostasis before proceeding with its complex life cycle. Previous studies have demonstrated that exposure to stress leads to increased levels of the juvenile hormone (JH), a hormone responsible for maintaining the insect larval state. In Manduca sexta, JH is transported to target tissue by a high-affinity binding protein, hemolymph JH binding protein (hJHBP). Since JH titers are elevated in stressed Manduca, we examined levels of hJHBP to better understand (1) the role of JH in regulating hJHBP levels and (2) the hJHBP-regulated bioavailability of hormone at the target site. Fourth stadium Manduca (48 h post-ecdysis) were exposed for 24h to various stressors including nutritional deprivation, microbial infection, cutaneous injury, episodic movement, and temperature elevation. Insects raised on diets lacking nutritional content exhibited mean hJHBP levels that were less than half (45%) those of control insects. Similarly, insects injected with Escherichia coli demonstrated a 47% reduction in hJHBP titers. Cutaneous injury, episodic movement, and temperature elevation lowered hJHBP levels by 47%, 43%, and 38%, respectively. Total hemolymph protein concentration was not affected. After a stress event (injury), a 50% reduction in abundance of fat body hJHBP mRNA was observed within 4h; hJHBP levels did not drop until 24h after injury. Stress in the fourth stadium was manifest in fifth instars, with 100% of the injured insects displaying an extended larval stadium or failing to pupate. Computational modeling of the JH-hJHBP interaction indicates that unbound JH doubles in stressed insects. These results indicate that in response to stress larval hJHBP titers are significantly reduced, increasing JH bioavailability at the target site and thereby impacting development and survival of the insect. Treatment of unstressed insects with physiological doses of JH I did not affect hJHBP levels, suggesting that elevated JH levels were not solely responsible for the observed down-regulation in stressed insects.  相似文献   

9.
Juvenile hormone III levels and juvenile hormone esterase activity were measured in whole body extracts and haemolymph, respectively, of female Aedes aegypti. The amount of juvenile hormone, determined by coupled gas chromatography-mass spectrometry, rose over the first 2 days after emergence from 0.7 to 7.5 ng/g, and then slowly fell over the next 5 days in females not given a blood meal. In females fed blood, juvenile hormone levels fell during the first 3 h to 2.3 ng/g. The rate of decline then slowed so that levels had reached their lowest point (0.4 ng/g) by 24 h after the blood meal. By 48 h, levels started to rise again until 96 h when they were equivalent to pre-blood meal levels.Juvenile hormone esterase activity in the haemolymph of females was measured with a partition assay. The esterase activity showed small fluctuations in unfed animals. In females fed blood on the 3rd day after emergence, the juvenile hormone esterase activity rose slowly to a peak at 36 h. At 42 h it began to decline, and by 66 h it had returned to pre-blood meal levels. Thus, juvenile hormone levels and juvenile hormone esterase activity were inversely correlated after a blood meal. Both the ovary and fat body produce juvenile hormone esterase in organ culture.Juvenile hormone III acid was the only metabolite produced after incubation of haemolymph with racemic-labelled juvenile hormone III. Juvenile hormone acid, diol, and acid diol were the main metabolic products seen in whole animal extracts after topical application of labelled hormone. About 25% of topically applied, labelled juvenile hormone appears in the haemolymph as the acid diol, and 50% of this is excreted in the urine immediately after the blood meal. Topical application of BEPAT (S-benzyl-O-ethyl phosphoramidothiolate), a specific inhibitor of juvenile hormone esterase, resulted in the absence of juvenile hormone acid and a reduction in the acid diol. Both BEPAT and methoprene, a juvenile hormone analogue, caused a reduction in egg hatch when applied topically 30 h after a blood meal, demonstrating that the decline in juvenile hormone levels after a blood meal is necessary for normal egg development and suggesting that the decline is mediated, at least in part, by juvenile hormone esterase.  相似文献   

10.
In the Colorado potato beetle (Leptinotarsa decemlineata), low juvenile hormone (JH) titers are necessary to initiate metamorphosis and diapause. Low JH titers coincide with high activities of JH esterase, which occur mainly in the hemolymph. The specific activity of JH esterase appeared to be highest in the last larval instar, at day 3 after the molt, and reached a value of 13.5 nmol/min/mg. JH esterase was purified from hemolymph collected at this stage by a sequence of separation systems, including preparative nondenaturing PAGE, isoelectric focusing, and SDS-PAGE. The enzyme had a molecular weight of 120,000 and was composed of two subunits with molecular weights of 57,000, which were not linked by disulphide bridges. Isoelectric focusing revealed two forms of the enzyme with isoelectric points of 5.5 and 5.6. The Km and kcat of the purified enzyme were determined. The major form with pI 5.6 had a Km of 1.4 × 10-6M and a kcat of 0.9 s-1 and the minor form with pI 5.5 had a Km of 2.2 × 10-6M and a kcat of 1.9 s-1. The quaternary structure of L. decemlineata JH esterase as a dimer, differs from JH esterases in other species, which are monomers. Arch. Insect Biochem. Physiol. 35:261-277, 1997.© 1997 Wiley-Liss, Inc.  相似文献   

11.
In adult female Locusta migratoria, at about day 8 after eclosion, when vitellogenin (Vg) is first produced as a result of induction by juvenile hormone (JH), the intensity of hemolymph protein electrophoretic bands at about 75 kDa and 20 kDa increases sharply, suggesting that JH may induce additional proteins. A major component of the elevated protein is persistent storage protein (PSP; subunit 74 kDa). Administration of the JH analog, methoprene, to precocene-treated adult locusts was followed by a rise in hemolymph levels of PSP but not in apolipophorin III (19 kDa), identified immunochemically and electrophoretically. The synthesis of PSP in adult fat body was confirmed by incorporation of [3H]leucine. At 48 h after treatment with methoprene, Vg synthesis was induced in females (as previously observed) and synthesis of PSP in both sexes was elevated above controls, while synthesis of apolipophorin III was not stimulated. We conclude that in adult locust fat body the synthesis of several proteins responds in different ways to the JH analog: Vg (and a 21 kDa protein described elsewhere) is induced de novo solely in females; PSP (and a 19 kDa protein described elsewhere) is stimulated in both sexes but is not fully JH-dependent; apolipophorin III is not stimulated. In these experiments, methoprene was administered both by injection in mineral oil and topically in acetone. After injection of mineral oil as a vector control, incorporation into secreted proteins was stimulated at 24 h, presumably due to a wound effect; topical application of acetone avoids this effect and is a preferred route for administration of JH analog. © 1992 Wiley-Liss, Inc.  相似文献   

12.
A juvenile hormone binding protein (JHBP) has been isolated from Bombyx mori hemolymph by gel filtration, ion-exchange chromatography, chromatofocusing and hydroxyapatite column chromatography. Gel electrophoresis indicates that the isolated protein is homogeneous in the presence or absence of a denaturing agent. The JHBP in question has a relative molecular mass of 32 kDa, determined by denaturing gel electrophoresis. Chromatofocusing analysis indicated that the JHBP is an acidic protein with pI 4.9. The protein exhibits a dissociation constant of 9.0 × 10−8 M for JH I, 1.14 × 10−7 M for JH II and 3.9 × 10−7 M for JH III, and thus its affinity for JH analogues is in the order of JHI >JHII >JHIII. Its amino acid composition indicates that the protein consists of 297 residues of 18 kinds of amino acids. The sequence of the N-terminus of the polypeptide chain was determined for 34 of the first 36 residues: Asp-Gln-Asp-Ala-Leu-Leu-Lys-Pro-?-Lys-Leu-Gly-Asp-Met-Gln-Ser-Leu-Ser-Ser-Ala-Thr-Gln-Gln-Phe-Leu-Glu- Lys-Thr-Ser-Lys-Gly-Ile-Pro-?-Tyr-His-.  相似文献   

13.
《Insect Biochemistry》1990,20(6):611-618
Murine monoclonal antibodies were made against the hemolymph juvenile hormone binding protein (JHBP) of Manduca sexta. Binding studies in conjunction with Western blot analysis of native and sodium dodecyl sulfate gels confirmed that antibodies from 10 hybridoma lines interacted with the juvenile hormone binding protein. The pattern of cross-reactivity among the hybridoma lines suggests that different epitopes are recognized. The cross-reactivity pattern for monoclonal antibody 9 suggested a common epitope in three different hemolymph proteins: JHBP, insecticyanin and a 40–45 kDa protein. Western blot analysis of a two-dimensional gel using monoclonal antibody 6 revealed interaction with JHBP and with several proteins that may be precursors or degradation products of the binding protein. An enzyme-immunoassay was developed that detects JHBP in the hemolymph at nanogram levels.  相似文献   

14.
We previously reported the identification of a putative juvenile hormone esterase (JHE) binding protein DmP29 in Drosophila melanogaster and its primary localization to the mitochondria [Liu, Z., Ho, L., Bonning, B.C., 2007. Localization of a Drosophila melanogaster homolog of the putative juvenile hormone esterase binding protein of Manduca sexta. Insect Biochem. Mol. Biol. 37(2), 155-163]. To further characterize DmP29, we identified potential ligands of this protein. Recombinant DmP29 was shown by ligand blot and co-immunoprecipitation analyses to bind recombinant JHE as well as to larval serum proteins (LSP). The possible biological relevance of the in vitro DmP29-JHE interaction is provided by detection of JHE activity in D. melanogaster mitochondrial fractions; 0.48 nmol JH hydrolyzed/min/mg mitochondrial protein, 97% of which was inhibited by the JHE-specific inhibitor OTFP. However, the DmP29-LSP interactions may not be biologically relevant. Given the high abundance, and "sticky" nature of these proteins, interaction of DmP29 with LSP may result from non-specific associations. No DmP29 interactions with non-specific esterases were detected by co-immunoprecipitation analyses. The potential role of DmP29 as a chaperone of JHE is discussed.  相似文献   

15.
Kinetic analysis was performed on the juvenile hormone (JH) esterase activity in the hemolymph of feeding, last instar larvae of Trichoplusia ni (Lepidoptera: Noctuidae). When the results were analyzed by several different graphical and regression procedures, all approaches yielded the same conclusion that at least two forms of JH esterase active sites exist in the hemolymph. The apparent Km for one site for JH I, II and III was 8.5 X 10(-8) M, and 6.6 X 10(-8) M, respectively. The Km for the other site for JH I, II and III was 6.6 X 10(-7) M, 7.6 X 10(-7) M, 40 X 10(-7) M, respectively. When hemolymph JHE activity was subjected to high resolution isoelectric focusing (IEF), two distinct large peaks of JHE activity were observed, with pIs of 5.3 and 5.5, as well as a small peak at pI 5.1. Separate kinetic analysis of the JHE activity in each peak showed that only the higher Km active site for each substrate was present (in the 10(-7) M range). These data necessitate a change in the current model for JHE in T. ni, and some other insects, which states that a single active site is responsible for most or all of the JH esterase activity in vivo. The data also explain the different estimates of the Km of JHE in T. ni obtained by different laboratories. Studies on the purification of, and the development of inhibitors for, JHE esterase must consider the role of both JHE forms and sites in regulation of T. ni metamorphosis.  相似文献   

16.
Juvenile hormone (JH) regulates insect development. JH present in the hemolymph is bound to a specific glycoprotein, juvenile hormone binding protein (JHBP), which serves as a carrier to deploy the hormone to target tissues. In this report structural changes of JHBP from Galleria mellonella induced by guanidine hydrochloride have been investigated by a combination of size-exclusion chromatography, protein activity measurements, and spectroscopic methods. Molecules of JHBP change their conformation from a native state via two unstable intermediates to a denatured state. The first intermediate appears in a compact state, because it slightly changes its molecular size and preserves most of the JHBP secondary structure of the native state. Although the second intermediate also preserves a substantial part of the secondary structure, it undergoes a change into a noncompact state changing its Stokes radius from approximately 30 to 39 A. Refolding experiments showed that JHBP molecules recover their full protein structure, as judged from the CD spectrum, fluorescence experiments, and JH binding activity measurements. The free energy of unfolding in the absence of the denaturant, DeltaG(D-N), is calculated to be 4.1 kcal mol(-1).  相似文献   

17.
A putative juvenile hormone esterase (JHE) binding protein, P29, was isolated from the tobacco hornworm Manduca sexta [J. Biol. Chem. 275(3), 1802-1806]. A homolog of P29 was identified in Drosophila melanogaster by sequence alignment. This gene, CG3776 was cloned, recombinant DmP29 expressed in Escheriscia coli and two anti-DmP29 antisera raised. In vitro binding of the P29 homolog to Drosophila JHE was confirmed. P29 mRNA and an immunoreactive protein of 25 kDa were detected in Drosophila larvae, pupae and adults. The predicted size of the protein is 30 kDa. Drosophila P29 is predicted to localize to mitochondria (MitoProt; 93% probability) and has a 6 kDa N-terminal targeting sequence. Subcellular organelle fractionation and confocal microscopy of Drosophila S2 cells confirmed that the immunoreactive 25 kDa protein is present in mitochondria but not in the cytosol. Expression of P29 without the predicted N-terminal targeting sequence in High Five cells showed that the N-terminal targeting sequence is shorter than predicted, and that a second, internal mitochondrial targeting signal is also present. An immunoreactive protein of 50 kDa in the hemolymph does not result from alternative splicing of CG3776 but may result from dimerization of P29. The function of P29 in mitochondria and the possible interaction with JHE are discussed.  相似文献   

18.
Juvenile hormone esterase (JHE), which catalyzes the hydrolysis of juvenile hormone, was isolated from the hemolymph of 5(th) instars of Lymantria dispar by two different procedures. One procedure was based on affinity chromatography and the other on anion-exchange chromatography. The material from both purifications showed bands of approximately 50 kDa when analyzed by SDS-PAGE. Isoelectric focusing (IEF) gels in combination with enzyme activity assays indicated two isoelectric forms with the same pI values (pH 5.1. and 5.3) from affinity purification and from anion-exchange chromatography. Amino acid sequencing of several internal peptides from the 50 kDa band following affinity purification and alignment of these sequences with JHEs from previously purified lepidopteran species (Heliothis virescens, Manduca sexta) showed high homology of these enzymes.The isolated JHE, at least in the stage of insect used, was different from the enzyme reported earlier [Valaitis, A.P., 1991. Characterization of hemolymph juvenile hormone esterase from Lymantria dispar. Insect Biochemistry 21, 583-595] to hydrolyze JH in the hemolymph of gypsy moth, based on molecular weight and amino acid sequence.  相似文献   

19.
The properties of the high-affinity low molecular weight juvenile hormone (JH) binding protein present in the hemolymph of larvae of five species of pyralid moths, a noctuid moth, and a sphingid moth were compared. The pyralid moths exhibit a facultative diapause as last-instar larvae. The species employed were the southwestern corn borer, Diatraea grandiosella, the southern cornstalk borer, Diatraea crambidoides, the sugarcane borer, Diatraea saccharalis, the European corn borer, Ostrinia nubilalis, the sunflower moth, Homoeosoma electellum, the cabbage looper, Trichoplusia ni, and the tobacco hornworm, Manduca sexta. The binding characteristics of the proteins were determined using saturation binding assays and competitive binding assays. The dissociation constants of JH I, JH II, and JH III for the binding protein of all the species varied from 0.8 x 10?7 M to 2.8 x 10?7 M. Calibrated gel filtration showed that the binding protein of all the species had apparent molecular weights ranging from 29,000 to 31,000. Electrophoresis in 7% acrylamide gels revealed that the relative mobilities of the binding proteins ranged from 0.33 to 0.43. Isoelectric focusing showed that the binding proteins had isoelectric points between 4.4 and 5.0.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号