首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary We have constructed and tested three lac diploid strains in an attempt to show whether operator-constitutive mutations relieve catabolite repression of the lac operon. Each of these carries a different operator mutation on the chromosome, and all three have the genotype I+P+OcZ+Y-polar/Flac I+P+O+ZdelY+A+. When these strains were grown in medium containing glucose plus gluconate, synthesis of -galactosidase (directed by a gene cis to a mutant operator) and of thiogalactoside transacetylase (directed by a gene cis to an intact operator) suffered equal catabolite repression. We conclude that the operator-constitutive mutations have no effect on catabolite repression. Since it has been shown in analogous experiments that all promoter mutations tested do alleviate catabolite repression, these results are consistent with the view that the operator and promoter are functionally distinct.  相似文献   

2.
1. Catabolite repression of β-galactosidase and of thiogalactoside transacetylase was studied in several strains of Escherichia coli K 12, in an attempt to show whether a single site within the structural genes of the lac operon co-ordinately controls translational repression for the two enzymes. In all experiments the rate of synthesis of the enzymes was compared in glycerol–minimal medium and in glucose–minimal medium. 2. In a wild-type strain, glucose repressed the synthesis of the two enzymes equally. 3. The possibility that repression was co-ordinate was investigated by studies of mutant strains that carry deletions in the genes for β-galactosidase or galactoside permease or both. In all of the strains with deletions, the repression of thiogalactoside transacetylase persisted, and it is concluded that there is no part of the structural gene for β-galactosidase that is essential for catabolite repression of thiogalactoside transacetylase. 4. Subculture of one strain through several transfers in rich medium greatly increased its susceptibility to catabolite repression by glucose. It is concluded that unknown features of the genotype can markedly affect sensitivity to catabolite repression. 5. These results make it clear that one cannot draw valid conclusions about the effect of known genotypic differences on catabolite repression from a comparison of two separate strains; to study the effect of a particular genetic change in a lac operon it is necessary to construct a partially diploid strain so that catabolite repression suffered by one lac operon can be compared with that suffered by another. 6. Four such partial diploids were constructed. In all of them catabolite repression of β-galactosidase synthesized by one operon was equal in extent to catabolite repression of thiogalactoside transacetylase synthesized by the other. 7. Taken together, these results suggest that catabolite repression of β-galactosidase and thiogalactoside transacetylase is separate but equal.  相似文献   

3.
Catabolite repression of the lac operon. Repression of translation   总被引:1,自引:2,他引:1  
  相似文献   

4.
5.
1. Experiments were devised to show whether the point mutations L8 and L29 in the lac promoter alleviate transient repression. 2. Several recombinants were picked from matings between a single F(-)p(+) strain and Hfr strains carrying mutations L8 and L29. All of the 19 p(-) recombinants tested proved to suffer no transient repression, whereas all of the eight p(+) recombinants tested suffered prolonged transient repression. 3. A diploid strain was constructed in which more than 90% of the thiogalactoside transacetylase is synthesized from the episome with a wild-type lac promoter, whereas 100% of the beta-galactosidase is synthesized from the chromosome with a promoter carrying mutation L8. In this diploid the synthesis of thiogalactoside transacetylase suffered transient repression but the synthesis of beta-galactosidase did not. 4. Exactly similar results were obtained with a diploid strain in which the chromosomal promoter carried mutation L29. 5. The same diploid strains were used in experiments to show whether mutations L8 and L29 alleviate the severe catabolite repression caused by growth in glucose plus gluconate. In both strains glucose+gluconate repressed the synthesis of beta-galactosidase much less than the synthesis of thiogalactoside transacetylase. 6. These and previously reported results can be explained by assuming (a) that both mutations L8 and L29 render the lac promoter partially, but not completely, insensitive to catabolite repression, and (b) that transient repression is an exceptionally severe form of catabolite repression.  相似文献   

6.
Yudkin MD 《FEBS letters》1970,10(3):156-158
Experiments have been done to show whether the lac promoter delection L1, which partly alleviates catabolite repression, also affects transient repression of lac. In stain L1/F'M15 all of the beta-galactosidase is synthesized from a chromosomal gene cis to L1, whereas 98% of the thiogalactosidase transacetylase is synthesized from an episomal gene cis to an intact i-p-o region. The addition of glucose to induced cultures of strain L1/F'M15 growing in glycerol medium caused extensive transient repression of transacetylase but almost no transient repression of beta-galactosidase. In control experiments with a diploid stain of genotype p(+)z(+)a(-)/F'p(+)z(-)a(+) the two enzymes suffered equal transient repression. Thus L1 substantially relieves transient repression.  相似文献   

7.
8.
9.
The three operators of the lac operon cooperate in repression.   总被引:24,自引:6,他引:24       下载免费PDF全文
  相似文献   

10.
11.
Inducer exclusion was not important in catabolite repression of the Bacillus subtilis gnt operon. The CcpA protein (also known as AlsA) was found to be necessary for catabolite repression of the gnt operon, and a mutation (crsA47, which is an allele of the sigA gene) partially affected this catabolite repression.  相似文献   

12.
13.
14.
15.
The second operator of the lac operon, located within the 5'-coding region of the lacZ gene, was specifically destroyed by means of oligonucleotide-directed mutagenesis. Eight of its bases were exchanged without altering the wild-type amino acid sequence of beta-galactosidase. The mutation was transferred onto an F'lac+I+O+Z+pro+ episome. We observed a fivefold decrease in repression of beta-galactosidase expression compared to that in the wild-type.  相似文献   

16.
Plasmids were constructed which carry a synthetic lac operator at various distances from the lac promoter. They were tested in vivo for function in the presence and absence of lac repressor. We found significant repression when the lac operator is situated at the 3' end of the lac I gene or at the 5' end of the lac Z gene. When lac operators are inserted at both sites, we found a greater than 150-fold repression. The complex between lac repressor and DNA carrying these two lac operators is exceedingly stable in vitro suggesting that one tetrameric lac repressor may bind to both lac operators.  相似文献   

17.
Acetylated amino sugars, normally used in the biosynthesis of cell walls and cell membranes, were found to play a role as corepressors for catabolite repression of the lac operon in Escherichia coli. This conclusion was derived from studies conducted on mutants of E. coli that were able to assimilate an exogenous source of N-acetylglucosamine (AcGN) but were unable to dissimilate or grow on this compound. At concentrations less than 10(-4)m, AcGN caused severe catabolite repression of beta-galactosidase synthesis in cultures grown under either nonrepressed or partially repressed conditions. This repression occurred in the absence of any effect of AcGN on either the carbon and energy metabolism or the growth of the organism. In addition, this repression by AcGN occurred in a mutant strain that is constitutive for beta-galactosidase production, demonstrating that the AcGN effect does not involve the uptake of inducer. This model for the corepressor system of catabolite repression is discussed in relation to the existing theories on repression of the lac operon.  相似文献   

18.
Catabolite repression of Bacillus subtilis catabolic operons is supposed to occur via a negative regulatory mechanism involving the recognition of a cis-acting catabolite-responsive element (cre) by a complex of CcpA, which is a member of the GalR-LacI family of bacterial regulatory proteins, and the seryl-phos-phorylated form of HPr (P-ser-HPr), as verified by recent studies on catabolite repression of the gnt operon. Analysis of the gnt promoter region by deletions and point mutations revealed that in addition to the ere in the first gene (gntR) of the gnt operon (credown), this operon contains another ere located in the promoter region (creup). A translational gntR-lacZ fusion expressed under the control of various combinations of wild-type and mutant credown and creup was integrated into the chromosomal amyE locus, and then catabolite repression of p-galac-tosidase synthesis in the resultant integrants was examined. The in vivo results implied that catabolite repression exerted by creup was probably independent of catabolite repression exerted by credown; both creup and credown catabolite repression involved CcpA. Catabolite repression exerted by creup was independent of P-ser-HPr, and catabolite repression exerted by credown was partially independent of P-ser-HPr. DNase I footprinting experiments indicated that a complex of CcpA and P-ser-HPr did not recognize creup, in contrast to its specific recognition of credown. However, CcpA complexed with glucose-6-phosphate specifically recognized creup as well as credown, but the physiological significance of this complexing is unknown.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号