首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Time-course changes in rosmarinic acid (RA) formation and activities of tyrosine aminotransferase (TAT) isoforms were examined in Anchusa officinalis suspension cultures. Three TAT isoforms (TAT-1, TAT-3, TAT-4) were resolved by Mono-Q anion-exchange column chromatography. The proportion of the TAT-3 activity within the total TAT activity remained high regardless of the growth stage of the cultured cells. TAT-1 activity was positively correlated with the rate of RA biosynthesis during linear growth stage of the culture cycle, while TAT-4 activity was rapidly induced in conjunction with transfer to fresh medium coincident with a transient increase in RA synthesis. Based on these results, as well as the substrate specificity of each TAT isoform, it was concluded that both TAT-1 and TAT-4 are closely involved in RA biosynthesis. TAT-1 controls conversion of tyrosine to 4-hydroxyphenyl pyruvate, and TAT-4 acts by participating in the formation of tyrosine and phenylalanine via prephenate.Abbreviations PAL phenylalanine ammonia-lyase - TAT tyrosine aminotransferase - RA rosmarinic acid  相似文献   

2.
Suspension cultures of Coleus blumei accumulate very high amounts of rosmarinic acid, an ester of caffeic acid and 3,4-dihydroxyphenyllactate, in medium with elevated sucrose concentrations. Since the synthesis of this high level of rosmarinic acid occurs in only five days of the culture period, the activities of the enzymes involved in the biosynthesis are very high. Therefore all the enzymes necessary for the formation of rosmarinic acid from the precursors phenylalanine and tyrosine could be isolated from cell cultures of Coleus blumei: phenylalanine ammonia-lyase, cinnamic acid 4-hydroxylase, hydroxycinnamoyl:CoA ligase, tyrosine aminotransferase, hydroxyphenylpyruvate reductase, rosmarinic acid synthase and two microsomal 3- and 3-hydroxylases. The main characteristics of these enzymes of the proposed biosynthetic pathway of rosmarinic acid will be described.Abbreviations DHPL 3,4-dihydroxyphenyllactate - DHPP 3,4-dihydroxyphenylpyruvate - pHPL 4-hydroxyphenyllactate - pHPP 4-hydroxyphenylpyruvate - RA rosmarinic acid  相似文献   

3.
This communication reviews data on the accumulation and biosynthesis of rosmarinic acid in cell suspension cultures ofColeus blumei. The influence of the medium, mainly the carbohydrate source on growth and rosmarinic acid production in these cell cultures is described. The biosynthetic pathway of rosmarinic acid was elucidated inColeus blumei cell cultures: eight enzymatic activities are involved in the transformation of the precursors phenylalanine and tyrosine to the end product rosmarinic acid.Abbreviations CAH cinnamic acid 4-hydroxylase - 4CL 4-coumarate:CoA ligase - HPPR hydroxyphenylpyruvate reductase - 3-H hydroxycinnamoyl-hydroxyphenyllactate 3-hydroxylase - 3-H hydroxycinnamoyl-hydroxyphenyllactate 3-hydroxylase - PAL phenylalanine ammonia-lyase - RAS rosmarinic acid synthase (hydroxycinnamoyl-CoA:hydroxyphenyllactate hydroxycinnamoyl transferase) - TAT tyrosine aminotransferase  相似文献   

4.
In search of the target protease for the tumor-associated trypsin inhibitor TATI we recently identified a trypsin-like protease in cyst fluid of mucinous ovarian tumors (Stenman, U.-H., Koivunen, E., and Vuento, M. (1988) Biol. Chem. Hoppe-Seyler 369, 9-14). We have now purified this protease and demonstrate that it represents isoenzyme forms of trypsinogen, here called tumor-associated trypsin(ogen)s (TAT). The purification procedure comprised batchwise anion exchange chromatography, immunoaffinity chromatography with antibodies to trypsin, and separation of the two isoenzymes by reverse phase chromatography. In sodium dodecyl sulfate (SDS)-gel electrophoresis, the TAT-1 and TAT-2 isoenzymes have relative molecular weights (Mr) of 25,000 and 28,000, respectively, TAT-2 being the major component. The amino-terminal amino acid sequences correspond to those of pancreatic trypsinogen-1 and -2, respectively, and activation of the zymogens results in cleavage of a NH2-terminal activation peptide of 8 residues characteristic of trypsinogen. Isoelectric focusing in the presence of urea gives pI values of about 5 and 4 for TAT-1 and -2, respectively. The substrate specificities of the two TAT isoenzymes are very similar to, but not identical with, those of trypsin-1 and trypsin-2, respectively, suggesting slight differences in substrate binding site. TAT was found to be an efficient activator of pro-urokinase. Hence, TAT could take part in the protease cascade associated with tumor invasion.  相似文献   

5.
Summary A dramatic increase in rosmarinic acid (RA) content in cultured cells of Lithospermum erythrorhizon was observed after their exposure to methyl jasmonate (MJ). Preceding the induced RA accumulation, phenylalanine ammonia-lyase (PAL) and 4-hydroxyphenylpyruvate reductase (HPR) activities increased rapidly and transiently, whereas tyrosine aminotransferase (TAT) activity showed only a slight increase. The elicitation activity of MJ was much higher than that of yeast extract (YE) in terms of the induction of PAL and HPR activities, RA accumulation and incorporation of both 14C-phenylalanine and 14C-tyrosine into RA. However, the response of the cultured cells to MJ-treatment was slower than that to YE-treatment.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - LS Linsmaier and Skoog - HPR 4-hydroxyphenylpyruvate reductase - PAL phenylalanine ammonia-lyase - TAT tyrosine aminotransferase - MJ methyl jasmonate - YE yeast extract  相似文献   

6.
7.
Summary A transient increase in rosmarinic acid (RA) content in cultured cells of Lithospermum erythrorhizon was observed after addition of yeast extract (YE) to the suspension cultures, reaching a maximum at 24 hr. The highest increase of the RA content (2.5-fold) was obtained when 6-day-old cells in the exponential growth phase were treated with YE. Preceding the induced RA accumulation, phenylalanine ammonia-lyase (PAL) activity increased rapidly, whereas tyrosine aminotransferase (TAT) activity was largely unaffected by the treatment. The incorporation of both 14C-phenylalanine and 14C-tyrosine into RA was enhanced in the YE-treated cells, consistent with increased synthesis of the ester.Abbreviations 2,4-D 2,4 dichlorophenoxyacetic acid - PAL phenylalanine ammonia-lyase - TAT tyrosine aminotransferase - RA rosmarinic acid - YE yeast extract  相似文献   

8.
Biogenesis of rosmarinic acid in Mentha   总被引:1,自引:0,他引:1       下载免费PDF全文
The biogenesis of rosmarinic acid (alpha-O-caffeoyl-3,4-dihydroxyphenyl-lactic acid), the second most common ester of caffeic acid in the plant kingdom, was studied in Mentha arvense and Mentha piperita. Administration of (14)C-labelled compounds showed that, whereas the caffeoyl moiety was formed from phenylalanine via cinnamic acid and p-coumaric acid, the 3,4-dihydroxyphenyl-lactic acid moiety was formed from tyrosine and 3,4-dihydroxyphenylalanine. Time-course studies and the use of labelled rosmarinic acid showed that endogenous rosmarinic acid had a low turnover rate. The caffeoyl moiety did not appear to contribute to the formation of insoluble polymers, as has been suggested for chlorogenic acid in other plants.  相似文献   

9.
Of all available liver cells in culture, only primary cultured hepatocytes are known to respond to glucagon in vitro. In the present study we investigated whether glucagon could stimulate amino acid transport and tyrosine aminotransferase (TAT;EC 2.6.1.5) activity (two well-characterized glucagon effects in the liver) in Fao cells, a highly differentiated rat hepatoma cell line. We found that glucagon had no effect on transport of alpha-aminoisobutyric acid (AIB; a non-metabolizable alanine analogue) nor on TAT activity, even though both activities could be fully induced by insulin [2-fold and 3-fold effects for AIB transport and TAT activity, respectively, after 6h; EC50 (median effective concentration) = 0.3 nM], or by dexamethasone (5-8-fold effects after 20 h; EC50 = 2 nM). Analysis of [125I]iodoglucagon binding revealed that Fao cells bind less than 1% as much glucagon as do hepatocytes, whereas insulin binding in Fao cells was 50% higher than in hepatocytes. The addition of dibutyryl cyclic AMP, which fully mimics the glucagon stimulation of both AIB transport and TAT activity in hepatocytes, induced TAT activity in Fao cells (a 2-fold effect at 0.1 mM-dibutyryl cyclic AMP) but had no effect on AIB transport. Cholera toxin stimulated TAT activity to the same extent as did dibutyryl cyclic AMP. These results indicate that the lack of glucagon responsiveness in cultured hepatoma cells results from both a receptor defect and, for amino acid transport, an additional post-receptor defect. Moreover, the results show that amino acid transport and TAT activity, which appeared to be co-induced by insulin or by dexamethasone in these cells, respond differently to cyclic AMP. This suggests that different mechanisms are involved in the induction of these activities by glucagon in liver.  相似文献   

10.
Adhesive polyphenolic proteins have been purified and characterized from the feet of five marine mussels (Brachidontes exustus, Modiolus modiolus squamosus, Mytella guyanensis, Septifer bifurcatus, and Trichomya hirsuta). All five proteins contain high levels of 3,4-dihydroxyphenylalanine (DOPA), lysine, glycine, and serine or threonine. All but B. exustus also contain high levels (> or = 10%) of proline or 4-hydroxyproline. The polyphenolic proteins of all the mussels have repeated sequences of the motif X1-Y*-X2-Y*-X3-K, where Y* denotes tyrosine or DOPA. In two species (S. bifurcatus and B. exustus), X2 represents 3 amino acids (frequently glycine) and X3 is absent. M. guyanensis is similar except that X2 is reduced to 2 amino acids. In T. hirsuta and M. m. squamosus, however, X2 is absent and X3 occurs as alanine or hydroxyproline. All proteins share approximately equimolar proportions of tyrosyl- and lysyl-derived residues. Although all of the mussels examined thus far are adhesively opportunistic with respect to substratum type, a rigidly invariant sequence does not appear to be necessary for achieving this.  相似文献   

11.
A. Razzaque  B. E. Ellis 《Planta》1977,137(3):287-291
Cell suspension cultures of Coleus blumei Benth. have been found to accumulate 8–11% of their dry weight as rosmarinic acid (-O-caffeoyl-3,4-dihydroxyphenyl-lactic acid). Actively-growing tissue converts >20% of exogenously supplied phenylalanine and tyrosine to the caffeoyl ester and this high rate of synthesis coincides with an increase in phenylalanine ammonia-lyase specific activity. Administration to the cultures of known phenylpropanoid precursors of rosmarinic acid failed to enhance the latter's production and in some cases inhibited it.Abbreviations RA rosmarinic acid (-O-caffeoyl-3,4-dihydroxyphenyllactic acid - DOPA dihydroxyphenylalanine - PAL phenylalanine ammonialyase - DOPL dihydroxyphenyl-lactic acid  相似文献   

12.
13.
14.
A biosynthetic pathway for rosmarinic acid is proposed. This pathway is deduced from studies of the enzymes detectable in preparations from suspension cells of Coleus blumei. Phenylalanine is transformed to 4-coumaroyl-CoA by the enzymes of the general phenylpropanoid pathway: phenylalanine ammonia-lyase (EC 4.3.1.5), cinnamic acid 4-hydroxylase (EC 1.14.13.11) and hydroxycinnamic acid:CoA ligase (EC 6.2.1.12). Tyrosine is metabolized to 4-hydroxyphenyllactate by tyrosine aminotransferase (EC 2.6.1.5) and hydroxyphenylpyruvate reductase. The ester can be formed from 4-coumaroyl-CoA and 4-hydroxyphenyllactate by the catalytic activity of rosmarinic acid synthase with concomitant release of CoA. Microsomal hydroxylase activities introduce the hydroxyl groups at positions 3 and 3 of the aromatic rings of the ester 4-coumaroyl-4-hydroxyphenyllactate giving rise to rosmarinic acid.Abbreviations Caf-pHPL caffeoyl-4-hydroxyphenyllactate - DHPL 3,4-dihydroxyphenyllactic acid - pC-DHPL 4-coumaryl-3,4-dihydroxyphenyllactate - pC-pHPL 4-coumaryl-4-hydroxyphenyllactate - pHPL 4-hydroxyphenyllactic acid - RA rosmarinic acid The financial support of the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged.  相似文献   

15.
We constructed multimers of the TAT-(47-57) peptide. This polycationic peptide is known to be a protein and particle transduction domain and at the same time to comprise a nuclear localization function. Here we show that oligomers of the TAT-(47-57) peptide compact plasmid DNA to nanometric particles and stabilize DNA toward nuclease degradation. At optimized vector compositions, these peptides mediated gene delivery to cells in culture 6-8-fold more efficiently than poly-L-arginine or the mutant TAT(2)-M1. When DNA was precompacted with TAT peptides and polyethyleneimine (PEI), Superfect, or LipofectAMINE was added, transfection efficiency was enhanced up to 390-fold compared with the standard vectors. As early as after 4 h of transfection, reporter gene expression mediated by TAT-containing complexes was higher than the 24-h transfection level achieved with a standard PEI transfection. When cells were cell cycle-arrested by serum starvation or aphidicolin, TAT-mediated transfection was 3-fold more efficient than a standard PEI transfection in proliferating cells. In primary nasal epithelial cells and upon intratracheal instillation in vivo, TAT-containing complexes were superior to standard PEI vectors. These data together with confocal imaging of TAT-DNA complexes in cells support the hypothesis that the TAT nuclear localization sequence function is involved in enhancing gene transfer.  相似文献   

16.
Rosmarinic acid   总被引:25,自引:0,他引:25  
Rosmarinic acid is an ester of caffeic acid and 3,4-dihydroxyphenyllactic acid. It is commonly found in species of the Boraginaceae and the subfamily Nepetoideae of the Lamiaceae. However, it is also found in species of other higher plant families and in some fern and hornwort species. Rosmarinic acid has a number of interesting biological activities, e.g. antiviral, antibacterial, antiinflammatory and antioxidant. The presence of rosmarinic acid in medicinal plants, herbs and spices has beneficial and health promoting effects. In plants, rosmarinic acid is supposed to act as a preformed constitutively accumulated defence compound. The biosynthesis of rosmarinic acid starts with the amino acids L-phenylalanine and L-tyrosine. All eight enzymes involved in the biosynthesis are known and characterised and cDNAs of several of the involved genes have been isolated. Plant cell cultures, e.g. from Coleus blumei or Salvia officinalis, accumulate rosmarinic acid in amounts much higher than in the plant itself (up to 36% of the cell dry weight). For this reason a biotechnological production of rosmarinic acid with plant cell cultures has been proposed.  相似文献   

17.
A cDNA was isolated from rat small intestine by expression cloning which encodes a novel Na+-independent transporter for aromatic amino acids. When expressed in Xenopus oocytes, the encoded protein designated as TAT1 (T-type amino acid transporter 1) exhibited Na+-independent and low-affinity transport of aromatic amino acids such as tryptophan, tyrosine, and phenylalanine (Km values: approximately 5 mm), consistent with the properties of classical amino acid transport system T. TAT1 accepted some variations of aromatic side chains because it interacted with amino acid-related compounds such as l-DOPA and 3-O-methyl-DOPA. Because TAT1 accepted N-methyl- and N-acetyl-derivatives of aromatic amino acids but did not accept their methylesters, it is proposed that TAT1 recognizes amino acid substrates as anions. Consistent with this, TAT1 exhibited sequence similarity (approximately 30% identity at the amino acid level) to H+/monocarboxylate transporters. Distinct from H+/monocarboxylate transporters, however, TAT1 was not coupled with the H+ transport but it mediated an electroneutral facilitated diffusion. TAT1 mRNA was strongly expressed in intestine, placenta, and liver. In rat small intestine TAT1 immunoreactivity was detected in the basolateral membrane of the epithelial cells suggesting its role in the transepithelial transport of aromatic amino acids. The identification of the amino acid transporter with distinct structural and functional characteristics will not only facilitate the expansion of amino acid transporter families but also provide new insights into the mechanisms of substrate recognition of organic solute transporters.  相似文献   

18.
1,1-Dipehnyl-2-picrylhydrazyl (DPPH) radical scavenging activities were found in the extract of dried leaves of oregano (Origanum vulgare). The water-soluble active ingredients were isolated, and their structures were determined to be 4'-O-beta-D-glucopyranosyl-3',4'-dihydroxybenzyl protocatechuate and 4'-O-beta-D-glucopyranosyl-3',4'-dihydroxybenzyl 4-O-methylprotocatechuate by (1)H-, (13)C-NMR, DEPT, HMQC, and HMBC spectral analyses, and by NOE experiments. The DPPH radical scavenging activities of these compounds were compared with those of rutin, quercetin and rosmarinic acid at a concentration of 2 x 10(-5) M. The scavenging activity of 4'-O-beta-D-glucopyranosyl-3',4'-dihydroxybenzyl protocatechuate was almost the same as that of quercetin and rosmarinic acid, but that of 4'-O-beta-D-glucopyranosyl-3',4'-dihydroxybennzyl 4-O-methylprotocatechuate was less than that of quercetin, rosmarinic acid and 4'-O-beta-D-glucopyranosyl-3',4'-dihydroxybenzyl protocatechuate. The amount of 4'-O-beta-D-glucopyranosyl-3',4'-dihydroxybenzyl protocatechuate was estimated to be 3.8 mg/1 g of dried leaves by an HPLC analysis.  相似文献   

19.
The synthesis and anti-inflammatory activity of 4,5-dihydroxy-3-methyl-1H-pyrazolo[3,4-c]pyridazine (4), 4,5-dichloro-3-methyl-1H-pyrazolo[3,4-c]pyridazine (5), 4,-benzoyloxy-3-methyl-1-benzoyl-1H-pyrazolo[3,4-c]pyridazin-5yl benzoate (6), 3-methyl-N4,N5-bis(4-methylphenyl)-1H-pyrazolo[3,4-c]pyridazine-4,5-diamine (7), 4[[5-(4-carboxyanilino)-3-methyl-1H-pyrazolo[3,4-c]pyridazin-4yl]amino]benzoic acid (8), N-[5-(benzoylamino)-3-methyl-1H-pyrazolo[3,4-c]pyridazin-4-yl]benzamide (9) and 3-methyl-N4,N5-bis[4-(1H-benzimidazol-2yl)phenyl]-1H-pyrazolo[3,4-c]pyridazine-4,5-diamine (10) are being reported.  相似文献   

20.
In our previous paper, we reported that rosmarinic acid (1) of Argusia argentea could neutralize snake venom induced hemorrhagic action. Rosmarinic acid (1) consists of two phenylpropanoids: caffeic acid (2) and 3-(3,4-dihydroxyphenyl)lactic acid (3). In this study, we investigated the structural requirements necessary for inhibition of snake venom activity through the use of compounds, which are structurally related to rosmarinic acid (1). By examining anti-hemorrhagic activity of cinnamic acid analogs against Protobothrops flavoviridis (Habu) venom, it was revealed that the presence of the E-enoic acid moiety (-CH=CH-COOH) was critical. Furthermore, among the compound tested, it was concluded that rosmarinic acid (1) (IC(50) 0.15 μM) was the most potent inhibitor against the venom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号