首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present evidence that direct activation of neuronal second messenger pathways in PC12 cells by opening voltage-dependent calcium channels mimics cell adhesion molecule (CAM)-induced differentiation of these cells. PC12 cells were cultured on monolayers of control 3T3 cells or 3T3 cells expressing transfected N-cadherin in the presence of KCl or a calcium channel agonist Bay K 8644. Both potassium depolarization and agonist-induced activation of calcium channels promoted substantial neurite outgrowth from PC12 cells cultured on control 3T3 monolayers and increased neurite outgrowth from those cultured on N-cadherin-expressing 3T3 monolayers. The potassium-induced response could be inhibited by L- and N-type calcium channel antagonists and by kinase inhibitor K-252b but was unaffected by pertussis toxin. In contrast activators of protein kinase C did not stimulate neurite outgrowth, and the neurite outgrowth response induced by activation of protein kinase A was not inhibited by calcium channel antagonists or pertussis toxin. These studies support the postulate that CAM-induced neuronal differentiation involves a specific transmembrane signaling pathway and suggest that activation of this pathway after CAM binding may be more important for the neurite outgrowth response than CAM-dependent adhesion per se.  相似文献   

2.
We have used monolayers of control 3T3 cells and 3T3 cells expressing transfected human neural cell adhesion molecule (NCAM) or chick N-cadherin as a culture substrate for PC12 cells. NCAM and N-cadherin in the monolayer directly promote neurite outgrowth from PC12 cells via a G-protein-dependent activation of neuronal calcium channels. In the present study we show that ganglioside GM1 does not directly activate this pathway in PC12 cells. However, the presence of GM1 (12.5-100 micrograms/ml) in the co-culture was associated with a potentiation of NCAM and N-cadherin-dependent neurite outgrowth. Treatment of PC12 cells with GM1 (100 micrograms/ml) for 90 min led to trypsin-stable increases in both beta-cholera toxin binding to PC12 cells and an enhanced neurite outgrowth response to N-cadherin. The ganglioside response could be fully inhibited by treatment with pertussis toxin. These data are consistent with exogenous gangliosides enhancing neuritic growth by promoting cell adhesion molecule-induced calcium influx into neurons.  相似文献   

3.
Homophilic binding in trans of the neural cell adhesion molecule (NCAM) mediates adhesion between cells and leads, via activation of intracellular signaling cascades, to neurite outgrowth in primary neurons as well as in the neuronal cell line PC12. NCAM mediates neurite extension in PC12 cells by two principal routes of signaling: NCAM/Fyn and NCAM/fibroblast growth factor receptor (FGFR), respectively. Previous studies have shown that activation of mitogen-activated protein kinases is a pivotal point of convergence in NCAM signaling, but the mechanisms behind this activation are not clear. Here, we investigated the involvement of adaptor proteins in NCAM and fibroblast growth factor 2 (FGF2)-mediated neurite outgrowth in the PC12-E2 cell line. We found that both FGFR substrate-2 and Grb2 play important roles in NCAM as well as in FGF2-stimulated events. In contrast, the docking protein ShcA was pivotal to neurite outgrowth induced by NCAM, but not by FGF2, in PC12 cells. Moreover, in rat cerebellar granule neurons, phosphorylation of ShcA was stimulated by an NCAM mimicking peptide, but not by FGF2. This activation was blocked by inhibitors of both FGFR and Fyn, indicating that NCAM activates FGFR signaling in a manner distinct from FGF2 stimulation, and regulates ShcA phosphorylation by the concerted efforts of the NCAM/FGFR as well as the NCAM/Fyn signaling pathway.  相似文献   

4.
We have used monolayers of control 3T3 cells and 3T3 cells expressing transfected human L1 as a culture substrate for rat PC12 cells and rat cerebellar neurons. PC12 cells and cerebellar neurons extended longer neurites on human L1 expressing cells. Neurons isolated from the cerebellum at postnatal day 9 responded equally as well as those isolated at postnatal day 1-4, and this contrasts with the failure of these older neurons to respond to the transfected human neural cell adhesion molecule (NCAM). Human L1-dependent neurite outgrowth could be blocked by antibodies that bound to rat L1 and, additionally, the response could be fully inhibited by pertussis toxin and substantially inhibited by antagonists of L- and N-type calcium channels. Calcium influx into neurons induced by K+ depolarization fully mimics the L1 response. Furthermore, we show that L1- and K+(-)dependent neurite outgrowth can be specifically inhibited by a reduction in extracellular calcium to 0.25 microM, and by pretreatment of cerebellar neurons with the intracellular calcium chelator BAPTA/AM. In contrast, the response was not inhibited by heparin or by removal of polysialic acid from neuronal NCAM both of which substantially inhibit NCAM-dependent neurite outgrowth. These data demonstrate that whereas NCAM and L1 promote neurite outgrowth via activation of a common CAM-specific second messenger pathway in neurons, neuronal responsiveness to NCAM and L1 is not coordinately regulated via posttranslational processing of NCAM. The fact that NCAM- and L1-dependent neurite outgrowth, but not adhesion, are calcium dependent provides further evidence that adhesion per se does not directly contribute to neurite outgrowth.  相似文献   

5.
K S O'Shea  L H Liu  V M Dixit 《Neuron》1991,7(2):231-237
The ability of thrombospondin (TSP), an extracellular matrix glycoprotein, and two proteolytic fragments to support adhesion and neurite outgrowth from embryonic dorsal root ganglia, spinal cord neurons, and PC12 cells was examined. Anti-TSP antibodies or a synthetic peptide (GRGDS) containing an RGD cell-binding region was also added to cells plated on TSP. TSP and its 140 kd fragment were more efficient than laminin controls in supporting adhesion. Neurites formed on laminin, on varying concentrations of TSP, and particularly the 140 kd fragment. The amino-terminal heparin-binding domain supported little adhesion and outgrowth. Both adhesion and process outgrowth on TSP were inhibited by addition of anti-TSP antibodies, but not GRGDS.  相似文献   

6.
7.
We report here that basic fibroblast growth factor (bFGF)-elicited neurite outgrowth in PC12 cells is potentiated by dibutyryl cyclic adenosine monophosphate (dbcAMP) or forskolin. This property was also described for nerve growth factor (NGF), suggesting that both NGF and bFGF may share common intracellular events leading to neurite outgrowth and synergism with dbcAMP and forskolin. The synergistic effect of dbcAMP and forskolin is specific, since treatment of PC12 cells with bFGF and dibutyryl cyclic guanosine monophosphate (dbcGMP) or phorbol ester did not change the neurite outgrowth response of cells treated with bFGF alone. Furthermore, neurite outgrowth depends on cellular adhesion. Increasing adhesion by plate treatment with poly-d-lysine increases the neurite outgrowth elicited by bFGF alone or bFGF plus dbcAMP. On the other hand, decreasing cellular adhesiveness by plating PC12 cells in semi-solid agarose renders the cells unable to develop neuritic processes. In addition, 3H-methylthymidine incorporation studies showed that bFGF-treated PC12 cells cease growth only when they become fully differentiated after 3-5 days of treatment. In contrast, dbcAMP, which is a poor differentiation factor, is able to block cellular growth after 24 hour treatment. These results suggest that when PC12 cells become differentiated, they stop growing. However, growth inhibition does not necessarily lead to differentiation.  相似文献   

8.
Dvl is a key protein that transmits the Wnt signal to the canonical beta-catenin pathway and the noncanonical planar cell polarity (PCP) pathway. We studied the roles of Rho-associated kinase (Rho-kinase), which is activated by Dvl in the PCP pathway of mammalian cells. The expression of Dvl-1, Wnt-1, or Wnt-3a activated Rho-kinase in COS cells, and this activation was inhibited by the Rho-binding domain of Rho-kinase. The expression of Dvl-1 in PC12 cells activated Rho and inhibited nerve growth factor (NGF)-induced neurite outgrowth. This inhibition was reversed by a Rho-kinase inhibitor but not by a c-Jun N-terminal kinase inhibitor. Dvl-1 also inhibited serum starvation-dependent neurite outgrowth of N1E-115 cells, and expression of the Rho-binding domain of Rho-kinase reversed this inhibitory activity of Dvl-1. Dvl-1 mutants that did not activate Rho-kinase did not inhibit the neurite outgrowth of N1E-115 cells. Furthermore, the purified Wnt-3a protein activated Rho-kinase and inhibited the NGF-dependent neurite outgrowth of PC12 cells. Wnt-3a-dependent neurite retraction was also prevented by a Rho-kinase inhibitor and a Dvl-1 mutant that suppresses Wnt-3a-dependent activation of Rho-kinase. These results suggest that Wnt-3a and Dvl regulate neurite formation through Rho-kinase and that PC12 and N1E-115 cells are useful for analyzing the PCP pathway.  相似文献   

9.
Treatment of PC12 cells with nerve growth factor induces their differentiation into sympathetic neuron-like cells and the concomitant expression of the neural cell adhesion molecule L1, a member of the Ig superfamily. To investigate the mechanism of L1-stimulated neurite outgrowth in PC12 cells, substrate-immobilized fusion proteins containing different extracellular domains of L1 were assayed for their neuritogenic activity. Surprisingly, domain Ig2 of L1, which was previously found to contain both homophilic binding and neuritogenic activities, failed to promote neurite outgrowth. In contrast, L1-Ig6 stimulated neurite outgrowth from PC12 cells. Despite this, homotypic binding of PC12 cells was significantly inhibited by antibodies against L1-Ig2, indicating that L1-L1 binding contributed to the intercellular adhesiveness of PC12 cells, but L1-stimulated neurite outgrowth depends on heterophilic interactions. Thus, PC12 cells provide a valuable model for the study of these two distinct functions of L1. Mutagenesis of L1-Ig6 highlighted the importance of the Arg-Gly-Asp motif in this domain for neuritogenesis. Inhibition studies using cyclic Arg-Gly-Asp-containing peptide and anti-integrin antibodies suggested the involvement of alphavbeta3 integrin. Furthermore, neurite outgrowth stimulated by L1-Ig6 was inhibited by lavendustin A and the MEK inhibitor PD98059, suggesting a signaling pathway that involves tyrosine kinase activation and the mitogen-activated protein kinase cascade.  相似文献   

10.
The rat pheochromocytoma cell line PC12 is extensively used as a model for studies of neuronal cell differentiation. These cells develop a sympathetic neuron-like phenotype when cultured in the presence of nerve growth factor. The present study was performed in order to assess the role of mouse GTK (previously named BSK/IYK), a cytoplasmic tyrosine kinase belonging to the Src family, for neurite outgrowth in PC12 cells. We report that PC12 cells stably overexpressing GTK exhibit a larger fraction of cells with neurites as compared with control cells, and this response is not accompanied by an increased ERK activity. Treatment of the cells with the MEK inhibitor PD98059 did not reduce the GTK-dependent increased in neurite outgrowth. GTK expression induces a nerve growth factor-independent Rap1 activation, probably through altered CrkII signaling. We observe increased CrkII complex formation with p130(Cas), focal adhesion kinase (FAK), and Shb in PC12-GTK cells. The expression of GTK also correlates with a markedly increased content of FAK, phosphorylation of the adaptor protein Shb, and an association between these two proteins. Transient transfection of GTK-overexpressing cells with RalGDS-RBD or Rap1GAP, inhibitors of the Rap1 pathway, reduces the GTK-dependent neurite outgrowth. These data suggest that GTK participates in a signaling pathway, perhaps involving Shb, FAK and Rap1, that induces neurite outgrowth in PC12 cells.  相似文献   

11.
The neural cell adhesion molecule, NCAM, is known to stimulate neurite outgrowth from primary neurones and PC12 cells presumably through signalling pathways involving the fibroblast growth factor receptor (FGFR), protein kinase A (PKA), protein kinase C (PKC), the Ras-mitogen activated protein kinase (MAPK) pathway and an increase in intracellular Ca2+ levels. Stimulation of neurones with the synthetic NCAM-ligand, C3, induces neurite outgrowth through signalling pathways similar to the pathways activated through physiological, homophilic NCAM-stimulation. We present here data indicating that phosphatidylinositol 3-kinase (PI3K) is required for NCAM-mediated neurite outgrowth from PC12-E2 cells and from cerebellar and dopaminergic neurones in primary culture, and that the thr/ser kinase Akt/protein kinase B (PKB) is phosphorylated downstream of PI3K after stimulation with C3. Moreover, we present data indicating a survival-promoting effect of NCAM-stimulation by C3 on cerebellar and dopaminergic neurones induced to undergo apoptosis. This protective effect of C3 included an inhibition of both DNA-fragmentation and caspase-3 activation. The survival-promoting effect of NCAM-stimulation was also shown to be dependent on PI3K.  相似文献   

12.
Rat pheochromocytoma 12 (PC12) cells undergo neuronal differentiation in response to nerve growth factor (NGF). NGF-induced differentiation involves a number of protein kinases, including extracellular signal-regulated kinase (ERK). We studied the effect of iron on neuronal differentiation, using as model the neurite outgrowth of PC12 cells triggered by NGF when the cells are plated on collagen-coated dishes in medium containing 1% serum. The addition of iron enhanced NGF-mediated cell adhesion, spreading and neurite outgrowth. The differentiation-promoting effect of iron seems to depend on intracellular iron, since nitrilotriacetic acid (an efficient iron-uptake mediator) enhanced the response to iron. In agreement with this, intracellular, but not extracellular, iron enhanced NGF-induced neurite outgrowth in pre-spread PC12 cells, and this was correlated with increased ERK activity. Taken together, these data suggest that intracellular iron promotes NGF-stimulated differentiation of PC12 cells by increasing ERK activity.  相似文献   

13.
Activation of phosphatidylinositol 3-kinase (PI3-K) is considered to be a key event upon stimulation of cells with growth factors. Akt is known to be a downstream target of PI3-K when it is activated by nerve growth factor (NGF). NGF induces cell differentiation of PC12 cells as indicated by neurite outgrowth. In order to investigate the role of PI3-K/Akt in NGF-induced differentiation of PC12 cells, we generated cells ectopically expressing constitutively activated (CA), wild type (WT) and dominant negative (DN) forms of Akt. NGF-induced neurite outgrowth was greatly accelerated in the cells expressing CA-Akt, and dramatically inhibited in those expressing DN-Akt. Pre-treatment with an Akt inhibitor, ML-9 [1-(5-chloronaphthalene-1-sulfonyl)-1H- hexahydro-1,4-diazepine], inhibited NGF-induced Akt phosphorylation as well as neurite outgrowth but did not markedly affect the activities of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK). The PI3-K inhibitors wortmannin and LY294002 blocked NGF-induced Akt phosphorylation as well as neurite outgrowth. These results indicate that PI3-K/Akt is a positive regulator of NGF-induced neuronal differentiation in PC12 cells.  相似文献   

14.
15.
16.
Fibroblast growth factor 1 (FGF-1) induces neurite outgrowth in PC12 cells. Recently, we have shown that the FGF receptor 1 (FGFR-1) is much more potent than FGFR-3 in induction of neurite outgrowth. To identify the cytoplasmic regions of FGFR-1 that are responsible for the induction of neurite outgrowth in PC12 cells, we took advantage of this difference and prepared receptor chimeras containing different regions of the FGFR-1 introduced into the FGFR-3 protein. The chimeric receptors were introduced into FGF-nonresponsive variant PC12 cells (fnr-PC12 cells), and their ability to mediate FGF-stimulated neurite outgrowth of the cells was assessed. The juxtamembrane (JM) and carboxy-terminal (COOH) regions of FGFR-1 were identified as conferring robust and moderate abilities, respectively, for induction of neurite outgrowth to FGFR-3. Analysis of FGF-stimulated activation of signal transduction revealed that the JM region of FGFR-1 conferred strong and sustained tyrosine phosphorylation of several cellular proteins and activation of MAP kinase. The SNT/FRS2 protein was demonstrated to be one of the cellular substrates preferentially phosphorylated by chimeras containing the JM domain of FGFR-1. SNT/FRS2 links FGF signaling to the MAP kinase pathway. Thus, the ability of FGFR-1 JM domain chimeras to induce strong sustained phosphorylation of this protein would explain the ability of these chimeras to activate MAP kinase and hence neurite outgrowth. The role of the COOH region of FGFR-1 in induction of neurite outgrowth involved the tyrosine residue at amino acid position 764, a site required for phospholipase C gamma binding and activation, whereas the JM region functioned primarily through a non-phosphotyrosine-dependent mechanism. In contrast, assessment of the chimeras in the pre-B lymphoid cell line BaF3 for FGF-1-induced mitogenesis revealed that the JM region did not play a role in this cell type. These data indicate that FGFR signaling can be regulated at the level of intracellular interactions and that signaling pathways for neurite outgrowth and mitogenesis use different regions of the FGFR.  相似文献   

17.
The biochemical mechanisms involved in neurite outgrowth in response to nerve growth factor (NGF) have yet to be completely resolved. Several recent studies have demonstrated that protein kinase activity plays a critical role in neurite outgrowth. However, little information exists about the role of protein phosphatases in the process. In the present study, okadaic acid, a phosphatase inhibitor (specific for types 2A and 1) and tumor promoter, was used to investigate the role of protein phosphatases in neurite outgrowth in PC12 cells. PC12 cells cultured in the presence of 50 ng/ml of NGF started to extend neurites after 1 day. After 3 days, 20-25% of the cells had neurites. Okadaic acid inhibited the rate of neurite outgrowth elicited by NGF with an IC50 of approximately 7 nM. This inhibition was rapidly reversed after washout of okadaic acid. Okadaic acid also enhanced the neurite degeneration of NGF-primed PC12 cells, indicating that continual phosphatase activity is required to maintain neurites. Taken together, these results reveal the presence of an okadaic acid-sensitive pathway in neurite outgrowth and imply that protein phosphatase plays a positive role in regulating the neuritogenic effects of NGE.  相似文献   

18.
Inactivation of Rho GTPases inhibited the neurite outgrowth of PC12 cells. The role of Cdc42 in neurite outgrowth was then studied by selective inhibition of Cdc42 signals. Overexpression of ACK42, Cdc42 binding domain of ACK-1, inhibited NGF-induced neurite outgrowth in PC12 cells. ACK42 also inhibited the neurite outgrowth of PC12 cells induced by constitutively activated mutant of Cdc42, but not Rac. These results suggest that Cdc42 plays an important role in mediating NGF-induced neurite outgrowth of PC12 cells. Inhibition of neurite outgrowth was also demonstrated using a cell permeable chimeric protein, penetratin-ACK42. A dominant negative mutant of Rac, RacN17 inhibited Cdc42-induced neurite outgrowth of PC12 cells suggesting that Rac acts downstream of Cdc42. Further studies, using primary-cultures of rat cerebellar granule neurons, showed that Cdc42 is also involved in the neurite outgrowth of cerebellar granule neurons. Both penetratin-ACK42 and Clostridium difficile toxin B, which inactivates all members of Rho GTPases strongly inhibited the neurite outgrowth of cerebellar granule neurons. These results show that Cdc42 plays a similar and essential role in the development of neurite outgrowth of PC12 cells and cerebellar granule neurons. These results provide evidence that Cdc42 produces signals that are essential for the neurite outgrowth of PC12 cells and cerebellar granule neurons. These authors contributed equally  相似文献   

19.
Laminin is a potent stimulator of neurite outgrowth in rat pheochromocytoma (PC12) cells. Here, we investigated the role of protein kinase C (PKC) in the mechanism of laminin-mediated neurite outgrowth in PC12 cells. Phorbol ester activators of PKC have been shown to have divergent effects on laminin-mediated neurite outgrowth. Therefore, we tested the effect of the non-phorbol PKC activator, indolactam V. At 1.0 microM indolactam V inhibited laminin-mediated neurite outgrowth by 85%. Further, the PKC inhibitor H7 blocked the inhibitory effect of indolactam V on laminin-mediated neurite outgrowth. Direct measurement of protein kinase C activity in the soluble (cytosolic) and particulate (membrane) fractions of PC12 cells showed that laminin failed to alter protein kinase C activity. These data demonstrate that PKC activation inhibits laminin-mediated neurite outgrowth and that laminin does not activate PKC in PC12 cells.  相似文献   

20.
Laminin stimulates neurite outgrowth in rat pheochromocytoma cells (PC12 cells). Here, we investigated laminin signal transduction mechanisms by adding the tyrosine kinase/phosphatase modulators, genistein, quercetin, aurin tricarboxylic acid (ATA), and vanadate to PC12 cells. At 10 microM both genistein and quercetin enhanced laminin-mediated neurite outgrowth by 1.7- and 2.3-fold, respectively, while at 10 microM, ATA inhibited laminin-mediated neurite outgrowth by 92%. Vanadate inhibited neurite outgrowth by 63% at 10 microM. Immunoblot analysis revealed four proteins of approximately 240, 22, 110, and 35 kDa, which were dephosphorylated on tyrosine residues in laminin-treated PC12 cells, but not in NIH 3T3 cells. These results demonstrate that laminin-mediated neurite outgrowth involves protein tyrosine dephosphorylation and suggests that this mechanism may have specificity to neuronal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号