首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used cell lines expressing wild-type connexin43 (Cx43) and Cx43 fused with enhanced green fluorescent protein (Cx43-EGFP) to examine mechanisms of gap junction channel gating. Previously it was suggested that each hemichannel in a cell-cell channel possesses two gates, a fast gate that closes channels to a nonzero conductance or residual state via fast (< approximately 2 ms) transitions and a slow gate that fully closes channels via slow transitions (> approximately 10 ms). Here we demonstrate that transjunctional voltage (V(j)) regulates both gates and that they are operating in series and in a contingent manner in which the state of one gate affects gating of the other. Cx43-EGFP channels lack fast V(j) gating to a residual state but show slow V(j) gating. Both Cx43 and Cx43-EGFP channels exhibit slow gating by chemical uncouplers such as CO(2) and alkanols. Chemical uncouplers do not induce obvious changes in Cx43-EGFP junctional plaques, indicating that uncoupling is not caused by dispersion or internalization of junctional plaques. Similarity of gating transitions during chemical gating and slow V(j) gating suggests that both gating mechanisms share common structural elements. Cx43/Cx43-EGFP heterotypic channels showed asymmetrical V(j) gating with fast transitions between open and residual states only when the Cx43 side was relatively negative. This result indicates that the fast V(j) gate of Cx43 hemichannels closes for relative negativity at its cytoplasmic end.  相似文献   

2.
It has been suggested that the opening of non-junctional connexin 43 (Cx43) hemichannels may play a role in cell physiology, but some workers doubt the reality of hemichannel openings. Here we show data on unitary conductance and voltage gating properties demonstrating that Cx43 hemichannels can open. Membrane depolarization > +60 mV induced single hemichannel currents in HeLa cells expressing Cx43 or Cx43 with enhanced green fluorescent protein attached to the carboxy terminal (Cx43-EGFP). The conductance of single hemichannels was approximately 220 pS, about twice that of the cell-cell channels. Cx43 and Cx43-EGFP hemichannels exhibited slow transitions (>5 ms) between closed and fully open states. Cx43 hemichannels also exhibited fast transitions (<1 ms) between the fully open state and a substate of approximately 75 pS. Similar gating was described for their respective cell-cell channels. No comparable single channel activity was detected in the parental (nontransfected cells) or HeLa cells expressing Cx43 fused at the amino terminal with EGFP (EGFP-Cx43). The latter chimera was inserted into the surface and formed plaques, but did not express functional hemichannels or cell-cell channels. These data convincingly demonstrate the opening of Cx43 hemichannels.  相似文献   

3.
Transjunctional voltage (V(j)) gating of gap junction (GJ) channels formed of connexins has been proposed to occur by gating of the component hemichannels. We took advantage of the ability of Cx46 and Cx50 to function as unapposed hemichannels to identify gating properties intrinsic to hemichannels and how they contribute to gating of GJ channels. We show that Cx46 and Cx50 hemichannels contain two distinct gating mechanisms that generate reductions in conductance for both membrane polarities. At positive voltages, gating is similar in Cx46 and Cx50 hemichannels, primarily showing increased transitioning to long-lived substates. At negative voltages, Cx46 currents deactivate completely and the underlying single hemichannels exhibit transitions to a fully closed state. In contrast, Cx50 currents do not deactivate completely at negative voltages and the underlying single hemichannels predominantly exhibit transitions to various substates. Transitions to a fully closed state occur, but are infrequent. In the respective GJ channels, both forms of gating contribute to the reduction in conductance by V(j). However, examination of gating of mutant hemichannels and GJ channels in which the Asp at position 3 was replaced with Asn (D3N) showed that the positive hemichannel gate predominantly closes Cx50 GJs, whereas the negative hemichannel gate predominantly closes Cx46 GJs in response to V(j). We also report, for the first time, single Cx50 hemichannels in oocytes to be inwardly rectifying, high conductance channels (gamma = 470 pS). The antimalarial drug mefloquine, which selectively blocks Cx50 and not Cx46 GJs, shows the same selectivity in Cx50 and Cx46 hemichannels indicating that the actions of such uncoupling agents, like voltage gating, are intrinsic hemichannel properties.  相似文献   

4.
5.
It has been suggested that the opening of non-junctional connexin 43 (Cx43) hemichannels may play a role in cell physiology, but some workers doubt the reality of hemichannel openings. Here we show data on unitary conductance and voltage gating properties demonstrating that Cx43 hemichannels can open. Membrane depolarization > +60 mV induced single hemichannel currents in HeLa cells expressing Cx43 or Cx43 with enhanced green fluorescent protein attached to the carboxy terminal (Cx43-EGFP). The conductance of single hemichannels was ~220 pS, about twice that of the cell-cell channels. Cx43 and Cx43-EGFP hemichannels exhibited slow transitions (>5 ms) between closed and fully open states. Cx43 hemichannels also exhibited fast transitions (<1 ms) between the fully open state and a substate of ~75 pS. Similar gating was described for their respective cell-cell channels. No comparable single channel activity was detected in the parental (nontransfected cells) or HeLa cells expressing Cx43 fused at the amino terminal with EGFP (EGFP-Cx43). The latter chimera was inserted into the surface and formed plaques, but did not express functional hemichannels or cell-cell channels. These data convincingly demonstrate the opening of Cx43 hemichannels.  相似文献   

6.
A Revilla  C Castro    L C Barrio 《Biophysical journal》1999,77(3):1374-1383
Most gap junction channels are sensitive to the voltage difference between the two cellular interiors, termed the transjunctional voltage (V(j)). In several junctions, the conductance transitions induced by V(j) show more than one kinetic component. To elucidate the structural basis of the fast and slow components that characterize the V(j )dependence of connexin-32 (Cx32) and connexin-43 (Cx43) junctions, we created deletions of both connexins, where most of the carboxy-terminal (CT) domain was removed. The wild-type and "tailless" mutants were expressed in paired Xenopus oocytes, and the macroscopic gating properties were analyzed using the dual voltage clamp technique. Truncation of the CT domain of Cx32 and Cx43 abolished the fast mechanism of conductance transitions and induced novel gating properties largely attributable to the slow mechanism of gating. The formation of hybrid junctions comprising wild-type and truncated hemichannels allowed us to infer that the fast and slow components of gating reside in each hemichannel and that both gates close at a negative V(j) on the cytoplasmic side. Thus we conclude that the two kinetic components of V(j)-sensitive conductance are a result of the action of two different gating mechanisms. They constitute separate structures in the Cx32 and Cx43 molecules, the CT domain being an integral part of fast V(j) gating.  相似文献   

7.
Chemical gating of gap junction channels; roles of calcium, pH and calmodulin   总被引:11,自引:0,他引:11  
Both Ca(2+) and H(+) play a role in chemical gating of gap junction channels, but, with the possible exception of Cx46 hemichannels, neither of them is likely to induce gating by a direct interaction with connexins. Some evidence suggests that low pH(i) affects gating via an increase in [Ca(2+)](i); in turn, Ca(2+) is likely to induce gating by activation of CaM, which may act directly as a gating particle. The effective concentrations of both Ca(2+) and H(+) vary depending on cell type, type of connexin expressed and procedure employed to increase their cytosolic concentrations; however, pH(i) as high as 7.2 and [Ca(2+)](i) as low as 150 nM or lower have been reported to be effective in some cells. Some data suggest that Ca(2+) and H(+) affect gating by acting synergistically, but other data do not support synergism. Chemical gating follows the activation of a slow gate distinct from the fast V(j)-sensitive gate, and there is evidence that the chemical/slow gate is V(j)-sensitive. At the single channel level, the chemical/slow gate closes the channels slowly and completely, whereas the fast V(j) gate closes the channels rapidly and incompletely. At least three molecular models of channel gating have been proposed, but all of them are mostly based on circumstantial evidence.  相似文献   

8.
Gap-junction (GJ) channels formed of connexin (Cx) proteins provide a direct pathway for electrical and metabolic cell-cell interaction. Each hemichannel in the GJ channel contains fast and slow gates that are sensitive to transjunctional voltage (Vj). We developed a stochastic 16-state model (S16SM) that details the operation of two fast and two slow gates in series to describe the gating properties of homotypic and heterotypic GJ channels. The operation of each gate depends on the fraction of Vj that falls across the gate (VG), which varies depending on the states of three other gates in series, as well as on parameters of the fast and slow gates characterizing 1), the steepness of each gate's open probability on VG; 2), the voltage at which the open probability of each gate equals 0.5; 3), the gating polarity; and 4), the unitary conductances of the gates and their rectification depending on VG. S16SM allows for the simulation of junctional current dynamics and the dependence of steady-state junctional conductance (gj,ss) on Vj. We combined global coordinate optimization algorithms with S16SM to evaluate the gating parameters of fast and slow gates from experimentally measured gj,ss-Vj dependencies in cells expressing different Cx isoforms and forming homotypic and/or heterotypic GJ channels.  相似文献   

9.
The functional diversity of gap junction intercellular channels arising from the large number of connexin isoforms is significantly increased by heterotypic interactions between members of this family. This is particularly evident in the rectifying behavior of Cx26/Cx32 heterotypic channels (. Proc. Natl. Acad. Sci. USA. 88:8410-8414). The channel properties responsible for producing the rectifying current observed for Cx26/Cx32 heterotypic gap junction channels were determined in transfected mouse neuroblastoma 2A (N2A) cells. Transfectants revealed maximum unitary conductances (gamma(j)) of 135 pS for Cx26 and 53 pS for Cx32 homotypic channels in 120 mM KCl. Anionic substitution of glutamate for Cl indicated that Cx26 channels favored cations by 2.6:1, whereas Cx32 channels were relatively nonselective with respect to charge. In Cx26/Cx32 heterotypic cell pairs, the macroscopic fast rectification of the current-voltage relationship was fully explained at the single-channel level by a rectifying gamma(j) that increased by a factor of 2.9 as the transjunctional voltage (V(j)) changed from -100 to +100 mV with the Cx26 cell as the positive pole. A model of electrodiffusion of ions through the gap junction pore based on Nernst-Planck equations for ion concentrations and the Poisson equation for the electrical potential within the junction is developed. Selectivity characteristics are ascribed to each hemichannel based on either pore features (treated as uniform along the length of the hemichannel) or entrance effects unique to each connexin. Both analytical GHK approximations and full numerical solutions predict rectifying characteristics for Cx32/Cx26 heterotypic channels, although not to the full extent seen empirically. The model predicts that asymmetries in the conductance/permeability properties of the hemichannels (also cast as Donnan potentials) will produce either an accumulation or a depletion of ions within the channel, depending on voltage polarity, that will result in rectification.  相似文献   

10.
Channels formed by connexins display two distinct types of voltage-dependent gating, termed V(j)- or fast-gating and loop- or slow-gating. Recent studies, using metal bridge formation and chemical cross-linking have identified a region within the channel pore that contributes to the formation of the loop-gate permeability barrier. The conformational changes are remarkably large, reducing the channel pore diameter from 15 to 20? to less than 4?. Surprisingly, the largest conformational change occurs in the most stable region of the channel pore, the 3(10) or parahelix formed by amino acids in the 42-51 segment. The data provide a set of positional constraints that can be used to model the structure of the loop-gate closed state. Less is known about the conformation of the V(j)-gate closed state. There appear to be two different mechanisms; one in which conformational changes in channel structure are linked to a voltage sensor contained in the N-terminus of Cx26 and Cx32 and a second in which the C-terminus of Cx43 and Cx40 may act either as a gating particle to block the channel pore or alternatively to stabilize the closed state. The later mechanism utilizes the same domains as implicated in effecting pH gating of Cx43 channels. It is unclear if the two V(j)-gating mechanisms are related or if they represent different gating mechanisms that operate separately in different subsets of connexin channels. A model of the V(j)-closed state of Cx26 hemichannel that is based on the X-ray structure of Cx26 and electron crystallographic structures of a Cx26 mutation suggests that the permeability barrier for V(j)-gating is formed exclusively by the N-terminus, but recent information suggests that this conformation may not represent a voltage-closed state. Closed state models are considered from a thermodynamic perspective based on information from the 3.5? Cx26 crystal structure and molecular dynamics (MD) simulations. The applications of computational and experimental methods to define the path of allosteric molecular transitions that link the open and closed states are discussed. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.  相似文献   

11.
Gap junction channel gating   总被引:8,自引:0,他引:8  
Over the last two decades, the view of gap junction (GJ) channel gating has changed from one with GJs having a single transjunctional voltage-sensitive (V(j)-sensitive) gating mechanism to one with each hemichannel of a formed GJ channel, as well as unapposed hemichannels, containing two, molecularly distinct gating mechanisms. These mechanisms are termed fast gating and slow or 'loop' gating. It appears that the fast gating mechanism is solely sensitive to V(j) and induces fast gating transitions between the open state and a particular substate, termed the residual conductance state. The slow gating mechanism is also sensitive to V(j), but there is evidence that this gate may mediate gating by transmembrane voltage (V(m)), intracellular Ca(2+) and pH, chemical uncouplers and GJ channel opening during de novo channel formation. A distinguishing feature of the slow gate is that the gating transitions appear to be slow, consisting of a series of transient substates en route to opening and closing. Published reports suggest that both sensorial and gating elements of the fast gating mechanism are formed by transmembrane and cytoplamic components of connexins among which the N terminus is most essential and which determines gating polarity. We propose that the gating element of the slow gating mechanism is located closer to the central region of the channel pore and serves as a 'common' gate linked to several sensing elements that are responsive to different factors and located in different regions of the channel.  相似文献   

12.
Many cardiovascular cells coexpress multiple connexins (Cx), leading to the potential formation of mixed (heteromeric) gap junction hemichannels whose biophysical properties may differ from homomeric channels containing only one connexin type. We examined the potential interaction of connexin Cx43 and Cx40 in HeLa cells sequentially stably transfected with these two connexins. Immunoblots verified the production of comparable amounts of both connexins, cross-linking showed that both connexins formed oligomers, and immunofluorescence showed extensive colocalization. Moreover, Cx40 copurified with (His)(6)-tagged Cx43 by affinity chromatography of detergent-solubilized connexons, demonstrating the presence of both connexins in some hemichannels. The dual whole cell patch-clamp method was used to compare the gating properties of gap junctions in HeLa Cx43/Cx40 cells with homotypic (Cx40-Cx40 and Cx43-Cx43) and heterotypic (Cx40-Cx43) gap junctions. Many of the observed single channel conductances resembled those of homotypic or heterotypic channels. The steady-state junctional conductance (g(j,ss)) in coexpressing cell pairs showed a reduced sensitivity to the voltage between cells (V(j)) compared with homotypic gap junctions and/or an asymmetrical V(j) dependence reminiscent of heterotypic gap junctions. These gating properties could be fit using a combination of homotypic and heterotypic channel properties. Thus, whereas our biochemical evidence suggests that Cx40 and Cx43 form heteromeric connexons, we conclude that they are functionally insignificant with regard to voltage-dependent gating.  相似文献   

13.
The chemical gating of single-gap junction channels was studied by the dual whole-cell voltage-clamp method in HeLa cells transfected with connexin43 (HeLa43) and in fibroblasts from sciatic nerves. Junctional current (Ij), single-channel conductance, and Ij kinetics were studied in cell pairs during CO2 uncoupling and recoupling at small transjunctional voltages (Vj < 35 mV: Vj gating absent) and at high Vj (Vj > 40 mV: Vj gating strongly activated). In the absence of Vj gating, CO2 exclusively caused Ij slow transitions from open to closed channel states (mean transition time: approximately 10 ms), corresponding to a single-channel conductance of approximately 120 pS. At Vj > 40 mV, Vj gating induced fast Ij flickering between open, gamma j(main state), and residual, gamma j(residual), states (transition time: approximately 2 ms). The ratio gamma j(main state)/gamma j(residual) was approximately 4-5. No obvious correlation between Ij fast flickering and CO2 treatment was noticed. At high Vj, in addition to slow Ij transitions between open and closed states, CO2 induced slow transitions between residual and closed states. During recoupling, each channel reopened by a slow transition (mean transition time: approximately 10 ms) from closed to open state (rarely from closed to residual state). Fast Ij flickering between open and residual states followed. The data are in agreement with the hypothesis that gap junction channels possess two gating mechanisms, and indicate that CO2 induces channel gating exclusively by the slow gating mechanism.  相似文献   

14.
Connexins (Cxs) 40, 43, and 45 are expressed in many different tissues, but most abundantly in the heart, blood vessels, and the nervous system. We examined formation and gating properties of heterotypic gap junction (GJ) channels assembled between cells expressing wild-type Cx40, Cx43, or Cx45 and their fusion forms tagged with color variants of green fluorescent protein. We show that these Cxs, with exception of Cxs 40 and 43, are compatible to form functional heterotypic GJ channels. Cx40 and Cx43 hemichannels are unable or effectively impaired in their ability to dock and/or assemble into junctional plaques. When cells expressing Cx45 contacted those expressing Cx40 or Cx43 they readily formed junctional plaques with cell-cell coupling characterized by asymmetric junctional conductance dependence on transjunctional voltage, V(j). Cx40/Cx45 heterotypic GJ channels preferentially exhibit V(j)-dependent gating transitions between open and residual states with a conductance of approximately 42 pS; transitions between fully open and closed states with conductance of approximately 52 pS in magnitude occur at substantially lower ( approximately 10-fold) frequency. Cx40/Cx45 junctions demonstrate electrical signal transfer asymmetry that can be modulated between unidirectional and bidirectional by small changes in the difference between holding potentials of the coupled cells. Furthermore, both fast and slow gating mechanisms of Cx40 exhibit a negative gating polarity.  相似文献   

15.
HeLa cells expressing wild-type connexin43, connexin40 or connexin45 and connexins fused with a V5/6-His tag to the carboxyl terminus (CT) domain (Cx43-tag, Cx40-tag, Cx45-tag) were used to study connexin expression and the electrical properties of gap junction channels. Immunoblots and immunolabeling indicated that tagged connexins are synthesized and targeted to gap junctions in a similar manner to their wild-type counterparts. Voltage-clamp experiments on cell pairs revealed that tagged connexins form functional channels. Comparison of multichannel and single-channel conductances indicates that tagging reduces the number of operational channels, implying interference with hemichannel trafficking, docking and/or channel opening. Tagging provoked connexin-specific effects on multichannel and single-channel properties. The Cx43-tag was most affected and the Cx45-tag, least. The modifications included (1) V j-sensitive gating of I j (V j, gap junction voltage; I j, gap junction current), (2) contribution and (3) kinetics of I j deactivation and (4) single-channel conductance. The first three reflect alterations of fast V j gating. Hence, they may be caused by structural and/or electrical changes on the CT that interact with domains of the amino terminus and cytoplasmic loop. The fourth reflects alterations of the ion-conducting pathway. Conceivably, mutations at sites remote from the channel pore, e.g., 6-His-tagged CT, affect protein conformation and thus modify channel properties indirectly. Hence, V5/6-His tagging of connexins is a useful tool for expression studies in vivo. However, it should not be ignored that it introduces connexin-dependent changes in both expression level and electrophysiological properties.  相似文献   

16.
Human HeLa cells expressing mouse connexin30 were used to study the electrical properties of gap junction channel substates. Experiments were performed on cell pairs using a dual voltage-clamp method. Single-channel currents revealed discrete levels attributable to a main state, a residual state, and five substates interposed, suggesting the operation of six subgates provided by the six connexins of a gap junction hemichannel. Substate conductances, gamma(j,substate), were unevenly distributed between the main-state and the residual-state conductance (gamma(j,main state) = 141 pS, gamma(j,residual state) = 21 pS). Activation of the first subgate reduced the channel conductance by approximately 30%, and activation of subsequent subgates resulted in conductance decrements of 10-15% each. Current transitions between the states were fast (<2 ms). Substate events were usually demarcated by transitions from and back to the main state; transitions among substates were rare. Hence, subgates are recruited simultaneously rather than sequentially. The incidence of substate events was larger at larger gradients of V(j). Frequency and duration of substate events increased with increasing number of synchronously activated subgates. Our mathematical model, which describes the operation of gap junction channels, was expanded to include channel substates. Based on the established V(j)-sensitivity of gamma(j,main state) and gamma(j,residual state), the simulation yielded unique functions gamma(j,substate) = f(V(j)) for each substate. Hence, the spacing of subconductance levels between the channel main state and residual state were uneven and characteristic for each V(j).  相似文献   

17.
Cx45 channel sensitivity to CO(2), transjunctional voltage (V(j)) and inhibition of calmodulin (CaM) expression was tested in oocytes by dual voltage-clamp. Cx45 channels are very sensitive to V(j) and close preferentially by the slow gate, likely the same as the chemical gate. With CO(2)-induced drop in junctional conductance (G(j)), the speed of V(j)-dependent inactivation of junctional current (I(j)) and V(j) sensitivity increased. With 40 mV V(j), the tau of single exponential I(j) decay reversibly decreased by approximately 40% with CO(2), and G(j steady state)/G(j peak) decreased multiphasically, indicating that kinetics and V(j) sensitivity of chemical/slow-V(j) gating are altered by changes in [H(+)](i) and/or [Ca(2+)](i). With 15 min exposure to CO(2), G(j) dropped to 0% in controls and by approximately 17% following CaM expression inhibition; similarly, V(j) sensitivity decreased significantly. This indicates that the speed and sensitivity of V(j)-dependent inactivation of Cx45 channels are increased by CO(2), and that CaM plays a role in gating. Cx32 channels behaved similarly, but the drop in both G(j steady state)/G(j peak) and tau with CO(2) matched more closely that of G(j peak). In contrast, sensitivity and speed of V(j) gating of Cx40 and Cx26 channels decreased, rather than increased, with CO(2) application.  相似文献   

18.
Previous studies have suggested that the aspartic acid residue (D) at the third position is critical in determining the voltage polarity of fast V(j)-gating of Cx50 channels. To test whether another negatively charged residue (a glutamic acid residue, E) could fulfill the role of the D3 residue, we generated the mutant Cx50D3E. V(j)-dependent gating properties of this mutant channel were characterized by double-patch-clamp recordings in N2A cells. Macroscopically, the D3E substitution reduced the residual conductance (G(min)) to near zero and outwardly shifted the half-inactivation voltage (V(0)), which is a result of both a reduced aggregate gating charge (z) and a reduced free-energy difference between the open and closed states. Single Cx50D3E gap junction channels showed reduced unitary conductance (γ(j)) of the main open state, reduced open dwell time at ±40 mV, and absence of a long-lived substate. In contrast, a G8E substitution tested to compare the effects of the E residue at the third and eighth positions did not modify the V(j)-dependent gating profile or γ(j). In summary, this study is the first that we know of to suggest that the D3 residue plays an essential role, in addition to serving as a negative-charge provider, as a critical determinant of the V(j)-dependent gating sensitivity, open-closed stability, and unitary conductance of Cx50 gap junction channels.  相似文献   

19.
The fully open state of heterotypic gap junction channels formed by pairing cells expressing connexin 32 (Cx32) with those expressing connexin 26 (Cx26) rectifies in a way that cannot be predicted from the current-voltage (I-V) relation of either homotypic channel. Using a molecular genetic analysis, we demonstrate that charged amino acids positioned in the amino terminus (M1 and D2) and first extracellular loop (E42) are major determinants of the current-voltage relation of the fully open state of homotypic and heterotypic channels formed by Cx26 and Cx32. The observed I-V relations of wild-type and mutant channels were closely approximated by those obtained with the electrodiffusive model of Chen and Eisenberg (Chen, D., and R. Eisenberg. 1993. Biophys. J. 64:1405-1421), which solves the Poisson-Nernst-Plank equations in one dimension using charge distribution models inferred from the molecular analyses. The rectification of the Cx32/Cx26 heterotypic channel results from the asymmetry in the number and position of charged residues. The model required the incorporation of a partial charge located near the channel surface to approximate the linear I-V relation observed for the Cx32*Cx26E1 homotypic channel. The best candidate amino acid providing this partial charge is the conserved tryptophan residue (W3). Incorporation of the partial charge of residue W3 and the negative charge of the Cx32E41 residue into the charge profile used in the Poisson-Nernst-Plank model of homotypic Cx32 and heterotypic Cx26/Cx32 channels resulted in I-V relations that closely resembled the observed I-V relations of these channels. We further demonstrate that some channel substates rectify. We suggest that the conformational changes associated with transjunctional voltage (V(j))-dependent gating to these substates involves a narrowing of the cytoplasmic entry of the channel that increases the electrostatic effect of charges in the amino terminus. The rectification that is observed in the Cx32/Cx26 heterotypic channel is similar although less steep than that reported for some rectifying electrical synapses. We propose that a similar electrostatic mechanism, which results in rectification through the open and substates of heterotypic channels, is sufficient to explain the properties of steeply rectifying electrical synapses.  相似文献   

20.
In mammalian tissues, connexin 43 (Cx43) is the most prominent member of the connexin family. In a single lipid bilayer, six connexin subunits assemble into a hemichannel (connexon). Direct communication of apposing cells is realized by two adjacent hemichannels, which can form gap junction channels. Here, we established an expression system in Pichia pastoris to recombinantly produce and purify Cx43 as well as Cx43 fused to green fluorescent protein (GFP). Proteins were isolated from crude cell membrane fractions via affinity chromatography. Cx43 and Cx43-GFP hemichannels were reconstituted in giant unilamellar vesicles as proven by fluorescence microscopy, and their electrophysiological behavior was analyzed on the single channel level by planar patch clamping. Cx43 and Cx43-GFP both showed an ohmic behavior and a voltage-dependent open probability. Cx43 hemichannels exhibited one major mean conductance of 224 ± 26 picosiemens (pS). In addition, a subconductance state at 124 ± 5 pS was identified. In contrast, the analysis of Cx43-GFP single channels revealed 10 distinct conductance states in the range of 15 to 250 pS, with a larger open probability at 0 mV as compared with Cx43, which suggests that intermolecular interactions between the GFP molecules alter the electrophysiology of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号