首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Bertrand R  Derancourt J  Kassab R 《Biochemistry》2000,39(47):14626-14637
We have synthesized the luminescent and fluorescent lanthanide chelate S-(2-nitro-5-thiobenzoic acid)cysteaminyldiethylenetriaminepentaacetate-5-[(2-aminoethyl)am ino ]naphthalene-1-sulfonic acid as well as the fluorescent analogue S-(2-nitro-5-thiobenzoic acid)cysteaminyl-5-carboxyfluorescein using the procedure we recently described [Bertrand, R., Capony, J.-P., Derancourt, J., and Kassab, R. (1999) Biochemistry 38, 11914-11925]. Both mixed disulfides react with the skeletal myosin motor domain (S-1) as actin site-directed agents and label exclusively and stoichiometrically Cys 540 in the hydrophobic strong actin binding helix-loop-helix motif, causing only a 1.9-2.4-fold decrease in the V(max) for acto-S-1 ATPase. The covalently attached cysteaminyl probe side chain spans maximally 17 and 8 A, respectively, and the fluorophores have different polarity, volume, and flexibility. Thus, they may provide complementary spectroscopic information on the environmental properties of this critical actin binding region. Here, we have analyzed by extrinsic fluorescence spectroscopy S-1 derivatized with the fluorescein label or with the Tb(3+) or Eu(3+) chelate of the other label to assess the conformational transitions precisely occurring at this site upon interaction with F-actin, nucleotides, or phosphate analogues. For either label, specific spectral changes of significant amplitude were obtained, identifying at least two major structural states. One was mediated by rigor binding of F-actin in the absence or presence of MgADP. It was abolished by MgATP, and it was not produced by the binding of nonpolymerizable G-actin. A modeling of the corresponding changes in the intensity and lambda(max) of the fluorescence emission spectra, achieved using the fluorescent adducts of 2-mercaptoethanol in varying concentrations of dimethylformamide, illustrates the predicted apolar nature of the strong acto-S-1 interface. A second state was promoted by the binding of ATP, AMP-PNP, ADP.AlF4, ADP. BeFx, or PP(i). It should be prevalent in the weak acto-S-1 binding complexes. The accompanying fluorescence intensity reduction, observed with each label, in both the absence and presence of F-actin, would result from a specific modification by these ligands of the probe orientation and/or solvent accessibility as suggested by acrylamide quenching experiments. It could represent the spectral manifestation of the predicted allosteric linkage from the ATPase site to the strong actin binding site of S-1 that modulates the acto-S-1 affinity. Our study offers the basis necessary for further detailed spectroscopic investigations on the conformational dynamics in solution of the stereospecific and hydrophobic actin binding motif during the skeletal cross-bridge cycle.  相似文献   

2.
The synthetic heptapeptide, Ile-Arg-Ile-Cys-Arg-Lsy-Gly-ethoxy, an analog of one of the actin binding sites on myosin head (S-site) (Suzuki, R., Nishi, N., Tokura, S., and Morita, F. (1987) J. Biol. Chem. 262, 11410-11412) was found to completely inhibit the acto-S-1 (myosin subfragment 1) ATPase activity. The effect of the heptapeptide on the binding ability of S-1 for F-actin was determined by an ultracentrifugal separation. Results indicated that the heptapeptide scarcely dissociated the acto-S-1 complex during the ATPase reaction. Consistent results were obtained from the acto-S-1 ATPase activities determined as a function of S-1 concentrations in the absence or presence of the heptapeptide at a fixed F-actin concentration. The heptapeptide reduced the maximum acto-S-1 ATPase activity without affecting the apparent dissociation constant of the acto-S-1 complex. The heptapeptide bound by a site on actin complementary to the S-site probably inhibits the activation of S-1 ATPase by F-actin. These results suggest that S-1 ATPase is necessary to rebind transiently with F-actin at the S-site in order to be activated by F-actin. This is consistent with the activation mechanism proposed assuming the two actin-binding sites on S-1 ATPase (Katoh, T., and Morita F. (1984) J. Biochem. (Tokyo) 96, 1223-1230).  相似文献   

3.
The main purpose of this study was to determine whether potentiation of acto-S-1 ATPase activity (activity higher than that obtained with tropomyosin-free actin) could be caused by nucleotide-containing acto-S-1 complexes. In addition, we wanted to know whether these complexes also have a positive cooperative effect on their own apparent binding constant under conditions where nucleotide-free acto-S-1 complexes cause potentiation of ATPase activity. Using calcium-saturated troponin-tropomyosin actin filaments, we observed potentiation of ATPase activity in the presence of 5.0 mM magnesium 5'-adenylyl imidodiphosphate (MgAMPPNP) and calculated that the ability of acto-S-1-AMPPNP complexes to cause potentiation must have been very similar to that of nucleotide-free acto-S-1 complexes. In extension of earlier studies, potentiated acto-S-1 ATPase activity was characterized by an increase in Vmax and, as observed before, a lowering of the apparent Km for subfragment 1 (S-1). Under conditions similar to those that produce the potentiation of acto-S-1 ATPase activity, the apparent actin binding constant of nucleotide-free S-1 was increased about 3-5 fold while the apparent binding constant of AMPPNP to actin-bound S-1 was reduced to (2.5-10) x 10(2) M-1 compared to that of about (1-5) x 10(3) M-1 for S-1 bound to tropomyosin-free actin. Under the same conditions, the apparent binding constant of S-1-AMPPNP to actin was not increased. We suggest that a potentiated state of the tropomyosin actin filament is produced by the cooperative action of acto-S-1 or acto-S-1-AMPPNP complexes. The potentiated state is characterized by an increase in the Vmax of the acto-S-1 ATPase activity, increased binding constants for S-1 and S-1-ADP, and increased binding of tropomyosin to actin.  相似文献   

4.
《The Journal of cell biology》1983,96(6):1761-1765
Tomato activation inhibiting protein (AIP) is a molecule of an apparent molecular weight of 72,000 that co-purifies with tomato actin. In an assay system containing rabbit skeletal muscle F-actin and rabbit skeletal muscle myosin subfragment-1 (myosin S-1), tomato AIP dissociated the acto-S-1 complex in the absence of Mg+2ATP and inhibited the ability of F-actin to activate the low ionic strength Mg+2ATPase activity of myosin S-1. At a molar ratio of 5 actin to 1 AIP, a 50% inhibition of the actin-activated Mg+2ATPase activity of myosin S-1 was observed. The inhibition can be reversed by raising the calcium ion concentration to 1 X 10(-5) M. The AIP had no effect on the basal low ionic strength Mg+2ATPase activity of myosin S-1 in the absence of actin. The protein did not bind directly to actin nor did it cause depolymerization or aggregation of F-actin but appeared, instead, to interact with the actin binding site on myosin S-1. Since AIP is a potent, reversible inhibitor of the rabbit acto-S-1 ATPase activity, it is postulated that it may be responsible for the low levels of actin activation exhibited by tomato F-actin fractions containing the AIP.  相似文献   

5.
Limited subtilisin digestion of myosin subfragment 1 (S-1) was carried out, varying the enzyme: substrate weight ratio from 1:200 to 1:10, and changes in structure, and in the MgATPase activities of S-1 and acto-S-1 after proteolysis, were followed. When the starting material--tryptically-cleaved S-1 (27 kDa-50 kDa-20 kDa) ("split S-1")--was subjected to further subtilisin digestion, it was found that with increasing enzyme concentration, the 50 kDa fragment degraded into an 18 kDa fragment via a 33 kDa peptide (50----33----18 kDa), which was not cross-linked with F-actin. On the other hand, the 27 and 20 kDa fragments were rather stable at lower subtilisin concentrations and started to degrade only at higher subtilisin concentrations. These degradations lowered the MgATPase activities of S-1 and acto-S-1. The losses of MgATPase activities of S-1 and of acto-S-1 were mainly due to the degradations of the 27 and 20 kDa fragments, respectively. Addition of EDTA did not affect the subtilisin cleavage pattern of split S-1 but the breakdown of the 50 kDa fragment was extremely depressed, suggesting that some conformational change of the 50 kDa fragment is induced by the binding of divalent cation. The binding of MgADP to split S-1 accelerated the degradation of the 27 kDa fragment and produced a new cut in the 27 kDa fragment (27----20 kDa), resulting in a further loss of the S-1 MgATPase activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
F-Actin was partially cross-linked to myosin subfragment-1 (S-1) at various molar ratios (r = S-1/actin) with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. The cross-linked acto-S-1 ATPase showed so called "super-activation," Vx. S-1 was added further to the cross-linked acto-S-1 and the ATPase activity, Vy, was measured. Since the added S-1 can interact only with the bare actin protomers within the cross-linked actin filament, the difference, delta V = Vy - Vx - Vs (where Vs is the ATPase activity of the additional S-1 alone), can indicate the state of the bare actin protomers while the cross-linked acto-S-1 is hydrolyzing ATP. With increasing r, delta V decreased much more rapidly than delta Vo(1 - r) (where delta Vo is delta V at r = 0) and reached a minimum around r = 0.15. As r increased further, delta V approached the level of delta Vo(1 - r). When SH1/SH2-blocked S-1 was cross-linked to F-actin, delta V decreased according to delta Vo(1 - r). Therefore, the large reduction of delta V, observed when intact S-1 was cross-linked, was coupled to the high ATPase activity of the cross-linked acto-S-1. Combining these data with other kinetic data, we could deduce that structural distortion in a cross-linked actin induced by the ATPase reaction of the S-1 partner propagated over several bare actin protomers along the filament and reduced their affinity for the S-1-ADP-Pi complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
A synthetic peptide corresponding to a sequence 632-642 (S632-642) on the myosin subfragment 1 (S-1) heavy chain and spanning the 50/20 kDa junction of S-1 binds to actin in the presence and absence of S-1. The binding of 1.0 mole of peptide per actin causes almost complete inhibition of actomyosin ATPase activity and only partial inhibition of S-1 binding to actin. The binding of S632-642 to the N-terminal segment of actin is supported by competitive carbodiimide cross-linking of S-1 and S632-642 to actin and the catalytic properties of cross-linked acto-S-1 and actin-peptide complexes. These results show that the sequence 632-642 on S-1 is an autonomous binding site for actin and confirm the catalytic importance of its interactions with the N-terminal segment of actin.  相似文献   

8.
Limited tryptic proteolysis of S-1 (A1+A2) or S-1 (A1) and S-1 (A2) converts the heavy chain into 3 fragments of Mr = 27K-50K-20K. As a result the actin-stimulated ATPase activity of the fragmented heads is lost. When the digestion is performed using the complex F-actin-S-1, this ATPase activity is completely preserved and the heavy chain is split into only 2 fragments of Mr = 27K–70K. The specific protection by F-actin of the -COOH terminal region of the heavy chain at the joint 50K-20K against tryptic cleavage and loss of activity suggests that this part of the head can be involved in actin binding site and/or Mg2+ ATP hydrolysis by the acto-S-1 complex.  相似文献   

9.
The oxygen exchange occurring during the acto-S-1 ATPase reaction was analyzed based on the distribution of 18O-labeled species of P1 using [gamma-18O]ATP as a substrate. Evidence was found for the two-route mechanism in which ATP is hydrolyzed via the dissociation of acto-S-1 into F-actin and the S-1-phosphate-ADP complex, S-1PADP, and their recombination, and also hydrolyzed without the dissociation of acto-S-1 (Inoue, A., Shigekawa, M., & Tonomura, Y. (1973) J. Biochem. 74, 923-934; Inoue, A., Ikebe, M., & Tonomura, Y. (1980) J. Biochem. 88, 1663-1677). When ATP was mainly hydrolyzed without the dissociation of acto-S-1, the extent of oxygen exchange was low. When ATP was hydrolyzed by both routes, the distribution of product P1 with 3, 2, 1, and 0 18O atoms showed a mixture resulting from low and high oxygen exchange. The rate of ATPase without the dissociation of acto-S-1 can be estimated from the rate of the overall reaction (v), the rate of recombination of S-1PADP with F-actin (vr), and the extent of dissociation of acto-S-1 (a). The distribution of the P1 species measured was almost equal to that calculated from the ratio of ATP hydrolysis via the two pathways as avr and v-avr, respectively. This result indicates that the rates of the dissociation of acto-S-1PADP into S-1PADP and F-actin and their recombination are much lower than the rate of decomposition of the acto-S-1PADP complex into acto-S-1 + ADP + Pi.  相似文献   

10.
G DasGupta  E Reisler 《Biochemistry》1992,31(6):1836-1841
The binding of myosin subfragment 1 (S-1) to actin in the presence of ATP and the acto-S-1 ATPase activities of acto-S-1 complexes were determined at 5 degrees C under conditions of partial saturation of actin, up to 90%, by antibodies against the first seven N-terminal residues on actin. The antibodies [Fab(1-7)] inhibited strongly the acto-S-1 ATPase and the binding of S-1 to actin in the presence of ATP at low concentrations of S-1, up to 25 microM. Further increases in S-1 concentration resulted in a partial and cooperative recovery of both the binding of S-1 to actin and the acto-S-1 ATPase while causing only limited displacement of Fab(1-7) from actin. The extent to which the binding and the ATPase activity were recovered depended on the saturation of actin by Fab(1-7). The combined amounts of S-1 and Fab binding to actin suggested that the activation of the myosin ATPase activity was due to actin free of Fab. Examination of the acto-S-1 ATPase activities as a function of S-1 bound to actin at different levels of actin saturation by Fab(1-7) revealed that the antibodies inhibited the activation of the bound myosin. Thus, the binding of antibodies to the N-terminal segment of actin can act to inhibit both the binding of S-1 to actin in the presence of ATP and a catalytic step in ATP hydrolysis by actomyosin. The implications of these results to the regulation of actomyosin interaction are discussed.  相似文献   

11.
The rates of the elementary steps of the actomyosin ATPase reaction were measured using the myosin subfragment-1 of porcine left ventricular muscle. The results could be explained only by the two-route mechanism for actomyosin ATPase (Inoue, Shigekawa, & Tonomura (1973) J. Biochem. 74, 923-934), in which ATP is hydrolyzed via routes with or without accompanying dissociation of actomyosin. The dependence on the F-actin concentration of the rate of the acto-S-1 ATPase reaction in the steady state was measured in 5 mM KCl at 20 degrees C. The maximal rate, Vmax, and the dissociation constant for F-actin of the ATPase, Kd, were 3.0 s-1 and 2.2 mg/ml, respectively. The Kd value was almost the same as that determined from the extent of binding of S-1 with F-actin during the ATPase reaction. The rate of recombination of the S-1-phosphate-ADP complex, S-1ADPP, with F-actin, vr, was lower than that of the ATPase reaction in the steady state. Thus, ATP is mainly hydrolyzed without accompanying dissociation of acto-S-1 into S-1ADPP and F-actin. In the cardiac acto-S-1 ATPase reaction, the rate of the ATPase reaction in the steady state and that of recombination of S-1ADPP with F-actin were about 1/5 those of the skeletal acto-S-1 ATPase reaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
R Bertrand  J Derancourt  R Kassab 《Biochemistry》1992,31(48):12219-12226
We describe, for the first time, the F-actin-promoted changes in the spatial relationship of strands in the NH2-terminal 25-kDa and COOH-terminal 20-kDa heavy chain fragments of the skeletal myosin subfragment 1 (S-1), detected by their exclusive chemical cross-linking in the rigor F-actin-S-1 complex with m-maleimidobenzoic acid N-hydroxysuccinimide ester (MBS). Quantitative electrophoretic analysis of the reaction products showed extensive conversion of the 95-kDa heavy chain of the actin-bound S-1 into a new species with an apparent mass of 135 kDa (yield = 50-60%), whereas the heavy chain mobility remained unaffected when actin was omitted. The 135-kDa entity retained the fluorescence of AEDANS-S-1 but not of AEDANS-actin, indicating that it was not a cross-linked acto-heavy chain adduct. Its extent of production depended markedly on the S-1: actin molar ratio and was maximum near a ratio of 1:4. The MBS treatment of acto-S-1 led also to some covalent actin-actin oligomers which could be suppressed by using trypsin-truncated F-actin lacking Cys-374, without altering the generation of the 135-kDa heavy chain derivative.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The myosin SH2-50-kilodalton fragment cross-link: location and consequences   总被引:6,自引:0,他引:6  
Some of us recently described a new interthiol cross-link which occurs in the skeletal myosin subfragment 1-MgADP complex between the reactive sulfhydryl group "SH2" (Cys-697) and a thiol (named SH chi) of the 50-kilodalton (kDa) central domain of the heavy chain; this link leads to the entrapment of the nucleotide at the active site [Chaussepied, P., Mornet, D., & Kassab, R. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 2037-2041]. In the present study, we identify SH chi as Cys-540 of the 50-kDa fragment. The portion of the heavy chain including this residue and also extending to Cys-522 that is cross-linkable to the "SH1" thiol [Ue, K. (1987) Biochemistry 26, 1889-1894] is near the SH2-SH1 region. Furthermore, various spectral and enzymatic properties of the (Cys697-Cys540)-N,N'-p-phenylenedimaleimide (pPDM)-cross-linked myosin chymotryptic subfragment 1 (S-1) were established and compared to those for the well-known (SH1-SH2)-pPDM-cross-linked S-1. The circular dichroism spectra of the new derivative were similar to those of native S-1 complexed to MgADP. At 15 mM ionic strength, (Cys697-Cys540)-S-1 binds very strongly to unregulated actin (Ka = 7 X 10(6) M-1), and the actin binding is very weakly affected by ionic strength. Joining actin with the (Cys697-Cys540)-S-1 heavy chain, using 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide, produces different species than does joining unmodified S-1 with actin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
F-Actin bindings to subfragment-1 (S-1) and S-1 after limited proteolysis by trypsin (S-1t) were studied in the absence and presence of ATP by means of ultracentrifugation. No significant difference in the affinities for F-actin was observed between S-1 and S-1t in the absence of ATP. In contrast, the affinity for F-actin in the presence of ATP was decreased about 50 times by the limited proteolysis of the S-1 heavy chain. The S-1 whose SH1 and SH2 groups were cross-linked by N,N'-p-phenylenedimaleimide bound F-actin weakly. The affinity for F-actin was similar to that of unmodified S-1 in the presence of ATP and was also decreased markedly by limited proteolysis of the cross-linked S-1. Reciprocals of the dissociation constant of acto-S-1 complex decreased markedly with increase of ionic strength in the presence of ATP, but decreased only slightly at the rigor state. All these results are consistent with our proposal that S-1 has two different actin binding sites, as reported previously (Katoh, T., Imae, S., & Morita, F. (1984) J. Biochem. 95, 447-454). The mechanism of activation of S-1 ATPase by F-actin is discussed.  相似文献   

15.
The effect of F-actin upon the binding of ADP to rabbit skeletal muscle myosin, heavy meromyosin, and subfragment 1 was studied by equilibrium dialysis, ultracentrifuge transport, and light scattering techniques. Both myosin and H-meromyosin (HMM) bind a maximum of approximately 1.6 mol of ADP/mol of protein, while S-1 binds approximately 0.9 mol of ADP/mol of protein. The affinity for ADP of all three preparations was similar at a given ionic strength (approximately 10(6) M-1 at 0.05 M KCl) and decreased with increasing ionic strength. Under conditions similar to those used for the measurement of ADP binding, the binding sites of myosin, HMM, and subfragment 1 (S-1) are saturated with actin at molar ratios of 2, 2, and 1 mol of actin monomer/mol of protein, respectively, as determined by light scattering, ultracentrifuge transport, and in the case of myosin by ATPase measurements. F-actin was found to inhibit ADP binding, but even at an actin concentration at least twice that required for saturation of myosin, HMM, or S-1, significant ADP binding remained. This ADP binding was inhibited by 10(-4) M pyrophosphate. The observations are consistent with the formation of an actomyosin-ADP complex in which actin and ADP are bound to myosin at distinct but interacting sites.  相似文献   

16.
S P Chock  P B Chock  E Eisenberg 《Biochemistry》1976,15(15):3244-3253
A single cycle of adenosine 5'-triphosphate (ATP) hydrolysis by a complex of actin and myosin subfragment one (acto-S-1) was studied in a stopped-flow apparatus at low temperature and low ionic strength, using light scattering to monitor the interaction of S-1 with actin and fluorescence to detect the formation of fluorescent intermediates. Our results show that the addition of a stoichiometric concentration of ATP to the acto-S-1 causes a cycle consisting of first, a rapid dissociation of the S-1 from actin by ATP; second, a slower fluorescence change in the S-1 that may be related to the initial phosphate burst; and third, a much slower rate limiting recombination of the S-1 with actin. This latter step equals the acto-S-1 steady-state adenosine 5'-triphosphatase (ATPase) rate at both low and high actin concentrations, and like the steady-state ATPase levels off at a V max of 0.9s-1 at high actin concentration. Therefore, the release of adenosine 5'-diphosphate and inorganic phosphate is not the rate-limiting step in the acto-S-1 ATPase. Rather, a slow first-order step corresponding to the previously postulated transition from the refractory to the nonrefractory state precedes the rebinding of the S-1 to the actin during each cycle of ATP hydrolysis.  相似文献   

17.
Several studies using a variety of approaches have suggested a possible role for the amino-terminal residues of skeletal muscle actin in acto-myosin interaction. In order to assess the significance of acto-S-1 contacts involving the N-terminal segment of actin, we have prepared polyclonal antisera against a synthetic peptide corresponding to the seven amino-terminal residues of rabbit skeletal muscle actin (alpha-N-terminal peptide). Affinity-purified immunoglobulin (Ig) G (and Fab) prepared from these antisera reacts strongly and specifically with the amino-terminal segment of both G- and F-actin but not with myosin subfragment 1 (S-1). This specificity was determined by Western blot analysis of actin and its proteolytic fragments and the inhibition of the above reactivity by the alpha-N-terminal peptide. The alpha-N-terminal peptide did not interact with S-1 in solution, affect S-1 and actin-activated S-1 MgATPase, or cause dissociation of the acto-S-1 complex. In separate experiments F-actin could be cosedimented with S-1 and affinity-purified IgG or Fab by using an air-driven ultracentrifuge. Densitometric analysis of sodium dodecyl sulfate/polyacrylamide gels of pellet and supernatant fractions from such experiments demonstrated the binding of both S-1 and IgG or Fab to the same F-actin protomer. Our results suggest that, while the acidic N-terminal amino acids of actin may contact the myosin head, these residues cannot be the main determinants of acto-S-1 interaction.  相似文献   

18.
The heptapeptide Ile-Arg-Ile-Cys-Arg-Lys-Gly-ethyl ester, having the amino acid sequence around the SH1 of myosin heavy chain, was coprecipitated with F-actin after ultracentrifugation. The heptapeptide inhibited the formation of acto-S-1 rigor complex by competing with S-1 for actin. Assuming a simple competitive inhibition, the dissociation constant of acto-heptapeptide complex was evaluated as 0.23 mM. An N-terminal tripeptide derivative from the heptapeptide Ile-Arg-Ile-methyl ester also formed a complex with F-actin with a dissociation constant of 1.1 mM. However, the other piece, Cys-Arg-Lys-Gly-ethyl ester, and a tetrapeptide, Val-Leu-Glu-Gly-ethyl ester, having the sequence adjacent to the N-terminal of the heptapeptide, scarcely bound with F-actin. These results suggest that part of the actin-binding site of myosin heavy chain around SH1 (Katoh, T., Katoh, H., and Morita, F. (1985) J. Biol. Chem. 260, 6723-6727) has the sequence of Ile-Arg-Ile and it is located adjacent to SH1 on its N-terminal side.  相似文献   

19.
T Hozumi 《Biochemistry》1992,31(41):10070-10073
It is well known that the structural interactions between S-1 moieties of myosin molecules ("cross bridges") and actin molecules in polymerized ("F") form are thought to underlie muscle contraction. It is surmised that such interactions are unitary (actin:S-1 = 1:1), but actual demonstration thereof is handicapped by intrinsic properties of the proteins. Recently, it has been reported that chemically modified [with m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS)] actin maintains its monomeric ("G") form and makes a stable unitary complex with S-1 but does not activate the S-1 ATPase [Bettache, N., Bertrand, R., & Kassab, R. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 6028-6032]. However, we recently showed that when MBS-G-actin and S-1 are covalently cross-linked by 1-ethyl-3-[3-(dimethylamino)propyl]-carbodiimide (EDC), ATPase activity is restored [Hozumi, T. (1991) Biochem. Int. 23, 835-843]. Here we investigated the interface between MBS-G-actin and S-1 using the techniques of tryptic digestion and EDC-cross-linking. MBS-G-actin specifically protected the N-terminal region of S-1 heavy chain against tryptic cleavage at the 25 kDa/50 kDa junction, which is different from the effect that a protomer within F-actin has on the protection of the 25 kDa/50 kDa junction. In addition, the cross-linking pattern between MBS-G-actin and S-1 was different from that between F-actin and S-1. When MBS-G actin was cross-linked to trypsin-treated S-1, no cross-linked product was observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
It is known that ternary complexes of myosin subfragment 1 (S1) with ADP and the Pi analogs beryllium fluoride (BeFx) and aluminum fluoride (AlF4-) are stable analogs of the myosin ATPase intermediates M* x ATP and M** x ADP x Pi, respectively. Using kinetic approaches, we compared the rate of formation of the complexes S1 x ADP x BeFx and S1 x ADP x AlF4- in the absence and in the presence of F-actin, as well as of the interaction of these complexes with F-actin. We show that in the absence of F-actin the formation of S1 x ADP x BeFx occurs much faster (3-4 min) than that of S1 x ADP x AlF4- (hours). The formation of these complexes in the presence of F-actin led to dissociation of S1 from F-actin, this process being monitored by a decrease in light scattering. The light scattering decrease of the acto-S1 complex occurred much faster after addition of BeFx (during 1 min) than after addition of AlF4- (more than 20 min). In both cases the light scattering of the acto-S1 complex decreased by 40-50%, but it remained much higher than that of F-actin measured in the absence of S1. The interaction of the S1 x ADP x BeFx and S1 x ADP x AlF4- complexes with F-actin was studied by the stopped-flow technique with high time resolution (no more than 0.6 sec after mixing of S1 with F-actin). We found that the binding of S1 x ADP x BeFx or S1 x ADP x AlF4- to F-actin is accompanied by a fast increase in light scattering, but it does not affect the fluorescence of a pyrene label specifically attached to F-actin. We conclude from these data that within this time range a "weak" binding of the S1 x ADP x BeFx and S1 x ADP x AlF4- complexes to F-actin occurs without the subsequent transition of the "weak" binding state to the "strong" binding state. Comparison of the light scattering kinetic curves shows that S1 x ADP x AlF4- binds to F-actin faster than S1 x ADP x BeFx does: the second-order rate constants for the "weak" binding to F-actin are (62.8 +/- 1.8) x 10(6) M-1 x sec-1 in the case of S1 x ADP x AlF4- and (22.6 +/- 0.4) x 10(6) M-1 x sec-1 in the case of S1 x ADP x BeFx. We conclude that the stable ternary complexes S1 x ADP x BeFx and S1 x ADP x AlF4- can be successfully used for kinetic studies of the "weak" binding of the myosin heads to F-actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号