首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Isoprenylation is required for the processing of the lamin A precursor   总被引:18,自引:5,他引:13       下载免费PDF全文
The nuclear lamina proteins, prelamin A, lamin B, and a 70-kD lamina-associated protein, are posttranslationally modified by a metabolite derived from mevalonate. This modification can be inhibited by treatment with (3-R,S)-3-fluoromevalonate, demonstrating that it is isoprenoid in nature. We have examined the association between isoprenoid metabolism and processing of the lamin A precursor in human and hamster cells. Inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase by mevinolin (lovastatin) specifically depletes endogenous isoprenoid pools and inhibits the conversion of prelamin A to lamin A. Prelamin A processing is also blocked by mevalonate starvation of Mev-1, a CHO cell line auxotrophic for mevalonate. Moreover, inhibition of prelamin A processing by mevinolin treatment is rapidly reversed by the addition of exogenous mevalonate. Processing of prelamin A is, therefore, dependent on isoprenoid metabolism. Analysis of the conversion of prelamin A to lamin A by two independent methods, immunoprecipitation and two-dimensional nonequilibrium pH gel electrophoresis, demonstrates that a precursor-product relationship exists between prelamin A and lamin A. Analysis of R,S-[5-3H(N)]mevalonate-labeled cells shows that the rate of turnover of the isoprenoid group from prelamin A is comparable to the rate of conversion of prelamin A to lamin A. These results suggest that during the proteolytic maturation of prelamin A, the isoprenylated moiety is lost. A significant difference between prelamin A processing, and that of p21ras and the B-type lamins that undergo isoprenylation-dependent proteolytic maturation, is that the mature form of lamin A is no longer isoprenylated.  相似文献   

2.
Cells incorporate isoprenoid products derived from mevalonate (MVA) into several unique proteins. The aim of this study was to delineate the effects of blocking MVA synthesis on the covalent isoprenylation of these proteins in murine erythroleukemia cells. Inhibition of protein synthesis with cycloheximide prevented the incorporation of [3H]MVA into proteins, suggesting that isoprenylation normally occurs immediately after synthesis of the polypeptides. However, incubation of cells with lovastatin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, for as little as 1 h prior to addition of cycloheximide rendered the isoprenylation step insensitive to cycloheximide. Lovastatin had no apparent effect on the stability of the isoprenylated proteins, but the development of cycloheximide insensitivity during the lovastatin preincubation was dependent on synthesis of new protein during that period. Addition of 50-200 microM MVA to the culture medium eliminated the effects of preincubation with lovastatin. Preincubation of cells with 25-hydroxycholesterol, which suppresses the synthesis and enhances the degradation of HMG-CoA reductase but is not a competitive enzyme inhibitor, did not induce cycloheximide-insensitivity of the isoprenylation reaction. The results suggest that blocking MVA synthesis with lovastatin causes a rapid depletion of isoprenoid groups available for protein modification. Consequently, there is an accumulation of non-isoprenylated substrate proteins. Shifts in the ratio of modified vs. unmodified proteins in response to MVA availability may have implications for the changes in cell morphology, cell proliferation and HMG-CoA reductase gene expression that occur when cells are subjected to MVA deprivation.  相似文献   

3.
4.
The primary structure of bovine rhodopsin kinase (RK), which phosphorylates light-activated rhodopsin (Rho*), terminates with the amino acid sequence Cys558-Val-Leu-Ser561, a motif that has been shown to direct the isoprenylation and alpha-carboxyl methylation of many proteins (e.g. p21Ha-ras). Transient expression of RK in COS-7 cells revealed the presence of two immunoreactive protein species. Consistent with RK being modified by isoprenylation, interconversion of these two species was dependent upon isoprenoid biosynthesis in the cells. Moreover, a serine substitution for Cys558 resulted in a single RK species whose migration on sodium dodecyl sulfate-polyacrylamide gels was identical to that of RK from cells treated with mevinolin, an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase and, thus, of isoprenoid biosynthesis. This finding indicates that isoprenylation of RK requires Cys558. The electrophoretic mobility of isoprenylated RK synthesized in COS-7 cells was identical to that of RK from bovine rod outer segments, suggesting that RK is isoprenylated in vivo. RK was determined to be modified by a farnesyl moiety and alpha-carboxyl-methylated. A time course of Rho* phosphorylation revealed that non-processed RK is approximately 4-fold less active than wild-type RK. This is the first demonstration of isoprenylation/alpha-carboxyl methylation of a protein kinase, and suggests that these modifications markedly influence enzymatic activity in vivo.  相似文献   

5.
Posttranslational modification of proteins by isoprenoids in mammalian cells   总被引:27,自引:0,他引:27  
W A Maltese 《FASEB journal》1990,4(15):3319-3328
Isoprenylation is a posttranslational modification that involves the formation of thioether bonds between cysteine and isoprenyl groups derived from pyrophosphate intermediates of the cholesterol biosynthetic pathway. Numerous isoprenylated proteins have been detected in mammalian cells. Those identified include K-, N-, and H-p21ras, ras-related GTP-binding proteins such as G25K (Gp), nuclear lamin B and prelamin A, and the gamma subunits of heterotrimeric G proteins. The modified cysteine is located in the fourth position from the carboxyl terminus in every protein where this has been studied. For p21ras, the last three amino acids are subsequently removed and the exposed cysteine is carboxylmethylated. Similar processing events may occur in lamin B and G protein gamma subunits, but the proteolytic cleavage in prelamin A occurs upstream from the modified cysteine. Lamin B and p21ras are modified by C15 farnesyl groups, whereas other proteins such as the G protein gamma subunits are modified by C20 geranylgeranyl chains. Separate enzymes may catalyze these modifications. The structural features that govern the ability of particular proteins to serve as substrates for isoprenylation by C15 or C20 groups are not completely defined, but studies of the p21ras modification using purified farnesyl:protein transferase suggest that the sequence of the carboxyl-terminal tetrapeptide is important. Isoprenylation plays a critical role in promoting the association of p21ras and the lamins with the cell membrane and nuclear envelope, respectively. Future studies of the role of isoprenylation in the localization and function of ras-related GTP-binding proteins and signal-transducing G proteins should provide valuable new insight into the link between isoprenoid biosynthesis and cell growth.  相似文献   

6.
Limonene has chemotherapeutic activity against chemically induced rat mammary carcinomas, many of which contain activated ras genes. Given the recent discovery of the post-translational modification of p21ras and other cell growth-associated proteins by intermediates in the mevalonic acid pathway, and the common biochemical origins of limonene and these isoprene products, we investigated the effect of limonene on protein isoprenylation. NIH3T3 and human mammary epithelial cells were incubated with lovastatin and [2-14C]mevalonolactone in the absence and presence of limonene. Labeled proteins were then subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography. Limonene inhibited isoprenylation of a class of cellular proteins of 21-26 kDa, including p21ras and possibly other small GTP-binding proteins, in a dose-dependent manner in both cell lines. In contrast, limonene did not affect the isoprenylation of several other proteins, including nuclear lamins. Limonene is metabolized extensively in vivo but not in cultured cells. The two major rat serum metabolites of limonene, perillic acid and dihydroperillic acid, were more potent than limonene in the inhibition of isoprenylation. These results demonstrate that limonene selectively inhibits isoprenylation of 21-26-kDa proteins at a point in the mevalonic acid pathway distal to 3-hydroxy-3-methylglutaryl coenzyme A reductase, and they provide a plausible explanation for its chemotherapeutic activity. Inhibition of isoprenylation of proteins such as p21ras and other small GTP-binding proteins would alter their intracellular localization and, hence, disrupt their biological activity.  相似文献   

7.
Lovastatin blocks N-ras oncogene-induced neuronal differentiation   总被引:1,自引:0,他引:1  
ras p21 must be posttranslationally processed in order to be localized to the inner plasma membrane. The first obligatory processing step is the farnesylation of ras p21. Lovastatin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, may prevent the farnesylation of de novo synthesized ras p21. We demonstrate that N-ras oncogene-induced neuronal differentiation of UR61J rat pheochromocytoma cells is blocked by lovastatin. Our data show that this effect is due to the inhibition of ras p21 farnesylation. The results suggest that ras oncogene-induced phenotype in mammalian cells may be eliminated by preventing the proper processing of ras p21.  相似文献   

8.
The isoprenoid pathway in yeasts is important not only for sterol biosynthesis but also for the production of nonsterol molecules, deriving from farnesyl diphosphate (FPP), implicated in N -glycosylation and biosynthesis of heme and ubiquinones. FPP formed from mevalonate in a reaction catalyzed by FPP synthase (Erg20p). In order to investigate the regulation of Erg20p in Saccharomyces cerevisiae , we searched for its protein partners using a two-hybrid screen, and identified five interacting proteins, among them Yta7p. Subsequently, we showed that Yta7p was a membrane-associated protein localized both to the nucleus and to the endoplasmic reticulum. Deletion of YTA7 affected the enzymatic activity of cis -prenyltransferase (the enzyme that utilizes FPP for dolichol biosynthesis) and the cellular levels of isoprenoid compounds. Additionally, it rendered cells hypersensitive to lovastatin, an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) that acts upstream of FPP synthase in the isoprenoid pathway. While HMGR is encoded by two genes, HMG1 and HMG2 , only HMG2 overexpression was able to restore growth of the yta7 Δ cells in the presence of lovastatin. Moreover, the expression level of the S. cerevisiae YTA7 gene was altered upon impairment of the isoprenoid pathway not only by lovastatin but also by zaragozic acid, an inhibitor of squalene synthase. Altogether, these results provide substantial evidence of Yta7p involvement in the regulation of isoprenoid biosynthesis.  相似文献   

9.
Cultured murine erythroleukemia (MEL) cells synthesize a number of low molecular mass GTP-binding proteins that undergo post-translational modification by isoprenoids. We used two-dimensional electrophoresis and immunoblotting to show that a 23-24-kDa protein labeled by the isoprenoid precursor [3H]mevalonate was specifically recognized by an antibody to G25K (Gp), a low molecular mass GTP-binding protein originally purified from placental, platelet, and brain membranes. Several isoelectric variants of G25K were detected in MEL cells, and all were radiolabeled with [3H]mevalonte. The G25K-immunoreactive protein did not cross-react with pan-ras antibody. Although mature p21ras is known to be localized in the cell membrane, most of the isoprenylated G25K was found in the 100,000 x g supernatant fraction when cells were lysed in buffer without detergent. Blocking isoprenoid synthesis by incubation of MEL cells with lovastatin resulted in a decrease in the concentration of G25K in the particulate fraction and a corresponding increase in immunodetectable protein in the soluble fraction. Lovastatin treatment also produced shifts in the electrophoretic mobilities of the G25K isoforms on two-dimensional gels. These observations are consistent with the idea that isoprenylation plays a permissive role in the association of G25K with the cell membrane or other organelles. However, the high proportion of soluble isoprenylated G25K in MEL cells under normal culture conditions suggests that the role of the isoprenoid modification may be more complex than simply serving as a structural anchor for stable insertion of proteins into the lipid bilayer.  相似文献   

10.
The amino acid leucine is efficiently used by the trypanosomatid Leishmania mexicana for sterol biosynthesis. The incubation of [2-(13)C]leucine with L. mexicana promastigotes in the presence of ketoconazole gave 14alpha-methylergosta-8,24(24(1))-3beta-ol as the major sterol, which was shown by mass spectrometry to contain up to six atoms of (13)C per molecule. (13)C NMR analysis of the 14alpha-methylergosta-8,24(24(1))-3beta-ol revealed that it was labeled in only six positions: C-2, C-6, C-11, C-12, C-16, and C-23. This established that the leucine skeleton is incorporated intact into the isoprenoid pathway leading to sterol; it is not converted first to acetyl-CoA, as in animals and plants, with utilization of the acetyl-CoA to regenerate 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). An inhibitor of HMG-CoA synthase (L-659,699) blocked the incorporation of [1-(14)C]acetate into sterol but had no inhibitory effect on [U-(14)C]leucine incorporation. The HMG-CoA reductase inhibitor lovastatin inhibited promastigote growth and [U-(14)C]leucine incorporation into sterol. The addition of unlabeled mevalonic acid (MVA) overcame the lovastatin inhibition of growth and also diluted the incorporation of [1-(14)C]leucine into sterol. These results are compatible with two routes by which the leucine skeleton may enter intact into the isoprenoid pathway. The catabolism of leucine could generate HMG-CoA that is then directly reduced to MVA for incorporation into sterol. Alternatively, a compound produced as an intermediate in leucine breakdown to HMG-CoA (e.g. dimethylcrotonyl-CoA) could be directly reduced to produce an isoprene alcohol followed by phosphorylation to enter the isoprenoid pathway post-MVA.  相似文献   

11.
Isoprenylation facilitates the association of proteins with intracellular membranes and/or other proteins. In mammalian and yeast cells, isoprenylated proteins are involved in signal transduction, cell division, organization of the cytoskeleton, and vesicular transport. Recently, protein isoprenylation has been demonstrated in higher plants, but little is currently known about the functions of isoprenylated plant proteins. We report that inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase (lovastatin) or prenyl:protein transferases (perilly alcohol) severely impair the growth of cultured tobacco (Nicotiana tabacum) cells but only when added within the first 2 d following transfer to fresh medium, before any increase in culture volume is detectable. This "window" of sensitivity to inhibitors of protein isoprenylation correlates temporally with an increase in [14C]mevalonate incorporation into tobacco cell proteins in vitro. We have also observed a marked increase in farnesyl:protein transferase activity at this early time in the growth of tobacco cultures. In contrast, type I geranylgeranyl:protein transferase activity does not change significantly during culture growth. Although these events coincide with the replication of DNA, I [mu]M lovastatin-treated cells are capable of DNA synthesis, suggesting that lovastatin-induced cell growth arrest is not due to inhibition of DNA replication. Together, these data support the hypothesis that protein isoprenylation is necessary for the early stages of growth of tobacco cultures.  相似文献   

12.
Tissue selectivity of pravastatin sodium (pravastatin), lovastatin and simvastatin, 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors was examined by measuring inhibition of de novo sterol synthesis and active drug concentrations in the liver, spleen and testis in rats after a single oral administration (25 mg/kg) of these drugs. Regarding tissue drug concentrations, all three drugs were liver selective: concentrations of drugs in the liver were about ten-times higher than those in the spleen and testis. On the other hand, pravastatin was far more liver selective in inhibiting sterol synthesis than two other inhibitors: pravastatin inhibited de novo sterol synthesis in the liver but minimally in the spleen and testis, whereas lovastatin and simvastatin inhibited in all three tissues. Microautoradiographic and in vitro cellular-uptake studies demonstrated that pravastatin remained in the extracellular space in the spleen, whereas the other drugs entered the cell. We conclude that pravastatin exhibits a liver-selective inhibition of sterol synthesis because the agent permeates the cell membrane in the liver, but not in non-hepatic tissues.  相似文献   

13.
1. Dimethylsulfoxide-induced differentiated neuroblastoma express high levels of membrane 21 to 23-kDa carboxyl methylated proteins. Relationships among methylation, isoprenylation, and GTP binding in these proteins were investigated. Protein carboxyl methylation, protein isoprenylation, and [alpha-32P]GTP binding were determined in the electrophoretically separated proteins of cells labeled with the methylation precursor [methyl-3H]methionine or with an isoprenoid precursor [3H]mevalonate. 2. A broad band of GTP-binding proteins, which overlaps with the methylated 21 to 23-kDa proteins, was detected in [alpha-32P]GTP blot overlay assays. This band of proteins was separated in two-dimensional gels into nine methylated proteins, of which four bound GTP. 3. The carboxyl-methylated 21 to 23-kDa proteins incorporated [3H]mevalonate metabolites with characteristics of protein isoprenylation. The label was not removed by organic solvents or destroyed by hydroxylamine. Incorporation of radioactivity from [3H]mevalonate was enhanced when endogenous levels of mevalonate were reduced by lovastatin, an inhibitor of mevalonate synthesis. Lovastatin blocked methylation of the 21 to 23-kDa proteins as well (greater than 70%). 4. Methylthioadenosine, a methylation inhibitor, inhibited methylation of these proteins (greater than 80%) but did not affect their labeling by [3H]mevalonate. The results suggest that methylation of the 21 to 23-kDa proteins depends on, and is subsequent to, isoprenylation. The sequence of events may be similar to that known in ras proteins, i.e., carboxyl methylation of a C-terminal cysteine that is isoprenylated. 5. Lovastatin reduced the level of small GTP-binding proteins in the membranes and increased GTP binding in the cytosol. Methylthioadensoine blocked methylation without affecting GTP binding. 6. Thus, isoprenylation appears to precede methylation and to be important for membrane association, while methylation is not required for GTP binding or membrane association. The role of methylation remains to be determined but might be related to specific interactions of the small GTP-binding proteins with other proteins.  相似文献   

14.
M Bifulco  C Laezza  S M Aloj 《Biochimie》1999,81(4):287-290
The cholesterol lowering drug lovastatin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, blocks DNA synthesis and proliferation of thyrotropin (TSH) primed FRTL-5 rat thyroid cells. The blockade can be completely prevented and/or reversed by mevalonate and largely prevented and/or reversed by farnesol whereas cholesterol and/or other non-sterol mevalonate derivatives such as ubiquinone, dolichol or isopentenyladenosine are ineffective. TSH-dependent augmentation of cyclic-AMP and cAMP dependent differentiated functions, such as iodide uptake, are unaffected by lovastatin. 3H-Thymidine incorporation into DNA is also decreased by alpha-hydroxyfarnesyl-phosphonic acid, an inhibitor of protein farnesylation which mimicks the effect of lovastatin since it also leaves unaffected TSH stimulated iodide uptake. It is suggested that the HMG-CoA reductase inhibitor lovastatin affects cell proliferation mainly through inhibition of protein farnesylation which results in altered function proteins relevant for proliferation control, notably p21ras and/or other small GTPases.  相似文献   

15.
Role of isoprenoid metabolism in IgE receptor-mediated signal transduction.   总被引:3,自引:0,他引:3  
In the 2H3 subline of rat basophilic leukemia cells (RBL-2H3), IgE receptor cross-linking stimulates a signal transduction pathway that leads to the secretion of histamine, serotonin, and other inflammatory mediators; the assembly of F-actin; and the transformation of the cell surface from a microvillous to a lamellar or ruffled architecture. We report here that 20 h incubation of RBL-2H3 cells with 10 microM lovastatin, an inhibitor of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMG CoA reductase), inhibits both the secretory and morphologic responses to IgE receptor cross-linking. Ag-induced Ca2+ mobilization, determined from the influx and efflux of 45Ca2+, and Ag-induced 1,4,5-inositol trisphosphate production are also inhibited in lovastatin-treated RBL-2H3 cells. Under the same conditions, lovastatin does not alter cell proliferation or IgE receptor expression, and it causes only a small impairment of responses initiated by drugs that bypass the earliest steps in the receptor-activated transduction pathway (ionomycin-induced secretion and PMA-induced membrane ruffling). Receptor-mediated Ca2+ mobilization, secretion, and ruffling are all restored by 0.5- to 4-h incubation of lovastatin-treated cells with mevalonic acid, the product of HMG CoA reductase and the first committed intermediate of the isoprenoid biosynthetic pathway. In contrast, dolichol and cholesterol, which are synthesized from products of the isoprenoid pathway, do not restore receptor-activated responses. These data implicate an isoprenoid pathway intermediate in an early step in the IgE receptor-activated signal-transduction sequence. We postulate that this intermediate is required for a newly described post-translational modification of proteins, their post-synthetic isoprenylation. The substrates for this modification include the ras family of GTP-binding proteins and the gamma subunits of the heterotrimeric guanine nucleotide-binding protein.  相似文献   

16.
Brassica juncea 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS) is encoded by four isogenes (BjHMGS1-BjHMGS4). In vitro enzyme assays had indicated that the recombinant BjHMGS1 H188N mutant lacked substrate inhibition by acetoacetyl-CoA (AcAc-CoA) and showed 8-fold decreased enzyme activity. The S359A mutant demonstrated 10-fold higher activity, while the H188N/S359A double mutant displayed a 10-fold increased enzyme activity and lacked inhibition by AcAc-CoA. Here, wild-type and mutant BjHMGS1 were overexpressed in Arabidopsis to examine their effects in planta. The expression of selected genes in isoprenoid biosynthesis, isoprenoid content, seed germination and stress tolerance was analysed in HMGS overexpressors (OEs). Those mRNAs encoding enzymes 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), sterol methyltransferase 2 (SMT2), delta-24 sterol reductase (DWF1), C-22 sterol desaturase (CYP710A1) and brassinosteroid-6-oxidase 2 (BR6OX2) were up-regulated in HMGS-OEs. The total sterol content in leaves and seedlings of OE-wtBjHMGS1, OE-S359A and OE-H188N/S359A was significantly higher than OE-H188N. HMGS-OE seeds germinated earlier than wild-type and vector-transformed controls. HMGS-OEs further displayed reduced hydrogen peroxide (H(2) O(2) )-induced cell death and constitutive expression of salicylic acid (SA)-dependent pathogenesis-related genes (PR1, PR2 and PR5), resulting in an increased resistance to Botrytis cinerea, with OE-S359A showing the highest and OE-H188N the lowest tolerance. These results suggest that overexpression of HMGS up-regulates HMGR, SMT2, DWF1, CYP710A1 and BR6OX2, leading to enhanced sterol content and stress tolerance in Arabidopsis.  相似文献   

17.
3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (HRIs) are widely used to reduce serum cholesterol in patients with hypercholesterolemia. Previous studies have shown that HRIs can induce apoptosis in colon cancer cells. In this study, we investigated the mechanisms underlying the apoptosis-inducing effect of HRIs in greater detail. The HRI lovastatin induced apoptosis in the human colon cancer cell line SW480 by blocking the cholesterol synthesis pathway. Immunoblot analysis of antiapoptotic molecules, including survivin, XIAP, cIAP-1, cIAP-2, Bcl-2, and Bcl-X(L), revealed that only survivin expression was decreased by lovastatin. Survivin down-regulation by RNA interference induced apoptosis, and survivin overexpression rendered the cells resistant to lovastatin-induced growth inhibition. These results indicate that survivin down-regulation contributes substantially to the proapoptotic properties of lovastatin. Farnesyl pyrophosphate and geranylgeranyl pyrophosphate, two downstream intermediates in the cholesterol synthesis pathway, simultaneously reversed survivin down-regulation and the blocking of Ras isoprenylation by lovastatin. Ras isoprenylation is important for the activation of Ras-mediated signaling, including the activation of the phosphatidylinositol 3-kinase (PI3-kinase)/Akt pathway. The PI3-kinase inhibitor down-regulated survivin in SW480 cells. In addition, lovastatin blocked Ras activation and Akt phosphorylation. We conclude that survivin down-regulation is crucial in lovastatin-induced apoptosis in cancer cells and that lovastatin decreases survivin expression by inhibiting Ras-mediated PI3-kinase activation via the blocking of Ras isoprenylation.  相似文献   

18.
19.
Lovastatin blocks the biosynthesis of the isoprenoid precursor, mevalonate. When Friend murine erythroleukemia (MEL) cells are cultured in medium containing lovastatin, the precursor of murine leukemia virus envelope glycoprotein (gPr90env) fails to undergo proteolytic processing, which normally occurs in the Golgi complex. Consequently, newly synthesized envelope proteins are not incorporated into viral particles that are shed into the culture medium. gPr90env appears to be localized in a pre-Golgi membrane compartment, based on its enrichment in subcellular fractions containing NADPH-cytochrome c reductase activity and the sensitivity of its carbohydrate chains to digestion with endoglycosidase H. Arrest of gPr90env processing occurs at concentrations of lovastatin that are not cytostatic, and the effect of the inhibitor is prevented by addition of mevalonate to the medium. The low molecular mass GTP-binding proteins, rab1p and rab6p, which are believed to function in early steps of the exocytic pathway, are normally modified posttranslationally by geranylgeranyl isoprenoids. However, in MEL cells treated with 1 microM lovastatin, nonisoprenylated forms of these proteins accumulate in the cytosol prior to arrest of gPr90env processing. These observations suggest that lovastatin may prevent viral envelope precursors from reaching the Golgi compartment by blocking the isoprenylation of rab proteins required for ER to Golgi transport.  相似文献   

20.
The mechanism by which platelet-derived growth factor (PDGF) regulates vascular smooth muscle cell (SMC) DNA synthesis is unknown, but may involve isoprenoid intermediates of the cholesterol biosynthetic pathway. Inhibition of isoprenoid synthesis with the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor, simvastatin (Sim, 1-10 microM), inhibited PDGF-induced SMC DNA synthesis by >95%, retinoblastoma gene product hyperphosphorylation by 90%, and cyclin-dependent kinases (cdk)-2, -4, and -6 activity by 80 +/- 5, 50 +/- 3, and 48 +/- 3%, respectively. This correlated with a 20-fold increase in p27(Kip1) without changes in p16, p21(Waf1), or p53 levels compared with PDGF alone. Since Ras and Rho require isoprenoid modification for membrane localization and are implicated in cell cycle regulation, we investigated the effects of Sim on Ras and Rho. Up-regulation of p27(Kip1) and inhibition of Rho but not Ras membrane translocation by Sim were reversed by geranylgeranylpyrophosphate, but not farnesylpyrophosphate. Indeed, inhibition of Rho by Clostridium botulinum C3 transferase or overexpression of dominant-negative N19RhoA mutant increased p27(Kip1) and inhibited retinoblastoma hyperphosphorylation. In contrast, activation of Rho by Escherichia coli cytotoxic necrotizing factor-1 decreased p27(Kip1) and increased SMC DNA synthesis. These findings indicate that the down-regulation of p27(Kip1) by Rho GTPase mediates PDGF-induced SMC DNA synthesis and suggest a novel direct effect of 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors on the vascular wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号